
Network‑based prediction of COVID‑19 
epidemic spreading in Italy
Clara Pizzuti1* , Annalisa Socievole1, Bastian Prasse2 and Piet Van Mieghem2

Introduction
The outbreak of the greatest epidemic of the twenty first century caused by the SARS-
CoV-2 virus has stimulated researchers to understand and control the spread of the 
disease inside a population with the help of mathematical models developed in recent 
years (Hethcote 2000; Pastor-Satorras et al. 2015). A single outbreak of a disease is typi-
cally described by a SIR compartmental model, where each individual at a certain time 
t can only be in one of the three different disease stages: Susceptible (S), i.e. healthy, 
but vulnerable for the infection, Infected (I) and Recovered (R), i.e. the individual either 
recovers from the disease or, unfortunately, dies. A diffusion-like SIR epidemic spread 
on a contact network models the infection between individuals when they come into 
contact, close enough in space and long enough in time (Chu et al. 2020). By adopting 
the SIR model, Prasse et al. (2020) predict the spreading of the COVID-19 epidemic on 
a contact network consisting of 16 cities in the Chinese province Hubei via their Net-
work Inference-based Prediction Algorithm (NIPA). Since the interactions between cit-
ies are unknown, Prasse et al. exploit their network reconstruction approach, described 
in Prasse and Van Mieghem (2020b), to estimate the contact network from the observa-
tions of the viral states.
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In this paper, we use NIPA (Prasse and Van  Mieghem 2020b; Prasse et  al. 2020) to 
investigate the spreading of the COVID-19 epidemic in Italy by considering the 21 Italian 
regions, shown in Fig. 1, as nodes of the network. We extend NIPA to NIPA-LD (NIPA 
with LockDown), that takes into account the different lockdown measures adopted in the 
various phases of the COVID-19 spreading in Italy by adapting the ideas of Song et al. 
(2020). Song et al. (2020) pointed out that the epidemiological models do not consider 
the several containment measures, such as in-home isolation, travel and social activities 
restrictions, enforced by governments to dampen the transmission rate over time. Due 
to the containment measures, the infection rates vary over time, which should be incor-
porated in a prediction model to reflect the real situations of epidemic and provide more 
meaningful analyses.

We apply NIPA and the extension NIPA-LD to the period between the first of March 
till June 9th. Our results indicate that NIPA-LD is capable to better predict the daily 
cumulative infected individuals, because the time-varying lockdown restrictions are 
considered.

Related work
In the last months, the number of papers studying the COVID-19 pandemic and pro-
posing models to predict the evolution of the disease sky-rocketed. In Estrada (2020), 
Estrada discusses how this pandemic is actually modeled and proposes future research 
directions by reviewing the three main areas of modeling research against COVID-19: 
epidemiology, drug repurposing, and vaccine design. After the strict policies in China 
to reduce close contacts between people, which revealed the best strategy to effectively 
block the virus diffusion, Italy and many other European countries imposed several con-
tainment measures, called lockdown. Some researches then investigated how mobility 
changed during the lockdown phases (Oliver et al. 2020; Klein et al. 2020; Galeazzi et al. 
2020; Schlosser et al. 2020), others have shown how lockdown can effectively slow down 
disease transmission. Flaxman et al. (2020) study the effect on COVID-19 transmission 
of the major non-pharmaceutical interventions (NPIs) across 11 European countries for 
the period from the start of the COVID-19 epidemics in February 2020 until May 4th 
2020. In a more general work, Haug et al. (2020) quantify the effectiveness of the world-
wide NPIs to mitigate the spreading of COVID-19 and SARS-CoV-2 showing that this 
effectiveness is strongly related to the economic development as well as the dimension 
of governance of a country. At a country level, Hadjidemetriou et al. (2020) use driving, 
walking and transit real-time data to investigate the impact of UK government control 
measures on human mobility reduction and consequent COVID-19 deaths. Pei et  al. 
(2020) assess the effect of NPIs on COVID-19 spread in the United States finding sig-
nificant reductions of the basic reproductive numbers in major metropolitan areas when 
applying social distancing and other control measures. Di et  al. (2020) study the case 
of the Île-de-France exploiting a stochastic age-structured transmission model which 
combines data on age profile and social contacts to evaluate the impact of lockdown 
and propose possible exit strategies. The Italian town of Vo’ Euganeo is finally stud-
ied by Lavezzo et  al. (2020), where the efficacy of the implemented control measures 
are evaluated, providing also insights into the transmission dynamics of asymptomatic 
individuals.
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Concerning the modeling of the COVID-19 spreading with the imposed restrictions, 
Maier and Brockmann (2020), for instance, proposed a model that takes into account 
both quarantine of symptomatic infected individuals and population isolation due to 
containment policies, and showed that the model agrees with the observed growth of 
the epidemic in China. Arenas et al. (2020) defined a model that stratifies the Spanish 
population by age and predicts the incidence of the epidemics through time by consider-
ing control measures. They show that the results can be refined by taking into account 
mobility restrictions imposed at the level of municipalities. Chinazzi et al. (2020) used 
a global metapopulation disease transmission model to study the impact of travel limi-
tations on the national and international spread of the epidemic in China. The NIPA-
LD approach presented in this paper is different from the described proposals since it 
extends the NIPA method, which assumes no knowledge on the population flows and 
estimates the interactions between groups of individuals, by considering time-varying 
lockdown policies in the prediction phase.

