Appendix C

Errata (November, 2023)

With regret, I have to mention the following errors:

- p. 54: "...an exponential random variable with rate $\sum_{k=0}^{m} \alpha_{k}$ " should be "... with rate $\sum_{k=1}^{m} \alpha_{k}$ ".
- p. 60: "...the Internet has an exponent around $\alpha=2.4$ " should be "...the Internet has an exponent around $\alpha=1.4$ ".
- p. 140: "why λ is called the rate ... or the number of events per time unit" should be "why λ is called the rate ... or the average number of events per time unit".
- p. 143: the second "equality" should be an "inequality", thus

$$
\sum_{j=2}^{n} P_{n-j}(t) \operatorname{Pr}[N(h)=j] \leq \sum_{j=2}^{n} \operatorname{Pr}[N(h)=j] \leq \operatorname{Pr}[N(h)>1]=o(h)
$$

- p. 155: (vi) (c): "If there was one VoiP in the meantime" should be "If there was one VoiP packet in the meantime".
- p. 190: below (9.27): "the rectangular matrix R describes the transitions from the closed states to the transient states, while there are no transitions from the transient to the closed states" should be "the rectangular matrix R describes the transitions from the transient states to the closed states, while there are no transitions from the closed to the transient states".
- p. 201: exercise (ii) implicitly assumed an infinite N. For a finite N, it must hold that $P_{N, N}=1-\frac{1}{N}$ in order to obey the fundamental property $P u=u$. In that case, the solution on p. 605 must contain a self-loop for state N with transition probability $1-\frac{1}{N}$. In addition, the steady state of node N then equals $\pi_{N}=N \frac{N-2}{N-1} \pi_{N-1}$ that only tends to 1 if $N \rightarrow \infty$. In that limit, there are two absorbing states, one at zero and one at $N \rightarrow \infty$.
- p. 202: exercise (ix): "... started in state j " should be "... started in state i ".
- p. 209 : formula (10.19) should be $P(t)=u \pi+\sum_{k=2}^{N} e^{-\left|\operatorname{Re} \lambda_{k}\right| t+i \operatorname{Im} \lambda_{k} t} x_{k} y_{k}^{T}$.
- p. 216: last equation in display " $q_{i i}=1-\beta T_{i i}(\beta)$ " should be " $q_{i i}=\beta-\beta T_{i i}(\beta)$ ".
- p. 217: second last equation in display " $t_{k}(\beta) q_{k}=\sum_{k=1 ; k \neq j}^{N} t_{k}(\beta) q_{k j}$ " should
be " $t_{j}(\beta) q_{j}=\sum_{k=1 ; k \neq j}^{N} t_{k}(\beta) q_{k j}$ " and the line below " $t_{k}(\beta)=\pi_{k}$ " is better replaced by " $t_{j}(\beta)=\pi_{j}$ ".
- p. 225 , line 6 : " p_{2}, or a link failure ..." should be " p_{1}, or a link failure ...".
- p. 354, xiii): In the figure, p and q need to be reversed: $p=1 / 2$ and $q=1 / 3$.
- p. 370: line 11: "Nodes with low closeness have short hopcounts ..." should be "Nodes with high closeness have ...".
- p. 372: the definition of \widetilde{C}_{G} should be: six times the number $\boldsymbol{\Lambda}_{G}$ of triangles divided by the number of connected triples,

$$
\widetilde{C}_{G}=\frac{6 \mathbf{\Lambda}_{G}}{N_{2}-W_{2}}=\frac{W_{3}}{d^{T} d-2 L}=\frac{\operatorname{trace}\left(A^{3}\right)}{\sum_{j=1}^{N} d_{j}\left(d_{j}-1\right)}
$$

where $N_{k}=u^{T} A^{k} u$ is the total number of walks with length k and $W_{k}=$ $\operatorname{trace}\left(A^{k}\right)$ is the number of closed walks with length k. Moreover, $W_{3}=6 \mathbf{\Delta}_{G}$ and the number of connected triples equals the total number $N_{2}=d^{T} d$ of walks of length 2 minus the number $W_{2}=\operatorname{trace}\left(A^{2}\right)=2 L$ of walks of length 2 between two nodes. The factor of 6 accounts for the fact that each triangle contributes to three connected triples of nodes, but six closed walks (three clockwise and three counterclockwise). For the complete graph K_{N} with trace $\left(A^{3}\right)=(N-2)(N-$ 1) N and $\sum_{j=1}^{N} d_{j}\left(d_{j}-1\right)=N(N-1)(N-2)$, we find, indeed, that the clustering coefficient $\widetilde{C}_{G}=1$.

