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General Drift-Diffusion Theory of the 
Current Density in Schottky Diodes 

Piet Van Mieghem 

Abstract-A new general expression for the current in Schottky 
diodes due to drift-diffusion but neglecting tunneling is presented. 
A precise expression for the ideality factor is derived. The temper- 
ature dependence of important quantities in both the degenerate 
(heavy doping) and nondegenerate (Boltzmann) limit is examined. 
In the degenerate regime, the temperature independence of the 
saturation current is shown to complicate the extraction of the 
barrier height from the current-voltage characteristics. 

I. INTRODUCTION 
LTHOUGH the theory of Schottky diodes (or more A generally metal-semiconductor interfaces) has a long and 

rich history [l] ,  [2], a complete understanding is still not 
achieved. Most of the literature concentrates on the determina- 
tion of the barrier height between the metal and semiconductor 
interface, but relatively little effort has been devoted to heavily 
doped diodes. Very often, weak temperature dependence of the 
current has been attributed to tunneling although this is not true 
in general as will be demonstrated here. 

So far a Schottky diode theory using the Fermi-Dirac 
statistics everywhere has not appeared yet. Transport equations 
for heavily doped semiconductors have first been derived 
by Van Overstraeten et al. [ 3 ]  to include heavy doping ef- 
fects such as bandgap narrowing [8] and bandtailing [9]. 
The earlier evolution in the theory of transport in heavily 
doped semiconductors as reviewed by Mertens et al. [4] is 
based upon the drift-diffusion theory and characterized by an 
attempt to include degeneracy and heavy doping effects in the 
framework of Boltzmann statistics through the definition of 
various effective quantities in order to maintain the simple 
Boltzmann expressions. The results were mainly used in the 
study of bipolar transistors. 

In this paper, we demonstrate that a new general and exact 
expression for the electron current density in a Schottky 
diode can be derived from the diffusion-drift current equa- 
tion, however neglecting tunneling. The theory assumes a 
homogenous metal-semiconductor interface. We show that, as 
a consequence of the Fermi-Dirac statistics, the ideality factor 
m varies as rri - Tf i  where /) is a doping concentration 
dependent function ranging from [? = 0 for very low doping 
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concentrations where Boltzmann statistics are valid to f i  = 1 
for heavily doped diodes. Previously an inverse T-law for the 
ideality factor was ascribed to tunneling [2]. In addition, our 
analysis emphasizes that the temperature independence of the 
current for high doping concentrations complicates the extrac- 
tion of the barrier height from current-voltage characteristics 
significantly. As a conclusion, we point out that the knowledge 
of the barrier height alone is insufficient except both the doping 
concentration and the temperature interval from which the data 
is extracted are specified. 

These new insights may help to improve the current under- 
standing for heavily doped Schottky diodes. 

11. INTEGRAL FORM OF THE DRIFT-DIFFUSION EQUATION 
When applying a voltage V across a n-type semiconductor, 

the electric current density due to electrons in one-dimension, 
J ,  ( V ) ,  satisfies the drift-diffusion equation [5] 

where p n ( z )  is the electron mobility, D7&(x) is the electron 
diffusion coefficient, n(z;  V )  denotes the density of electrons 
as a function of distance z and of applied voltage V and 
E ( x ;  V )  is the electric field at position x corresponding to 
the applied voltage V .  For the sake of brevity, we limit 
the discussion to n-type semiconductors. The adoption of the 
one-dimensional drift-diffusion equation ( 1) is the sole ap- 
proximation made. The voltage independent mobility excludes 
cases where velocity saturation occurs. But, more important, 
the drift-diffusion equation ( I )  does not account for tunneling 
that undoubtedly plays a role in heavily doped Schottky diodes 
at low temperatures. 

At a constant temperature T in equilibrium (V = 0), there 
is no current or J ,  (0) = I). This condition relates the electron 
mobility and diffusion coefficient as 

p n ( z )  - d ln[n(z; O)] 
D n ( z )  a.J,(.; 0) 

- = f(.) 

where the electrostatic potential $(x ;  V )  and the electric 
field are linked by E ( z :  V) = --. When assuming 
Boltzmann statistics, (2) reduces to the well known Einstein 
relation [14] f ( r )  = f = *. With Ferm-Dirac statistics 
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and a parabolic density of states' f(z) can be rewritten as 

where &(z: V) is the quasi-fermi level for electrons at 
position z when the voltage V is applied over the diode and 
&(z; 0) = - E F / q  for a Fermi level EF. Since - 5 1 for 
real y > p > -1 [17] we find the upper bound f(z) 5 &. 
In addition f ( x )  is positive. Thus 

(4) 

This implies that the Boltzmann limit gives the maximal value 
for f(x). 

