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INFLUENCE OF MAJORITY CARRIER BANDTAILS ON 
THE PERFORMANCE OF SEMICONDUCTOR DEVICES 
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Abstract--A model for bandtailing is built into the 1-D device simulator SEDAN. The influence of 
bandtails on the current gain of a state-of-the-art bipolar transistor is examined. It is shown that for 
transistors with high emitter doping, bandtail effects decrease the current gain significantly. This reduction 
in current gain is more pronounced at low temperature. 
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NOTATION 

effective Bohr radius (cm) 
current gain 
current gain calculated with bandtailing 
bandgap narrowing (BGN) (eV) 
BGN due to many-body interactions (eV) 
BGN due to bandtailing (eV) 
the permittivity in the semiconductor 
(Fern - l )  
conduction (valence) band energy (eV) 
bandgap energy (eV) 
cutoff frequency where/ /= 1 
inverse screening length (cm -1 ) 
hole diffusion length (cm) 
effective mass times electron mass (kg) 
integrated unperturbed DOS (cm -~) 
the minority carrier mobility in the emitter 
(base) (cm2V- i s- 1 ) 
effective density of states in conduction 
(valence) band (cm -3) 
emitter (base) doping concentration (cm -3) 
effective intrinsic carrier concentration (cm-3) 
intrinsic carrier concentration (cm -3) 
unperturbed density of states (DOS) (eV -l 
c m  -3)  
root mean square of the potential energy 
fluctuation due to the random distribution of 
impurities (eV) 
emitter time delay (s) 
total time delay (from emitter to collector) (s) 
emitter-base voltage for which fl achieves its 
maximum (V) 
emitter-base voltage (V) 
the emitter (base) width (cm) 
quasi-Fermi levels for electrons (holes) (eV) 

i. INTRODUCTION 

shrinking of the bandgap, the electron-impurity 
scattering[2] modifies the DOS more significantly and 
causes states that tail into the energy gap. Along with 
these many-body effects, the random distribution of 
impurities merely distorts the DOS[3] by creating 
significant bandtails. Since its nature is statistical, the 
description differs from many-body effects. In this 
work, supposing that the many-body influences are 
known, we concentrate on the latter effect and refer 
to it as bandtailing. 

By now, BGN is recognized to exert an important  
influence on device performance[4]. It is generally 
included in device simulators, most often by an 
empirical model (such as the Slotboom formula[5] 
in Si). On the other hand, bandtailing is usually 
neglected because its repercussion on device perform- 
ance is smaller than BGN. Above all, the physical 
description of bandtailing is cumbrous to plug into 
a device simulator since the tailed DOS functions 
need additional numerical integrations which blow 
up computer time. 

In this article, we propose an efficient numerical 
method to include bandtailing for majority carriers in 
a device simulator. The model [see eqn (6)] is pro- 
grammed into SEDAN[6]. This built-in into SEDAN 
hardly increases the simulation time. The current gain 

of a state-of-the-art high-speed Si bipolar transistor 
with an fT of 40 GHz[7] is examined. At very high 
doping concentration or low temperatures, this effect 
of  band tailing is demonstrated to be sufficiently 
pronounced to influence characteristics of semi- 
conductor devices. 

Heavy doping effects may influence device operations 
considerably. These heavy doping effects result from 
different physical mechanisms. Many-body effects 
(mainly electron-electron and electron-impurity 
interactions) contribute most dominantly.  Besides 
a shift of the energy levels leading to bandgap 
narrowing (BGN), electron-electron interactions also 
weakly deform the density of states (DOS) from 
its unperturbed distribution[l]. Apart  from a slight 

2. A MODEL FOR BANDTAILING 

Detailed numerical simulations for devices can be 
split up into two classes[8] corresponding to the 
physical models they are based on. The first class 
uses conventional (or empirical) device physics (CDP) 
while the second class starts from first-principles. 
The latter determines the number  of carriers from 
an intricate tailed DOS function, which itself is 
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function of the number  of carriers n through screen- 
ing effects[3]. This calculation clearly needs self- 
consistent numerical procedures and hence, a lot 
of computer time. We have preferred a less arduous 
way and propose a CDP approach. 