- p. 417: line 3 from bottom: "Gummel" should be "Gumbel".
- p. $440(\mathrm{xi}):$ there is a misprint in $E[h]$: it should be $E[h]=\frac{1}{m} \sum_{i=1}^{m} h_{i}$.
- p. 449: equation (17.7) should be (in particular, third line sum)

$$
q_{i j}= \begin{cases}\delta & \text { if }\left\{\begin{array}{r}
j=i-2^{m-1} ; m=1,2 \ldots N \\
\text { and } x_{m}(i)=1
\end{array}\right. \\
\varepsilon+\beta \sum_{k=1}^{N} a_{m k} x_{k}(i) & \text { if }\left\{\begin{array}{r}
j=i+2^{m-1} ; m=1,2 \ldots N \\
\text { and } x_{m}(i)=0
\end{array}\right. \\
-\sum_{k=0 ; k \neq j}^{2^{N}-1} q_{j k} & \text { if } i=j \\
0 & \text { otherwise }\end{cases}
$$

- p. 451: line -8: "(a) if the node i is infected $\left(X_{i}\right)$, then $\frac{d E\left[X_{i}\right]}{d t}$ decreases ..." should be "then $E\left[X_{i}(t)\right]$ decreases over time t with rate equal to the curing rate δ ".
- p. 457: The integral of after eq. (17.23) should have the opposite sign. Hence, (17.24) should be

$$
W(t) \leq e^{\left(\tau A-\left(1+\varepsilon^{*}\right) I\right) t^{*}} W(0)-\varepsilon^{*} \frac{I-e^{\left(\tau A-\left(1+\varepsilon^{*}\right) I\right) t^{*}}}{\tau A-\left(1+\varepsilon^{*}\right) I} u
$$

and on p. 458, the tendency towards " $\varepsilon^{*}\left\{\left(\tau A-\left(1+\varepsilon^{*}\right) I\right)^{-1} u\right\}_{i}$, ..." should be " $\varepsilon^{*}\left\{-\left(\tau A-\left(1+\varepsilon^{*}\right) I\right)^{-1} u\right\}_{i}$, which is positive for $\varepsilon^{*}>0$ ".

- p. 458: "decreases exponentially fast" should be "decreases exponentially fast for sufficiently large time". This is a rather important observation, because in the star graph the prevalence can initially still increase with time, even if the effective infection rate τ is below the epidemic threshold (see Van Mieghem, P., 2016, "Approximate formula and bounds for the time-varying SIS prevalence in networks", Physical Review E, Vol. 93, No. 5, p. 052312.$)$
- p. 458: Theorem 17.3.2 is wrong. The reason is that in the proof the argument "In any graph G, the conditional probability

$$
\varepsilon_{G}=\lim _{y_{\infty} \downarrow 0} \max _{(k, l) \in \mathcal{L}} \operatorname{Pr}\left[X_{k}=1 \mid X_{l}=1\right]
$$

can be upper bounded by $\varepsilon_{G} \leq \varepsilon_{K_{N}}$, because the infection probability ε_{G} on a link (k, l) in the graph G is largest in the complete graph." is not correct. For more information, I refer to my article "Approximate formula and bounds for the time-varying SIS prevalence in networks", Physical Review E, Vol. 93, No. 5, p. 052312, 2016.

- p. 463 (bottom): the index j should be i : the last equation is written for node i (and for node j).
- p. 465 : in the proof: $\sum_{j=1}^{N} a_{i j} h_{i}(k-1)$ should be replaced by $\sum_{j=1}^{N} a_{i j} h_{j}(k-1)$ and, in the final line of the proof, "partial fraction" must be replaced by "continued fraction".
- p. 594 : B. 5 (i): the first formula in display, $\operatorname{Pr}\left[D_{\max } \leq x\right]=\left(\left(\frac{x}{\tau}\right)^{-\alpha}\right)^{N}$, should be $\operatorname{Pr}\left[D_{\max } \leq x\right]=\left(1-\left(\frac{x}{\tau}\right)^{-\alpha}\right)^{N}$.
- p. 621, solution of problem (iv): "Solving this equation \ldots yields $\rho=\frac{P_{B}+\sqrt{2 P_{B}-P_{B}^{2}}}{1-P_{B}}$ " should be "Solving this equation \ldots yields $r=\frac{P_{B}+\sqrt{2 P_{B}-P_{B}^{2}}}{1-P_{B}}$ "
- p. 623: In Fig. B.9, the first three states $1,2,3$ should be $0,1,2$. The last state m is correct.
- p. 626 , solution of problem xvi (a). Arrival rate $\lambda=\frac{90 \times 7}{60 \times 8}=1.3125$ calls $/$ minute, or, change the number of employees in the company from 90 to 120 .
- p. 627, solution of problem xvi (c). The value of 5 ! should be 120 , not 150 .
- p. 656 in (xi): The size of the URT is $m+1$, the root A and the m nearest neighbors, that are different from the root A. The correct average hopcount (from (16.17)) should be

$$
E[h]=E\left[H_{N=m+1}\right]=\frac{m+1}{m} \sum_{l=2}^{m+1} \frac{1}{l}
$$

Acknowledgements

For pointing me to errors, I am very grateful ${ }^{1}$ to Massimo Achterberg, Scott Dahlgren, Qiang Liu, Jil Meier, Bastian Prasse and to students at Delft University of Technology that followed my course on Performance Analysis.

[^0]
[^0]: 1 The persons are alphabetically ordered according to family name.