Modeling the spread of COVID-19 in Italy has followed several approaches. Ferrari 
et al. (2020), for instance, use an adjusted time-dependent SIRD (Susceptible-Infected-
Recovered-Died) model to predict the provincial cases. Caccavo (2020) propose a modi-
fied SIRD model to describe both the Chinese and the Italian outbreaks. Giuliani et al. 
(2020) define a model with c = 8 compartments or stages of infection: susceptible (S), 
infected (I), diagnosed (D), ailing (A), recognized (R), threatened (T), healed (H) and 
extinct (E), collectively termed SIDARTHE. However, only one compartment is meas-
ured in the Covid-19 crisis, namely the number of active cases. Thus, for an epidemic 
model with many compartments, it is not possible to evaluate the accuracy in predicting 
compartments other than the number of active cases. In this work, we confine to the 
c = 3 compartmental SIR model for the predictions by NIPA. Kozyreff (2020) provides 
an SIR modeling comparison between Belgium, France, Italy, Switzerland and New York 
City suggesting that finer models are unnecessary with the corresponding available mac-
roscopic data.

Background
In this section, we briefly review the epidemic SIR model on contact networks (Youssef 
and Scoglio 2011; Prasse and Van Mieghem 2020b) and the prediction of the COVID-19 
infection, caused by the SARS-CoV-2 virus, based on the SIR model (Prasse et al. 2020). 
Then, we incorporate time-varying protocols introduced by the government to slow 
down the virus propagation.

We consider a network with N nodes, where each node i corresponds to the set of 
individuals living in the same place, like a city or a region. An individual at any dis-
crete time k = 1, 2, . . . is in either one of the c = 3 compartments Susceptible (S), 
Infectious (I), Recovered (R). The SIR model assumes that infectious individuals 
become recovered and cannot infect any longer because of hospitalization, death, or 
quarantine measures. The viral state of any node i at time k is denoted by the 3× 1 
vector vi[k] = (Si[k], Ii[k],Ri[k])

T , where Si[k], Ii[k], Ri[k] are the fractions of suscep-
tible, infectious, and recovered individuals, respectively, satisfying the conservation law 
Si[k] + Ii[k] + Ri[k] = 1 . The discrete-time SIR model (Youssef and Scoglio 2011; Prasse 
and Van Mieghem 2020b) defines the evolution of the viral state vi[k] of each node i as:
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where βij denotes the infection probability when individuals move from place (also called 
region) j to place i. The self-infection probability βii  = 0 , because individuals inside the 
same place interact. The N × N  infection probability matrix B specifies the contact 
transmission chance between each couple of regions. The curing probability δi of place i 
quantifies the capability of individuals in place i to cure from the virus. We assume that 
the SIR model (1), (2) has both βij and δi that do not change over time.

Prasse et  al. (2020) proposed the Network Inference-based Prediction Algorithm 
(NIPA), which estimates the spreading parameters δi and βij for each region i from the 
time series vi[1], vi[2], . . . , vi[n] . These estimates in (1) and (2) predict the evolution of 
the virus in the next future times k > n.