The effect of bandtailing is modeled as an equival- 
ent downward shift of the Fermi level while using a 
parabolic DOS instead of a DOS distortion. This is 
illustrated in Fig. 1. It means that the effect of  
tailing introduces a supplementary narrowing of 
the bandgap besides the many-body BGN effect 
and forms a part of the total bandgap shrinkage 
AEg: 

AEg = AEg,many.body + AEg,tail (1) 

Although this separation is an approximation, it 
can be justified theoretically[9] but presents a more 
complete description because nearly all theories 
of BGN assume a parabolic DOS and neglect band- 
tailing. Further, we have followed a semiclassical 
approach, which is shown[9] to be very appropriate 
in describing the number  of majority carriers in 
a degenerate semiconductor, to deduce values for 
AEg,t~ij = EF0 -- EFt. Assuming complete ionization, 
both introduced Fermi levels are easily calculated 

EFo ~ 

EFt ......a~ 

Eco ~ 

Evo ~ 

Energy 

j /  ~ AEFtail 

DOS 

Eg o  

Fig. 1. Bandtailing causes the Fermi level Err to lie below 
the Fermi level Er0 of the corresponding parabolic DOS for 
a same amount of carriers n. The picture is drawn to scale 

for Si. (Energy in eV.) 

AEg,tail 

where 

from the impurity concentration N, preserving electri- 
cal neutrality, as: 

N = n~l = p(E) fFD(E -- EFt) dE 

i 
n ~., 

= oo(E)fFD(E - Evo) dE, (2) 
0 

where EFt" denotes the Fermi level using the tailed 
distribution p(E) ,  whereas EF0. equals the Fermi 
level for the unperturbed DOS po(E), and fFD(E) is 
the Fermi-Dirac function. The solution for AEg,ta~ 1 
from (2) in the semiclassical approach: 

e 2 1 d t M o ( ~ t ) e x p ( - & ) ,  (3) 
EK2 ~ 

Mo(E)  = po(t) dt, (4) 

e2 / tl 
o = - -  , (5) 

E 8nx 

in which x denotes the inverse screening length and 
E the permittivity in the semiconductor, which is 
derived in Ref. [9]. 

This semiclassical approach[9] for formula (3) gives 
a good estimate of the real Fermi level shift which is 
directly applicable for device simulators. Indeed, we 
have calculated the maximal relative error by com- 
paring the semiclassical method with Sayakanit 's 
path integral approach[10], which practically co- 
incides with the Halperin and Lax theory[l 1] in the 
deep energy tail. We prefer Sayakanit 's approach 
over that of Halperin and Lax since it offers an more 
elegant and precise way to define the relative error. 
As the semiclassical method overestimates the num- 
ber of deep tail states, we have compared this overes- 
timated number to the number  of tail states under the 
band edge and defined this ratio as the relative error. 
To find the excess of deep tail states, the number of 
states according to both the Kane and Sayakanit 
DOS are computed at the point where Sayakanit 's 
DOS crosses the Kane-DOS (as proposed by 
Sayakanit[10]). This measure for the relative error is 
an upper boundary because the overestimated num- 
ber is related to the number of tail states rather than 
to the total number of carriers. The semiclassical 
formula (3) assumes that the Fermi level lies in the 
conduction band implying that the total number of 
carriers exceeds that of the tail states. We obtain that 
the maximal relative error never exceeds 28% for the 
doping concentrations covered in Fig. 2 and de- 
creases towards higher doping concentrations, as it 
should because the semiclassical method describes the 
exact high-density limit[9]. Just as the band tail effect 
becomes negligible, the semiclassical formula (3) 
overestimates the tail contribution, but gains accu- 
racy for increasing doping concentrations, where 
band tails affect semiconductor properties. In corn- 
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Fig. 2. The Fermi level shift AEg,ta~ , as a function of doping concentration for semiconductors with a 
parabolic unperturbed DOS (Si, GaAs) and a non-parabolic unperturbed DOS (InAs0.3Sb0.7). The 
semiclassical model is only valid when the Fermi level lies in the conduction (n-type) or valence band 

(p-type). The curves are only drawn for doping concentrations above this validity threshold. 
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parison with other approximate models (e.g. for 
mobility, lifetime, etc.) in a device simulator and in 
view of its elegance built-in into a device simulator, 
we believe that the use of this formula (3) is well- 
justified. 

If the unperturbed DOS is a simple square root of 
energy (as for Si and GaAs), expression (3) simplifies 
considerably, yielding: 

m 3"2e 20 3/2 
AEg,tai I = 0 .041078 Eh3x ~ (6) 

with 

+ =  qT/+ \ ++ ] (7) 

and where a, = 4rcEh2/me 2 denotes the effective Bohr 
radius and m is the effective mass. 

The dependence of AEg,t~i ~ on doping concentration 
is shown in Fig. 2 for Si and GaAs together with 
InAs0.3Sb0. 7 which exhibits a strong non-parabolic 
unperturbed DOS. It is observed that AEg,tai I is sub- 
stantial for Si and GaAs at high doping concen- 
trations, which are typical for emitters of advanced 
bipolar transistors. Moreover, the vertical scaling to 
obtain high cutoff frequencies tends to increase the 
doping concentration in the base resulting in growing 
importance of bandtailing in calculating collector 
current densities. 