As demonstrated in the appendix, the electron current den- 
sity J n ( V )  in (1) can be rewritten as 

with 

where a and b are arbitrary points in the semiconductor. Rela- 
tion ( 5 )  being mathematically equivalent to ( l ) ,  can include 
besides the Ferm-Dirac statistics all heavy doping effects 
as many body interactions [8] and bandtails [9]. One may 
wonder if (5) can be expanded around the low density limit 
(Boltzmann statistics) so that the degenerate case may be 
treated as a perturbation. Since we can show (see appendix) 
that the number of electrons can be rewritten in terms of 
Fermi-Dirac integrals for an arbitrary density of states and 
since the Fermi-Dirac integrals F,(y) do not have a Dirichlet 
series for y > 0 as shown by Dingle [lo], we conclude that 
the degenerate regime is both mathematically and physically 
disconnected from the nondegenerate regime. 

For Boltzmann statistics where n(z: V )  = N,exp 
[ q l w ( . ; l . . ) - ~ " ( x : ~ ' ) l ]  and f(.) = & = 4 equation 

k B T  Dn(Z) k B T  

' A  more general treatment that includes an arbitrary density of states is 
possible by introducing our ptransform (see appendix and [6], [7]). 

Fig. 1 .  
shows the profile neglecting the Schottky effect (.ro = 0). 

Conduction band energy E, ( . r :  I - )  versus distance .r. The dotted line 

(5) reduces to 

with 

111. CURRENT IN AN N-TYPE SCHOTTKY DIODE 

We first consider Boltzmann statistics in order to compare 
our results with the expression of Crowell and Sze [ I l l  
or Taylor and Simmons [12]. Then, we will generalize the 
Boltzmann results using (6). 

A realistic sketch of the conduction band profile is drawn 
in Fig. 1 (see also Fig. 6 on pp. 2.53 in [14] and potential 
profiles computed in [20]). Let us choose a < 20 and b in 
the quasi-neutral region. The point T O  is the position in the 
semiconductor close to the metal interface where the potential 
+(x)  = -Ec(z)/y reaches its minimum (see Fig. 1). Initially, 
we rewrite and physically interpret (8) relying on the shape of 
the sketch in Fig. 1. Afterwards, we will discuss the influence 
of the precise location of a and b and of the interface boundary 
conditions. 

Equation (8) can be rewritten as (see (9) at bottom 
of page). The first integral in the denominator 1 1  = 

imated as follows. Around its minimum z o  the potential 
increases rapidly. This observation suggests to use the method 
of the steepest descent (4.6 in [1.5]). We expand the potential 

e x p ( w )  s,"' &exp-&) U+(. !- can be approx- 
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.Ci,(,c) around the minimum zo where $"(z) > 0 and obtain dominant. The two extreme regimes are broadly discussed in 
[ 11. The approximations for 1 1  and 12 simplify the expression 
of the saturation current considerably, 

We use the Poisson equation $"(z) = - z 7 h n e t ( z )  where qnnet 
denotes the total net charge. Since $"(a,) > 0 we have 
that 7 ~ , , , ~  < 0 regardless of the doping concentration of the 
semiconductor. The charge distribution where the curvature 
of the potential is positive consists mainly of electrons. The 
underlying physical phenomena, image charge and correlation 
effects, have been analyzed in detail by Vinter [13]. In this 
seemingly metallic region we can define a "Debye length 
L D m "  as 

and obtain for I1 
- 

The diffusion coefficient can be written as Dn(zo) = l,Vth 

where 1, and 'uti, = denotes the electron mean free 
path and the thermal velocity in a material with effective mass 
v i * ,  respectively. Thus, we have 

where 1 1 , ~  describes the velocity of electrons at q,. 
The second integral, 1 2  = cxp( w) f o  f i  

exp (- -) = U,-', has been thoroughly investigated 
in the literature [ l ]  and approximated as 

where LD denotes the usual Debye length [14] and Vbi is 
the built-in potential. The quantity 'U, describes the velocity 
of electrons in the depletion layer due to a drift-diffusion 
mechanism. Since both defined velocities are weakly voltage 
dependent, it is in general difficult to determine which is 