The SIR model has three compartments. In principle, with c compartments, we must 
have c − 1 independent measurements. The input to NIPA is only one compartment, 
the infectious compartment I, which is less than c −1 = 2 compartments necessary to 
reconstruct the network with the SIR model. NIPA creates observations of the R com-
partment by iterating over different candidate values of the curing rates δi and assuming 
the initial condition R(0) = 0. Thus, we observe only one compartment, the infectious 
compartment I, and the recovered compartment R is obtained by Eq. (2) after estimating 
the curing probability δi in the training phase.

To obtain the curing probability δi , 50 equidistant values between δmin and δmax have 
been considered, and then the value giving the best fit of model (1) has been used to 
estimate the matrix B based on the least absolute shrinkage and selection operator 
(LASSO). For a general class of dynamics on networks (including the SIR model), com-
pletely different network topologies can result in the same dynamics. Hence, it is not 
possible to deduce the network accurately from observations, regardless of the recon-
struction method: two very different networks perfectly match the observations, and 
there is no reason to infer one network instead of the other. Thus, though NIPA accu-
rately predicts the dynamics, the estimated network B can be very different from the 
true network (Prasse and Van Mieghem 2020c).

Let n be the number of days in which the infection has been observed. To evalu-
ate the prediction accuracy, a fixed number of days nneglect is removed prior to 
vi[1], vi[2], . . . , vi[n] . The model is then trained on the days vi[1], vi[2], . . . , vi[n− nneglect ] . 
Thereafter, the omitted nneglect days ( k = n− nneglect + 1, . . . , n ) are predicted. It is pos-
sible to predict also npredict days ( k = n+ 1, . . . , n+ npredict ) ahead the number n of 
available observations, however, in such a case, we cannot evaluate the goodness of the 
prediction.

Prasse et  al. (2020) showed that the approach accurately predicts the cumulative 
infections for nneglect ≤ 5 . However, if the number of neglected days increases, then the 
prediction capability of NIPA decreases. NIPA assumes constant values for βij , which, 
however, do not reflect the reality of the COVID-19 pandemic, because the containment 
measures imposed by the governments diminish βij and thus the spread of the infection. 

(1)Ii[k + 1] =(1− δi)Ii[k] + (1− Ii[k] − Ri[k])

N∑

j=1

βijIj[k]

(2)Ri[k + 1] =Ri[k] + δiIi[k]
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Hence, infection probabilities βij[k] which vary over time k should be considered in the 
epidemic model.

Extended SIR model with time‑varying infection rate
Song et al. (2020) proposed the concept of transmission modifiers, which decrease the 
probability that a susceptible individual can come into contact with an infected one 
because of the quarantine measures.

At any discrete time k, let qS[k] be the chance of an individual to be in home isolation, 
and qI [k] the chance of an infected person to be in hospital quarantine. The transmission 
modifier π [k] is defined as follows:

and if no quarantine is active, then π [k] = 1 . In order to have a realistic infection rate 
β , Song et al. (2020) multiply β by π [k] in the classic continuous SIR model. Thus, the 
infection rate now reflects the effective currently enforced quarantine measures taken in 
a country. In the extended SIR model, the curing probability δi remains the same, but the 
infection probability βij is replaced by βijπ [k] . The same considerations can be applied to 
the discrete-time SIR model by modifying Eq. (1) above:

The transmission modifier π [k] , however, should be specified on the base of the effective 
quarantine protocols undertaken in a specific region. Regarding the Hubei province in 
China, Song et al. (2020) suggest a step function mirroring the isolation measures estab-
lished by the government.

In the next section, the extended time-varying model (4) is applied to Italy by consid-
ering as nodes of the contact network the 21 regions by which Italy is composed.

Transmission modifier for Italy
In Italy, the outbreak of the COVID-19 epidemic started in February in the North of 
Italy. A map of Italy with the division in regions is shown in Fig. 1. On February 21st, the 
first case of infection appeared in the town of Codogno, in Lombardia, and two cases 
also in the town of Vo’ Euganeo in Veneto. These two towns where immediately declared 
red zones and nobody could either go out or come in. On February 24th, the three 
regions of Lombardia, Veneto, and Emilia-Romagna registered 172, 33, and 18 cases of 
infections, respectively. After that date, the virus propagated all over Italy very fast.