3. SEDAN SIMULATION 

The influence of bandtailing on device performance 
is illustrated for an Si bipolar transistor[7] for which 
the doping profile is drawn in Fig. 3. The emitter and 
base are heavily doped. The influence of bandtailing 
on the current gain of this transistor[12] is studied 
because of the high sensitivity of current gain 
for changes in bandgap energy. The simulations 
were performed using identical parameters for both 
the model with bandtailing (6) and without bandtail- 
ing. In the latter case only BGN (AE~,m.y.body) is 
included. 

For homogeneous emitter and base doping 
profiles, the maximum of the current gain flm,x is 
approximately described by[13]: 

2 

~ "+ l~o --,"'°" (8 )  
,am++, ,,, PoE 

where 

NE XE ~nB 
flo (9 )  

NB XB ~./p E ' 

with NE(B) the emitter (base) doping concentration, 
XE(s) the emitter (base) width and/~.Et.a) the minority 
carrier mobility in the emitter (base). The derivation 
of (8) assumes the evaluation of the p-n-product 
close to the ohmic contacts, where ~. = ~p. The 
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Fig. 3. Doping profile of the bipolar transistor studied. 
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effective intrinsic carrier concentration, n~¢ = n p ,  can 
be worked out further. Defining[14]: 

R~I,I(Y) = N~vl g¢i,)(x) dx , (10) 
~_ ~ 1 + exp(x - y) 

where go~ (x) = k T/N~t~I Pc (k Tx), with pC (E) the den- 
sity of states in the conduction band, we obtain: 

: ( 1 1 )  
\ kT ] \ kT } 

where ~,(p~ is the quasi-Fermi level for the electrons 
(holes). 

Consider the n-p product in the emitter. Since holes 
are minority carriers, the asymptotic expression for: 

R~O,') = A~e-', (12) 

where 

A, = gv(u)e-"du, (13) 

yields an excellent approximation and (11) reduces to: 

). (14) 

Writing E, = E¢ + E, + AEg and invoking the defi- 
nition of the intrinsic carrier concentration, (14) 
reads: 

2 [AEg\ (E< - ~p\ f~,,,- E~\ 
np = A~nio e x p t ~ f  ) e x p t ~ -  ) R ~ t ~ -  )" 

(15) 

The voltage for which the current gain achieves its 
maximum does not belong to the high injection 
region and, hence, to a good approximation, we may 
suppose that the number  of electrons equals the 
donor concentration, or: 

k T  ~ \ N ~ } '  (16) 

where y = R l(x) denotes the solution of x = R(y). 
Substituting (16) into (15) and recalling that if,, = ~p, 
we finally arrive at: 

n p = A v n i o e x p t ~ )  \ ~ ] ]  ~ ,  (17) 

which is modeled in Sedan3, invoking (6) as: 

2 {'AEg + AEgt\ [- l / N E \ ]  NE 

where FIi2(Y) is the Fermi-Dirac integral of order 1/2. 
Plugging (18) into (8), we get the approximate 

formula for /3ma~: 

l -AEgE-AEg'E+AEg~+AEgt~) (19) 
/~max ~ ]~* exp kT ' 

where 

fl, N2 NvXEPpE [ ~ ,(NE~_ ,~ I{'NB~7 
= ~ cxP/--  rl,'2 l - - 1  * /"  1 . ' 2 / s I l "  (20) 

/V,SVcXBp, B L \N~} 21v,JJ 

However, the approximate relation (19) should never 
be used to extract real values for bandtailing from 
transistor measurements because the accuracy needed 
to determine BGN and bandtailing far exceeds the 
accuracy of (8). This simple model, here, is adopted 
to explain tendencies observed from the simulations. 
We prefer to investigate the difference in current gain 
Aft = fl - fit rather than fltlfl, because the latter does 
not reach a maximum in the interval [0.5 V, I V]. 

Both fl and fit are drawn in Fig. 4 for several 
emitter doping concentrations, varying from 1020 to 
5 102°cm -3, holding all other doping profile par- 
ameters fixed. The influence of tailing is predominant  
for emitter doping concentrations above 1020 cm -3 as 
is observed from Fig. 4. The maximum difference in 
current gain increases strongly with emitter doping 
NE. The corresponding pictures for a variable base 
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I I I From the simulations (see Figs 4-6),  a shift of  fit 
to lower base-emitter  voltages is observed. If  the 
voltage corresponding to the maximum current gain 
V~ is considered, the difference A V B = V a - Vat turns 
out to be roughly of  the order of  AEgtE + AEgts. 
However, no simple formula to evaluate this 
shift A V a is available because V a strongly depends, 
apart  from the lifetime, on the dominance of  
punchthrough or high injection. In addition, Sedan3 
is not well-suited to study this small difference in 
detail. 