At this point we introduce the concept of a bamer heightAQMs 
between the metal and semiconductor. From Fig. 1, we read 
that Qnls = q[$(u; V) -$(zo:  V)]. So far the precise location 
of the point a was not required. Since the region [O.zo] is 
shown to be effectively metallic, the potential $ ( U ;  V) can be 
choosen to coincide with the quasi-fermi level in the metal that 
acts as potential reference ( & ( a ;  V)  = 0). Hence, we choose 
the point u sufficiently close to the metallurgical junction. Our 
final result which was orginally due to Crowell and Sze [ 111 
except with v, replaced.by Vth, is 

It is instructive to briefly deduce the Simmons and Taylor 
formula. They essentially make two assumptions. First they 
neglect the Schottky effect [14] which means that z0 lies 
precisely at the metallurgical junction and that the potential 
only exhibits a negative curvature (see dotted curve in Fig. I). 
The omission of the Schottky effect causes only a small 
error as shown by Crowell and Sze [ l  11. Secondly, the metal 
interface current is approximated as 

(17) ,I = q,ut,,[7L(a; V) - n(u;0)] .  

Substituting the expression for the interface density of elec- 
trons n ( a ;  V) from (5) into (17) and solving for J ,  = J 
yields 

The Boltzmann approximation of ( 1  8) gives the Crowell-Sze 
or Simmons-Taylor formula 
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Fig. 2. The current-voltage characteristic from 80 K to 340 K. The insert ln[i( r ) / T 2 ]  versus 1/T exhibits clearly two different temperature regimes: 
thermionic transport at high temperature and a degenerate temperature independent behavior at low temperature. The latter temperature regime also 
includes tunneling. 

This equation implies that the reference for the quasi-fermi 
level is the Fermi level in the metal (&(U; 0) = 0) and that 
the energy barrier between a metal and semiconductor equals 
@MS = q[$(u; O)-&(a; O)]. This result (19) only differs from 
(16) in the denominator. The generalized Simmons-Taylor 
result (18) is not an exact integral of the drift-diffusion 
equation (1) in contrast to ( 5 )  with the boundary values 
explained above. The reason for the discrepancy is that they 
allow (17) to modify the result. 

When examining the general relation (3, the saturation 
current can be rewritten analogously as (see (20) at bottom 
of previous page) where we have associated the integrals 
in the denominator with reciprocal velocities found in the 
Boltzmann nondegenerate case above. We observe that the 
barrier height @MS does not appear explicitly anymore but 
that the information is concealed in 

2 0  

1, = 1 E(u ;  V ) f ( ? L ) d W  (21) 

This dimensionless integral describes the work done when 

or with (5) 

L 

The definition (22) is often approximated [14] when Boltz- 
mann statistics apply as 

Another expression follows from (I). After dividing (1) by 
40n(x)71(x;V) and integrating over [a, b] we obtain using 
(23) 

crossing the interface potential barrier, however, modulated 
by the environment through f(x). The consequence for de- 
generate Schottky diodes is discussed below. 

~ ~ f i ~ i ~ ~  a voltage dependent ‘area’ resistance P A  (v) = 
v/J,(v) in ocm2, we find from (25) that 

(26) 
dz 

PA(V) = 
4 IV. THE IDEALITY FACTOR m(V.T) 1 ,  

The current density J,(V) can also be expressed in terms of 
the quasi-Fermi levels as JIL(V)  = -qpn(x)n(x: V ) w .  
Performing an analogous operation as explained above yields 

A commonly used quantity as figure of merit for the 
Schottky diode is the ideality factor m(V, T )  defined as 

dz 
m(V.T)= [ ( ~ ) l n ~ ” . ” . l ~ ] - ’  JS(V) (22) J n ( V ) S b  a 4CLn(:E)71.(x; V )  = & ( a )  - Q)n(b)  = v (27) 
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or Let us examine 

From (26) and (28) we find an alternative expression for the 
ideality factor 

Introducing the lower and upper bound (4) for f (x)  we obtain 
1 5 rrL(V%T) < 00. For lowly doped good quality Schottky 
diodes m(V, T )  -+ 1 as follows from (29) since f(z) + &. 
Hence, when Boltzmann statistics apply, the ideality factor 
vi( V, T )  is both temperature and voltage independent. 