During the first week, until the first days of March, no other particularly strict safety 
measures were enforced. On March 9th, however, Italy turned into a lockdown Phase 1 
with several strong restrictions and quarantine protocols. Schools, universities, shops, 
and many offices were closed, travels were not allowed and exits were only allowed for 
work, health or necessity situations with a mandatory self-certification.

Phase 2 followed, in which countermeasures were adopted to reduce the pandemic. 
Finally, Phase 3 reopened almost all the activities and travels all over Italy. In order to 

(3)π [k] = (1− qS[k])(1− qI [k]) ∈ [0, 1]

(4)Ii[k + 1] = (1− δi)Ii[k] + (1− Ii[k] − Ri[k])

N∑

j=1

βijπ [k]Ij[k]
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define the values of the transmission modifier for the different quarantine periods, we 
identified the following time intervals1:

• π0 : k ≤ March 9 soft measures;
• π1 : March 10 ≤ k ≤ April 13 lockdown;
• π2 : April 14 ≤ k ≤ May 3 libraries and stationeries reopen;
• π3 : May 4 ≤ k ≤ May 17 manufacturing, construction activities, wholesales reopen, 

meetings with relatives allowed;
• π4 : May 18 ≤ k ≤ May 24 hair dressers, beauty center, barber shops, bar, restaurants, 

retailers reopen, outdoor sport, baby parks allowed;
• π5 : May 25 ≤ k ≤ June 2 gym, swimming pools, sport structures reopen
• π6 : k ≥ June 3 inter-regional mobility allowed.

The choice of the best values of the transmission modifier reflecting well the quarantine 
protocols is not an easy task and deserves a deep investigation. In the next sections, a 
study on the improvement of the NIPA method when different lockdown levels related 
to the quarantine strategies adopted by authorities is performed.

Data preprocessing
Our measurement data have been collected by the Italian Civil Protection Department2 
and are daily published on a repository. The available data are national, regional and pro-
vincial. We selected the regional ones which refer to the 21 regions depicted in Fig. 1: 
Abruzzo, Basilicata, P.A. Bolzano, Calabria, Campania, Emilia-Romagna, Friuli Venezia 
Giulia, Lazio, Liguria, Lombardia, Marche, Molise, Piemonte, Puglia, Sardegna, Sicilia, 
Toscana, P.A. Trento, Umbria, Valle d’Aosta, Veneto. Thus, for Italy, the entry βij of the 
21× 21 matrix B estimates the infection probability between the regions j and i. In the 
map, regions have been divided in 4 different colors representing the level of COVID-
19 infected individuals. The red regions have been the most affected by COVID-19, fol-
lowed by the yellow ones, the orange ones and the green regions with a lower number of 
cases.

For each observation day, we focused on the new positives to COVID-19. We consid-
ered observations from March 1, 2020 to June 9, 2020.

Transmission modifier analysis
To compare the NIPA method with the NIPA-LD implementing the lockdown meas-
ures, we considered the model generated by NIPA which, in the training phase, neglects 
nneglect days, and then applied this model for the prediction phase by using different val-
ues of π and an increasing value of nneglect . After that, we computed the average percent-
age error reduction of NIPA-LD with respect to NIPA.

Let ICF ,i[k] be the observed cumulative fraction of infections of region i at time k:

1 Here, we recall the main reopening steps of commercial activities and services.
2 https ://githu b.com/pcm-dpc/COVID -19.

https://github.com/pcm-dpc/COVID-19
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To quantify the prediction accuracy we considered the Mean Absolute Percentage Error 
(MAPE) defined as:

where ICFpred,i[k] is the predicted cumulative fraction of infected individuals in region i 
at time k.

Let e[k] and eLD[k] denote the MAPE errors when ICFpred,i[k] is computed by NIPA and 
NIPA-LD, respectively. The percentage error improvement of NIPA-LD over NIPA is then 
computed as

In order to find a good transmission modifier which reflects the real situation best, we 
tested different π values by supposing a different response from people in respecting the 
quarantine measures imposed in the 3 months with varying levels of restrictions. Thus, 
we fixed increasing values of π which intuitively correspond to a lower compliance to the 
containment protocols by the individuals. In view of the Italian lockdown measures pre-
viously described, we considered the following transmission modifier values:

Table 1 reports the improvement of the percentage error of NIPA-LD with respect to 
NIPA, for the seven transmission modifiers and different numbers of predicted/omit-
ted days, averaged over all the Italian regions and considering all the time windows 
under study, while Fig. 2 shows the mean absolute prediction error as a function of the 
predicted/omitted days. From the table we can observe that for nneglect equals to 10, 30 