The influence of  bandtailing on fT of  the studied 
bipolar transistor (Fig. 3) can be estimated from 
arguments outlined by De Man et al.[17]. They have 
demonstrated that the total time delay ZEC is modified 
by BGN through the emitter delay time zE. For  
constant doping profiles, ZE reads[18]: 

50 

K 
Ze = -z,  (21) 

P 

,,  -, l-I-cosh?q ' - '  = + -  s m m - - /  7, (22) 
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Fig. 4. The current gain ,8 and ,8, vs emitter-base voltage 
and at zero collector-base voltage for variable emitter 
doping concentrations N E. Both curves for ,8 and ,st expand 
for increasing N E = 102°-5 x 1020 cm -3. The emitter doping 

concentration NE is shown in units of 1020 cm -3. 

where Zr is the recombination lifetime in the bulk and 
s the recombination velocity at the emitter contact, 

200 I I I I I I 

~'-- with bandtailing 

doping N B, ranging from 1 0  Is to 1019 c m  3, are shown 
in Fig. 5. For  the lowest base concentration 
NB = 10 js cm -3, fl peaks at low values of  Vbo because 
the transistor is operated near punchthrough. The 
decrease in Aflmax with base doping is explained by 
(19) because the sign of  AEgtB is opposite to that of  
AEgtE. The Aflmax extracted from Figs 4 and 5 does not 
show a simple dependence on doping concentration, 
a feature expected from (19). 

The most important  limiting factor in the tempera- 
ture dependence of  the current gain of  a BJT is 
bandgap narrowing[15]. The effect of  bandtailing on 
the temperature dependence of  the current gain is 
demonstrated in Fig. 6. Especially at low tempera- 
ture, bandtailing has a dramatic influence. The 
difference Aft is a weakly decreasing function of  
temperature. The maximum difference in current gain 
is best fitted a s  Aflmax (T) ~ 18.9 T -°°s for the tem- 
perature range varying from 150 to 500 K. In con- 
clusion, besides the already strong effect of  B G N  on 
the current gain at low temperature, the effect of  
bandtailing decreases fl even faster. This pronounced 
degradation in current gain at low temperature is of  
special interest since bipolar transistors have an at- 
tractive power delay product at low temperatures[16]. 

150 
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Fig. 5. The current gain ,8 and ,8, vs emitter-base voltage 
and at zero collector-base voltage for variable base doping 
concentrations N B. Both curves for ,8 and ,8t decline for 
increasing N~ = 101s-1019cm -3, The base doping concen- 

tration NB is shown in units of 10 ~s cm -3. 
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these parameters ,  however,  is still not  well under-  
stood[19]. 

4. CONCLUSION 

The influence of  bandta i l  effects on  the current  gain 
of  a bipolar  t ransis tor  is shown to be substant ial  for 
high emit ter  doping concent ra t ions  and  low tempera-  
tures. As future semiconductors  device design tends 
towards fur ther  vertical scaling for improved cutoff  
frequencies (leading to still higher doping concen- 
trations),  the bandta i l  effect should be included in the 
simulations.  Beside this work on  the influence of  the 
effective intrinsic carrier concentra t ion,  a tho rough  
study of bandta i l ing  on minori ty  carrier  mobili ty,  
lifetime and diffusion coefficients is needed. 
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Fig. 6. Both current gain /~ and fit vs emitter-base voltage 
and at zero collector-base voltage for various temperatures. 

which simplifies for a short  ( t ransparent )  emit ter  
(x E ,~ Lp) to: 

K XE X~ 
= -  + - .  (23)  

s 2Dp 

Consequent ly ,  when neglecting the weak dependence 
of  K on AEg, we obtain:  

5 
6 A E g t ( ~ ) = 2 1 t K ~ ( ~ ) ,  (24) 

or the sensitivity of l i f t  for bandta i l ing  is pro- 
por t ional  to the sensitivity of  the inverse of  current  
gain for bandtai l ing.  Thus,  to first-order, the effects 
of  bandta i l ing  on  the f+ of a bipolar  t ransis tor  with 
cons tan t  doping  profiles are similar to the tendencies 
observed in ft. 

At  last, we recall tha t  the real effect of  bandta i l ing  
may be more  p ronounced  than demons t ra ted  here 
because our  s imulat ion did not  include the influence 
of  bandta i l ing  on  mobili ty,  lifetime nor  the diffusion 
coefficient. The physics of  heavy doping behind  
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