For heavily doped Schottky diodes, the ideality factor is 
less meaningful to evaluate the quality of the diode since 
the rectifying property of the diode decreases rapidly to 
become an ohmic contact (m(V.T) + 00). Recalling the 
definition (2)  off(^), the temperature dependence of m(V. T )  
is related to that of the free carrier concentration 7 i ( . ~ :  V ) .  In 
the degenerate limit n(x ;  V )  = N,FIl2 [ q [ v ( z ' L ; ! ~ ~ 7 1 ( z ~ V ) 1 ]  
is almost temperature independent-if we neglect the 
small temperature dependence of the potential, quasi- 
fermi level and mobility-because N, - T3/' while 

rri( V. T )  is inverse proportional with temperature T.  In the 
appendix we estimate the ideality factor using the definition 
(22) rather than (29) because no expansions of lnFp(:y) or 

i ( ' )  for all y are known. Since for all temperature T 
of interest a continous transition between both limit cases 
is possible (by varying the doping concentration) it is quite 
conceivable that m( V, T )  - T-"' where /3 is a certain function 
of doping concentration obeying 0 5 /-I 5 1. 

This temperature dependence of rri(V,T) is a universal 
property of the Fermi-Dirac statistics and should not be 
confused with the To anomaly [I]  that satisfies m(V,T) = 
1 + ,F where To is of the order of 10-50 K. The mechanisms 
responsible for the To anomaly are not well understood, 
although Tung [18], [20] believes that the effect is due 
to insufficient control of the metal-semiconductor interface 
causing interfacial inhomogeneities. He further points out that 
the anomaly often occurs in situations dominated by the 
so-called Fermi-level pinning. 

F -  
P Y )  

v .  THE BARRIER HEIGHT @US IN 
HEAVILY DOPED SCHOTTKY DIODES 

From the previous discussion and the definition of the ide- 
ality factor (22) we find that - is temperature independent 
in the degenerate limit. Further, invoking the definition of the 
voltage dependent resistivity and the temperature dependence 
of the free carriers, it follows that J,, ( V )  is almost temperature 
independent and, hence, also Js (  V ) .  A temperature indepen- 
dent current is generally attributed to tunneling only. Our 
analysis shows that this statement should be revised. 

and define an effective bamer height related to a certain 
temperature range as 

When Boltzmann statistics apply and J s ( V )  = AT2exp 
(- B) [ 141, we have for voltages larger than 

such that the bamer height @MS follows from the extrapolation 
towards zero voltage. 

The temperature independence of degenerate Schottky 
diodes complicates the extraction of the barrier height  IS 
seriously because the both currents Jn(V) and Js(V)  as well 
as 13 (21) become temperature indepe'ndent. The standard 
nondegenerate approach that plots - k~ 111 1 .Is ( V ) / T 2  1 versus 
inverse temperature and then identifies the slope as @P~\.IS 

clearly does not apply anymore. 
However, the temperature T can still be used as a tool 

to extract a high temperature barrier height, because for 
sufficiently high temperatures a semiconductor becomes again 
nondegenerate. When plotting - - k ~  111 IJ,(V)/T21 versus 1/T 
a clear separation between the temperature independent regime 
and the thermionic regime can be distinguished as shown in the 
insert of Fig. 2 for a AuIGaAs Schottky diode with Si donor 
concentration about 1018 cmP3. The AuIGaAs Schottky diode 
was fabricated without special surface treatment as follows. 
A 0.4 wm thick heavily doped n (Si)-type GaAs layer was 
grown by MBE on a commercial n+-GaAs substrate. The 
GaAs surface was prepared by a standard cleaning first with 
trichloroethylene, then with acetone and with isopropyl alcohol 
and finally followed by a dehydration bake at 200°C for 20 
min. under nitrogen flow. A rectangular pattem for the contacts 
was obtained after a lithography (resist 820-20, developer 
9341: 1 and deionized water rinsing) by e-beam evaporation 
of first 20 nm of Ti followed by 180 nm of Au. Finally 
we have removed the photoresist and have etched 0.3 pm 
of the GaAs surface with H3P04 : H202 : H20 (3:1:50) to 
define the junction area. The contacts are on top of the metal 
and on the back side of the n+-GaAs substrate. The current- 
voltage characteristic are shown in Fig. 2. The effective barrier 
height Q e ~ ( V ,  T )  has been fitted from the thermionic regime 
(high temperatures) by a straight line - k ~  In I J,, ( V ) / T 2  I = 
A/T + B. Both the slope A and the constant B are shown in 
Fig. 3. The low values of B justify the use of (32). The barrier 
height = 0.3 eV is found by extrapolation towards zero 
voltage. The slope of the fit gives 1 / r n  = 0.9 or an ideality 
factor of vi = 1.1. 
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Fig. 3. The effective barrier height ae~( \ ' ,T)  versus applied voltage for a Au/ii+-GaAs Schottky diode extracted from the high-temperature regime by 
fitting a straight line A/T  + B. Extrapolation towards zero voltage gives a barrier height of 0.3 eV and the slope indicates that the high temperature 
ideality factor is about m = 1.1. 

