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The stress field in laterally small strained semiconductor epilayers has been studied by the finite 
element method. The reaction of the epilayer on the substrate and the bulging-out effect caused 
by shear forces in the side wall boundaries play an important role. Analytical approximate 
methods are shown to be deficient. The normal stresses relax faster than a simple exponential 
with height z and virtually complete relaxation occurs at a height &=: J&/2 (where a and b 
are t.he width and length, respectively, of the parallellopipidial epilayer) which is in good 
agreement with recent experiments. An equivalent lattice spacing f, as a function of z/ @ 
is defined and calculated. 

Equilibrium theories of elastic stress relaxation in ep- 
ilayers are valid only when the lateral dimension a,b of the 
layers is much larger than its height h.‘,* Currently there is 
a lot of interest in small layers (a,b <h). Both in Ge/Si3’3 
and GaInAs/GaAs’ systems, where the strain is 4% to 
5%, the growth is islandic after a few monolayers. In both 
cases the initial strain relaxes not by the introduction of 
dislocations but by the islandic deformation. Small layers 
have also been grown using selective growth techniques.6V7 
Again, strain in these layers is found to relax without the 
introduction of misfit dislocations. Pioneering work to cal- 
culate approximately the strain relaxation in small layers 
was done by Suhir et aLg9 In this communication, the 
stress field in small layers using the finite element method 
[FEM) is calculated with zWSTUS~~ showing the deficien- 
cies of analytical approximations. Our results agree well 
with the recent experiment of Eaglesham et aLaS 

The simplest geometry that may represent an epilayer 
island is a parallelopiped. Even in this simple shape no 
analytical solution seems available to determine the elastic 
stress distribution due to the interfacial lattice mismatch 
because it requires’” the simultaneous solution of nine par- 
tial differential equations. A sufficiently accurate solution 
of the problem is obtained by the FEM, which is extremely 
well suited since the parallelopiped is divided into elements 
(or unit cells) and into nodes (or atoms). 

We consider parallelopipida with an interfacial plane 
-a/2.<x<a/2, -b/2-<ygb/2 and a height O<z<h, where 

zgb. To achieve high accuracy we chose elements contain- 
ing 20 nodes, with the height depending exponentially on 
the z coordinate as the stress distribution changes rapidly 
near the interface. This accuracy constraint limits the one 
to one correspondence of the physics (atoms and unit 
cells) with the FEM (nodes and elements) in the z direc- 
tion. The numerical results apply to pure Ge on Si but are 
easily extended to other materials. The lateral length of a 
unit cell equals the lattice spacing of Ge (5.65 A). As a 
boundary condition, all nodes (atoms) in the interface 
plane (z=O) are displaced to cause a uniform biaxial strain 
of 4.17% (the lattice mismatch between Ge and Si j. In 
addition, we restrict their motion in the z direction 
(z+(x,y,O) =O). This constraint is the only assumption 

made and is believed to be reasonable (it is supported by 
Fig. 2 in Ref. 4 and will be discussed further). 

For a = b = h = 8 unit cells, we have simulated the elas- 
tic stress distributions as a function of z. A plot of a de- 
formed parallelopiped is inserted in Fig. 1. The results in 
the cross section x=y from the center to the corner of the 
parallelopiped are shown in Figs. 1 and 2. Due to symme- 
try, we have qr=oY, rXZ=ryZ, and uX=uY for nodes in the 
plane x=y. As expected, the normal stresses 0, (Fig. 1) 
decrease along the diagonal for sufficiently high z. Near the 
interface an opposite behavior is observed. The lattice mis- 
match forces the epilayer to bend, which is prohibited by 
our boundary condition u,(x,y,O) =0 for all --a/2<x:r; 
a/2, -b/2<y<b/2. As a result, large normal stresses crZ 
(Fig. 1) originate, influencing the normal stress o.r through 
the Poisson effect. From these high interface stresses we 
conclude that the substrate is locally deformed by the lat- 
tice mismatched epilayer and that the boundary condition 
uZ(x,y,O) =0 should be relaxed. For the higher values of z 
the normal stress cr, changes sign and becomes even weakly 
tensile. The shear stresses parallel with the interface, rsy, 
happen to be two orders of magnitude smaller than the 
other stress components and are almost zero in the center. 
This means that the form of the squarial interface is well 
maintained. The shear stresses r, (Fig. 2), on t.he other 
hand, are comparable to the normal stresses and increase 
toward the corner causing the “bulging-out” effect. The 
displacements U, (Fig. 2) at z=O reflect the boundary in- 
terface condition of 4.17% strain. The displacement zlZ 
(Fig. 2) shows how the cross section along the diagonal 
bends but flattens toward the top which is of technological 
interest. 

The homogeneous elastic energy”’ in a slab paral- 
lel to the interface plane between z and z+Az, Eh(z) is cal- 
culated as 

-f&(z)= c 
~~-A~~,t<~,==z) 

Cl> 

with the stress invariants 

11 =o,+qt~z~ (2) 
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FIG. 1. The normal stresses ox and O, for various heights z, as a function 
of distance from the center along the diagonal to the comer in a paral- 
lelopiped (a=b=lr=45.2 A), for which the deformed mesh is drawn in 
the insert. 

I2=u~~+oxaz+u~~-~~-~-~~ (3) 

and the Young’s modulus, E= 1.08 10m9 N/A2, the Pois- 
son modulus v=O.249, L& the projection of the element of 
the z axis, z, the z coordinate of the center of the element. 
In the case of plane biaxial stresses,” Fq ( 1) reduces to 

E 
Eh; +ne (2) = j-$ &Pb. 