(5)ICF ,i[k] =

k∑

τ=1

Ii[τ ]

(6)e[k] =
1

N

N∑

i=1

| ICFpred,i[k] − ICF ,i[k] |

ICF ,i[k]

(7)pe[k] =
e[k] − eLD[k]

e[k]
× 100

πLD1 =[1 0.1 0.3 0.5 0.7 0.8 1]

πLD2 =[1 0.2 0.4 0.6 0.8 0.9 1]

πLD3 =[1 0.3 0.5 0.7 0.85 0.95 1]

πLD4 =[1 0.4 0.55 0.75 0.85 0.95 1]

πLD5 =[1 0.5 0.7 0.8 0.9 0.95 1]

πLD6 =[1 0.6 0.75 0.85 0.95 0.99 1]

πLD7 =[1 0.7 0.8 0.90 0.96 0.99 1]

Table 1 Percentage improvement of  NIPA‑LD over  NIPA prediction for  different 
transmission modifier values and increasing number of neglected days

nneglect peπLD1 peπLD2 peπLD3 peπLD4 peπLD5 peπLD6 peπLD7

10 35.369 34.566 19.279 19.279 19.279 4.22 4.22

20 − 33.766 − 16.233 − 7.7 − 7.7 − 0.842 4.805 4.805

30 10.438 15.147 20.894 23.981 27.721 31.747 26.56

40 17.921 22.802 28.729 32.319 43.716 49.14 54.095
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and 40 the percentage of improvement is overall very significant for most of the trans-
mission modifier vectors. This means that NIPA-LD can be used to reliably perform 
both short and long term predictions. More specifically, for the short term predictions 
( nneglect = 10 ) low transmission modifier values are more suitable: πLD1 , for example, is 
able to achieve an improvement of 35.369%. For the long term predictions, on the con-
trary, where we neglect 30 or even 40 days aiming to predict them, higher transmission 
modifier values like those of πLD7 perform better. When nneglect = 20 the error reduces, 
on average, only for πLD6 and πLD7 . However, as Fig. 2b highlights, for πLD5 there is a 
reduction of the prediction error since the 10th day, and for πLD4 , πLD3 , πLD2 in the fol-
lowing next days, except for πLD1 . Hence, for this case, we can conclude that soft lock-
down protocols are able to induce a positive improvement in the error for all the values 
of the number of neglected days. Finally, Fig.  2e depicts a cone of error evolution for 
nneglect = 30 when using as transmission modifiers πLD5,πLD6,πLD7 , considering πLD5 
and πLD7 as lower bound and upper bound of πLD6 , respectively. Then, we could assume 
that the future evolution of the epidemic can be predicted with an error that falls in 
between the predictions based on πub and πlb.

The Fig.  2 shows that the differences between the different lockdown measures are 
meaningful.

In the next section, a detailed analysis for all the Italian regions is performed to evalu-
ate the prediction accuracy of NIPA and NIPA-LD.

Results
In this section, we evaluate the prediction accuracy of NIPA and NIPA-LD by comput-
ing the cumulative infections for each observation day when nneglect = 30 and compare 
them to the true data by using πLD6 as transmission modifier for the different quaran-
tine periods. In this experiment, thus, NIPA does not consider the 30 last days of the 
observed daily data of the newly infected individuals for estimating the curing probabil-
ity δi and the infection probability βij . Then both NIPA and NIPA-LD predict the cumu-
lative infections from May 10 until June 9 and the are compared with (a) the true data, 
and (b) to the logistic function as baseline. The logistic function, introduced in the 19th 
century by Verhulst to model population growth, approximates the solutions of the SIS 
and SIR models (Kermack and McKendrick 1927; Prasse and Van Mieghem 2020a). The 
cumulative number of infected cases yi[k] at time k for the region i is assumed to follow:

where y∞,i is the long-term fraction of infected individuals, Ki is the logistic growth rate, 
t is the time in day.