But as generally believed in literature [21], the Au/GaAs 
barrier height is around 0.7 eV (Fermi-level pinning due to 
the high amount of surface states). Clearly the extracted barrier 
height is both related to the doping concentration and temper- 
ature range where the information is obtained from. Moreover, 
the ideality factor is found to vary as m(V, T )  .-J when 
determined from the current-voltage characteristics performed 
over a broad temperature range [80 K, 340 K]. Pure tun- 
neling gives rise to an ideality factor inversely proportional 
with temperature [2]. An ideality factor temperature law as 
m(V, T )  N T P P  with 0 5 /3 5 1 is a natural consequence of 
the Fermi-Dirac statistics as demonstrated above. 

As a conclusion, we have shown that the ideality factor and 
barrier height essentially dependent on doping concentration 
and temperature. Moreover, the analysis demonstrates that 
the influence of the Fermi-Dirac statistics can cause effects 
previously attributed to tunneling only. Hence, both effects 
should be considered as suitable explanations for a non- 
Boltzmannian behavior of the ideality factor. 

APPENDIX 

MATHEMATICAL DERIVATIONS 

A .  Derivation of (5) 

Combining (1) and (2) yields 

We use the identity 

(34) 

to obtain 

We integrate from, say, n to b in the semiconductor side of 
the Schottky diode, 
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Dividing both sides by “ ( U ;  V)exp 
eliminates the arbitrary constant 50, 

The continuity equation for the electric current density, 
= 0 indicates that .Irj (IC; V) = JrL ( V )  is independent 

of position z. Rearrangement of (37) leads to (5). On the other 
hand, starting from the integral form ( 5 ) ,  we easily recover (1) 
in the limit when U tends to b. Indeed, application of theorem 
of de I’Hapital and of ( 2 )  leads to (1). This demonstrates that 
(1) and (5) are mathematically equivalent. 

B.  Estimates for the Ideality Factor m( V, T )  
We will present altemative expressions for the ideality factor 

Using the definition (2) of f ( . c ) ,  (38) rewrites as 

The point b must be choosen in the neutral region where 
E ( b ;  17) = 0 for all voltages V .  The last integral can 
be estimated in the assumption of the constant doping 
profiles and in the depletion approximation. We have that 

f ( z  0 )  W’,j(0)-z U7d (0) --s E(. 0 )  
&(s,\ ) - b j 7 d ( \ ’ ) - x  - 1 - t lh (0 ) -bZ’d(L  and & ( = 

< 0 in forward bias where Wd(V) denotes - U 7 d  ( o ) - I r d  (1 r, 
(11 d ( O ) - x ) L  

the depletion thickness at applied voltage V .  The last integral 
is thus negative. A simple estimate is 

such that, because 0 < 5 1 

< min{ n ( b ;  V )  
7n(V,T) - (ln I ___ n ( u ;  V )  1 

+ 111 n(u ,  0) 1 ‘I) ~ I} (41) 
€ ( U ;  0) 

C .  Short Note on the Fermi-Dirac Integrals Fp(y) 
A quite different manner to examine properties of 

Femii-Dirac integrals consists in studying their generating 
function. When looking at the definition written as a g- 
transform, where o ( ~ )  is Heavyside’s stepfunction, 

we may interprete I’(p + l)F ( ) as the Mellin transform of 
the function (1 + exp(z - gfi-’, which altematively means 
by inversion, 

We now need the following important property of the Mellin 
transform. If F ( s )  and G(s )  are the Mellin transform of the 
absolute integrable functions on [0, m), f ( z )  and resp. g(z), 
and if k and cy are real numbers suitably chosen in order that 
z k f ( z )  and z”-kg(z) both belong to C 2 ,  the class of absolute 
integrable functions on [O ,m] ,  then holds [22]  

J, f(z)g(z)z”-’dz = - F(w)G(s  - w ) ~ w .  
2ba j k - i m  

(45) 
The interest of relation (45) is that using (45) the single 
sided p-transform can be written in terms of the Fermi-Dirac 
integrals provided that the Mellin transform G(s )  of the 
density function g(z) exists.2 

* I t  is very likely that there exists a nonzero s-interval around s = 1 where 
G(.s)  converges since for density functions jox . rs - l~ / ( .~~)d .~ .  = 1 for ,5 = 1. 
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This demonstrates that we may rewrite the number of elec- 

Fermi-Dirac integrals. 
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