We define an equivalent strainf,(z) as 

r,cz,=~~ 
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FIG. 2. The shear stress ?, and displacements U, and u, for various 
heights z as a function of distance from the center along the diagonal to 
the comer (a=b=h=45.2 A). 

the parallelopiped decreases the total deformation energy. 
For z/G=: l/2, f, saturates around 1.5%. Eaglesham 
et aZ.3p4 have estimated from experiment that islandic 
growth would reduce the strain to about 2%. From this 
saturation threshold, we find an effective height of the 
strained layer &ZZ @/2, in good agreement with the 
onset of dislocations found in islands (Fig. 4 of Ref. 3) 

to compare strain relaxation in islands with the corre- 
sponding biaxial strain. In Fig. 3, f,(z) is shown as a 
function of the dimensionless ratio z/ @. For low values 
of z/ @, fm(z) exceeds 4.17%, as the deformation energy 
is larger than for the corresponding biaxial deformation 
because the corners of the parallellipipidum are distorted 
and shear stresses are important. Moreover, the influence 0.01 0.1 1 

of the normal stress a, (Fig. 1) at the interface, intensified zr& 

by our boundary condition u,(xy,O) =0, increases the to- 
tal elastic energy. When z/ @  increases the bulging-out of 

FIG. 3. The equivalent lattice strain f, plotted vs the ratio of height z 
upon the square of the interface area @. 
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TABLE I. Linear and quadratic fits of ln o;(O,O,z) vs z for different geometries (a$). 

u (Aj b CA) 

16.9 113.1 
22.6 113.1 
28.2 113.1 
28.2 56.5 
33.9 56.5 
39.6 56.5 
45.2 45.2 

In a,(O.O,r) =.4 + Bz In o,(O,O,z) =C+ Dz+ Er’ 

A B x2 C D E x1 

-23.59 -0.3152 0.065 -23.67 -0.2218 -0.00 855 0.m 2 
--23.62 -0.2295 0.019 -23.66 -0.1793 -0.00 460 o.cxlo 5 
-23.63 -0.1671 0.013 -23.67 -0.1261 -0.00 375 o.ooo 3 
-23.62 -0.1681 0.013 -23.66 -0.1278 -0.00 369 o.ocil 3 
m-23.63 -0.1392 0.007 -23.65 - 0.1080 -0.00 286 o.oKl2 
-23.63 -0.1128 0.005 -23.65 -0.0873 -0.00 234 O.WOO8 
-23.63 -0.0982 0.003 -23.65 -0.0770 -0.00 194 0.00005 

with diameter D= 1400 A above 500 A since /z,~z 
& Der/4= 620 A should be reduced somewhat because 
De,< D. 

The normal stress field a, in several geometries (Table 
I) has been compared with the approximate model of 
Luryi and Suhir’ (LS model ), 

qr(.x,J~,z) = fj& 
1 
I- c~~:~~~)6(h,r)]e-l/“‘, (6) 

with 6(z) Heavyside’s step function and the lattice mis- 
match f=O.O4176 (in pure Ge, E= 1). For low z, there is 
no correspondence with Eq. (6) because of interface reac- 
tions. For higher z, the behavior of a, as a function of x is 
similar, except near the edges. The relaxation of a, with z 
is drawn in Fig. 4 but completed in Table I. Limiting 
Z-C h/2 (above this value the stress field is virtually re- 
laxed), we observe that the stresses relax faster with I than 
predicted by Eq. (6). Moreover, lna,( O,O,z) is better ap- 
proximakd by a parabola than by a straight line, implying 
that the stress field in small islands relaxes faster than 
previously predicted.’ The fact that a,(O,O,z) hardly de- 
pends on b( > a) agrees with Eq. (6). Further, a,(O,O,O) 

~~~~JI 

_ ~[,q”,o,z)) = .?3.66~ 0.1791*z - owJmJ1*~- 
_ Mdd uf lnrqr .inj S# 

i I:~~~~~ 

h = 113.1.4 .-,.-* ‘-, 
1 
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FIG. 4. Comparison of In o;(O,O,z) calculated by the FEM and by the 
LS model for different geometries 

lL~~~~~, Finite element environment developed by FRAMASOFT 
+CSI, Tour Fiat-Cedex 16, 92084 Paris-La Defense. 

turns out to be almost independent of geometry (insert of 
Fig. 4) in contrast to Eq. (6). All these observations are 
embodied in an empirical formula (z < h/2:a 
<&anda<h) 

o,(O,O,z)=~+;exp[ --‘12(~)-~(~)‘]. (7) 

From Table I and Eq. (6>, we deduce that the LS model is 
reasonably good for small a/b ratios and small z, consistent 
with the two-dimensional assumption (a/b=O) of the LS 
model. However, for higher a/b(gl) the correspondence 
deteriorates quickly. In addition, we have compared the 
most favorable line parallel with the z axis, namely, that in 
the middle of the structure. A similar comparison of the z 
dependence of the normal stresses near the edges is worse 
due to the bulging-out effect. We thus infer that the LS 
model conclusions do not apply for the geometries inves- 
tigated here and that the error made by using their model 
can be large. 

ln conclusion, within the basic approximation 
u,(x,y,O) =O, an equivalent strain can be defined as a func- 
tion of z/@, and In a,(O,O,z) decreases faster (quadrat- 
ically) with height z than was previously believed (linear- 
ally as proposed by Luryi and Suhir). An effective height. 
of the strained layer IteE= Jab/2 is obtained and agrees 
well with experiment. 
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