Due to lack of space, we only report the plots for a subset of the North regions, the 
ones highly affected by the virus spreading in the red and yellow zones (Piemonte, Lom-
bardia, Veneto, Emilia-Romagna), for one representative region of the orange zone 
(Lazio) and for one of the green zones (Puglia). For the center and the south of Italy, the 
COVID-19 spreading has been characterized by a lower number of cases and for this 
reason we report only two representative regions. In Fig.  3, the cumulative infections 
for Piemonte are shown. Here, the lockdown modified NIPA variant clearly outperforms 

(8)yi[t] =
y∞,i

1+ e−Ki(t−t0,i)
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the classical NIPA, which overestimates the number of infected individuals. For Pie-
monte, NIPA-LD better matches the true data. Moreover, for this region, a simple logis-
tic regression is not able to well predict the epidemic. Figure 4 depicts the trend of the 
predictions for the most challenging region in Italy, Lombardia, which has been mostly 
affected by the COVID-19. Again, the logistic regression excessively understimates the 
cumulative infections. From May 10 to May 30, both NIPA and NIPA-LD models well 
match the number of cumulative infections. However, for the next days, NIPA slightly 
overestimates the infections while NIPA-LD underestimates them. This is probably due 
to a much higher mobility of the population after the loosening of the lockdown rules 
on May 25. The Veneto case (Fig. 5), another region of the North Italy highly affected 
by the COVID-19, on the contrary, is accurately predicted by NIPA-LD, while classical 
NIPA without lockdown clearly overestimates the number of infections. Here, the logis-
tic regression works better than the previous regions but still understimates the cumu-
lative infections. For the last North region, Emilia-Romagna, the cumulative infections 
are better predicted by the lockdown modified NIPA, which slightly overestimates the 
infections but to a lesser extent than the classical NIPA (Fig. 6). The baseline on the con-
trary, underestimates the infections. In Fig.  7, the results for Lazio confirm the better 
accuracy of NIPA-LD. Finally, Fig. 8 shows the results obtained for the Puglia region. We 
observe that the NIPA prediction with the lockdown transmission modifiers is able again 
for this region to accurately predict the cumulative infections, while the classical NIPA 

Table 2 Average MAPE prediction error of  COVID‑19 deaths for  NIPA and  NIPA‑LD, 
when the number of neglected days is 30

REGION Error NIPA Error NIPA-LD

Abruzzo 0.1065 × 10−4 0.1293 ×10
−4

Basilicata 0.0198 × 10−4 0.0114 × 10 −4

P.A.Bolzano 0.0714 × 10−4 0.0204 × 10 −4

Calabria 0.0051 × 10−4 0.0031 × 10 −4

Campania 0.0133 × 10 −4 0.0233 × 10−4

Emilia 0.0244 × 10 −4 0.2203 × 10−4

Friuli 0.0846 × 10 −4 0.1081 × 10−4

Lazio 0.0314 × 10 −4 0.0416 × 10−4

Liguria 0.1840 × 10−4 0.1562 × 10 −4

Lombardia 0.133 × 10 −4 0.3821 × 10−4

Marche 0.1006 × 10−4 0.0621 × 10 −4

Molise 0.3505 × 10−4 0.0931 × 10 −4

Piemonte 0.3525 × 10−4 0.2932 × 10 −4

Puglia 0.3811 × 10−4 0.3170 × 10 −4

Sardegna 0.0102 × 10−4 0.0036 × 10 −4

Sicilia 0.0090 × 10−4 0.0017 × 10 −4

Toscana 0.0488 × 10−4 0.0675 × 10 −4

P.A.Trento 0.1106 × 10−4 0.0142 × 10 −4

Umbria 0.0038 × 10 −4 0.0089 × 10−4

ValleAosta 0.0493 × 10−4 0.0335 × 10 −4

Veneto 0.0423 × 10−4 0.0055 × 10 −4
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overestimates them from May 15 until June 9 and the logistic regression underestimates 
the infections even from May 10.

Figures 9 and 10 report the mean relative prediction error e[k] for the first 12 and for 
the last 9 regions, respectively, over an observation period of 30 days from May  10 to 
June 9.

For most of the regions (P.A. Bolzano, Emilia-Romagna, Friuli Venezia Giulia, Marche, 
Piemonte, Puglia, Sardegna, Sicilia, Toscana, P.A. Trento, Umbria, Valle d’Aosta, Veneto) 
NIPA-LD results in a substantially lower prediction error. In particular, after few days 
the re-openings of May 18 (corresponding to the third day in the plots), for which the 
population gradually started again going to bars, shops, hair dressers and other commer-
cial activities and exploiting other kind of allowed services, the prediction error is much 
lower with the lockdown applied to NIPA. In other regions, like Abruzzo, Basilicata, 
Calabria, Campania, and Lazio, NIPA performs better than NIPA-LD for many days 
after May 16. This behavior could be due to the fact that on May 18 the mobility among 
the Italian region was allowed, thus there has been a high flow of people moving towards 
the southern regions. Thus, in spite of the restrictions made by the regional governor, 
often much more strict than the national ones, like, for instance in Campania, the lock-
down measures where not effective. For Liguria and Lombardia, characterized by much 
more COVID-19 cases compared to the other regions, NIPA results in a lower error. 
Also for these two regions it seems that lockdown measures did not work. Finally, the 
Molise case is the only one having no substantial difference between the prediction error 
with lockdown and without lockdown. This region had the lowest number of COVID-19 
cases. Moreover, there has been an erratic change in the number of infections in Molise, 
due to a single group of people, who did not follow the quarantine measures imposed by 
the Italian Government.

Fig. 1 The 21 Italian regions
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Fig. 2 Mean prediction error when the number of the omitted days equals a nneglect = 10 , b nneglect = 20 , 
c nneglect = 30 and d nneglect = 40 , for different transmission modifier vectors. e Cone of error evolution for 
nneglect = 30
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Death prediction
The network-based SIR model described in the paper does not consider the death 
cases. To predict the number of deaths a new compartment should be added. However, 
by substituting the cumulated cases of infected with those of dead people, the model 
allows to predict the deaths. Thereby, we assume that the number of deaths is propor-
tional to the number of infections. Thus, we executed NIPA and NIPA-LD on these 
cumulated death cases to predict the deaths instead of the infections. Even if the death 
numbers are subject to greater variations and there are significantly fewer deaths than 
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Fig. 4 Cumulative infections for Lombardia
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Fig. 5 Cumulative infections for Veneto
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infections, the methods give good results. Table 2 reports for each region the average 
MAPE error for NIPA and NIPA-LD in predicting COVID-19 deaths. The lower error 
values are highlighted in Italic. For this experiment we set the number of neglected days 
to 30 by using the same transmission modifier values of the previous experiments. The 
table shows that the error values are very low and that NIPA-LD outperforms NIPA in 
14 out of the 21 regions. It is worth pointing out that when NIPA performs better, the 
differences between error values are very low, except for Lombardia. As known, this 
region had more than 16 thousands deaths in the considered period. NIPA-LD in such 
a case underestimates the number of deaths. Figure 11 shows the predicted cumulative 
deaths of these two methods and those predicted by using logistic regression. Note that 
the baseline function is not able to obtain a good prediction, in fact it overestimates too 
much the number of deaths.

Discussion
The results reported in the previous section show that NIPA-LD is able to better predict 
the evolution of COVID-19 in Italy when compared to the original NIPA method, that 
does not consider the lockdown measures, and to the baseline prediction method. The 
main contribution of NIPA-LD is the capability of sensibly improving the long-term pre-
diction of NIPA by implementing the different lockdown measures adopted in the vari-
ous phases of the spreading of the COVID-19 in Italy into the network-based prediction 
model. In fact, NIPA-LD obtains lower prediction errors than NIPA when the number of 
training days diminishes. The introduction of the concept of transmission modifiers in 
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Fig. 7 Cumulative infections for Lazio
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NIPA thus allows to have epidemic transmission rates which well reflect the changes in 
the containment measured imposed by authorities.

However, the adoption of the same values of transmission modifier for all the Italian 
regions has some drawbacks. In Tables 3 and 4, we report the daily error fraction value 
between NIPA-LD and NIPA for 30 neglected days. In the last column of Table 4, the 
average value of this error is also shown. When NIPA-LD outperforms NIPA, the daily 
error fraction is lower than 1. For most of the regions, NIPA-LD shows its superiority. 
Veneto, for example, is characterized by very low values with an average daily error of 
0.15. Exceptions are Abruzzo, Basilicata, Calabria, Campania, Lazio, Liguria, and Lom-
bardia, where NIPA performs better than NIPA-LD. Thus, though on average, NIPA-
LD improves the prediction, this improvement is not for all the regions. Future works 
will investigate specialized transmission modifiers for the different regions. Moreover, 
whereas the transmission modifier π [k] may change over time, the infection rates βij are 
assumed constant. Hence, in NIPA-LD (and classic NIPA) another limitation is that the 
probabilities of infection are assumed to be constant, or potentially scaled/multiplied by 
π [k] . Similarly, our model assumes constant curing rates δ . However, (hopefully soon 
available) vaccinations may be deployed in a time-varying manner.
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Fig. 9 Mean relative prediction error for the period from May 10th to June 9th: 12 regions
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Another observation is that although NIPA and NIPA-LD can obtain good short-term 
predictions, accurate long-term predictions are generally difficult. When aiming at pre-
dicting the infections beyond some time horizons, the accuracy of the forecasting starts 
decreasing. To provide a case study, in Figs. 12, 13, 14, 15 and 16, we show what happens 
when trying to predict the last 10, 20, 30, 40, 50 days of cumulative infections, respec-
tively, in Valle d’Aosta. In the short-term of 10 and 20 neglected days, both NIPA and 
NIPA-LD well match the observed data. When predicting the last 30 days until June 9, 
NIPA-LD predicts the infections better than NIPA. For 40 neglected days, NIPA-LD is 
still able to predict with a certain accuracy while NIPA definitely overestimate the cumu-
lative infections. For 50 days, note that both the two NIPA methods are not able to accu-
rately predict the number of cumulative infections while the logistic regression, on the 
contrary, works better. When thus adding too many predicted days, an accurate predic-
tion is not possible with the NIPA-based methods. However, even if the transmission 
modifier is equal for all the regions, we point out that NIPA-LD performs generally bet-
ter than NIPA, also for nneglect = 30 and nneglect = 40 which can be considered long-term 
predictions.

Finally, we point out that this work is based on the discrete-time SIR model. This 
model is characterized by 3 compartments. NIPA can be used for any compartmental 
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epidemic model (Prasse and Van  Mieghem 2020b) with c compartments, provided 
that c − 1 compartments are measured. We point out that the approach in this work 
observes only one compartment, the infectious compartment I, and the recovered 
compartment R is obtained by Eq. (2) after estimating the curing probability δi in the 
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training phase. Here, the advantage is that the less compartments we use, the less 
data we need to provide an accurate forecasting. When only macroscopic data, such 
as those exploited here, are available, a simple epidemiological model like the SIR 
has shown to be sufficient to predict with a high accuracy the trend of the epidemic 
(Kozyreff 2020). More complicated models than the SIR, such as SEIR, SIRD, which 
require more additional states, do not necessarily obtain better accuracy.
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Fig. 11 Cumulative deaths for Lombardia with nneglect = 30
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Fig. 12 Cumulative infections for Valle d’Aosta with nneglect = 10
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Fig. 13 Cumulative infections for Valle d’Aosta with nneglect = 20
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Conclusion
We exploited a network-based SIR model to predict the curves of the cumulative 
infections of individuals affected by the SARS-CoV-2 virus in Italy. The classic SIR 
epidemic model has been expanded by incorporating time-varying lockdown pro-
tocols in order to have epidemic transmission rates that change as the government 
quarantine rules change. Tested on regional data of the COVID-19 in Italy, the net-
work-based prediction method results in a higher prediction accuracy when com-
pared to the classical method that does not consider the lockdown measures.

Experiments, however, pointed out that equal values of the transmission modifi-
ers for all the Italian regions could not be appropriate, because of the differences in 
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Fig. 14 Cumulative infections for Valle d’Aosta with nneglect = 30
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Fig. 15 Cumulative infections for Valle d’Aosta with nneglect = 40
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Fig. 16 Cumulative infections for Valle d’Aosta with nneglect = 50
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people mobility. On the other hand, the NIPA method extended to account for the 
lockdown measures highlighted the tremendous potential of an optimal transmission 
modifier. In fact NIPA-LD could be practically used to experiment which lockdown 
strategies are effective or not and which countermeasures are more appropriate to 
stop the spreading of COVID-19 epidemic. Future work will investigate how a trans-
mission modifier might be best related to a quarantine strategy also in the training 
phase of NIPA, in order to improve the prediction capability of the approach.
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NIPA: Network Inference based Prediction Algorithm; NIPA-LD: Network Inference based Prediction Approach with 
LockDown.
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