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Abstract

Molecular interactions are often represented as network models which have become the common language of

many areas of biology. Graphs serve as convenient mathematical representations of network models and have

themselves become objects of study. Their topology has been intensively researched over the last decade after

evidence was found that they share underlying design principles with many other types of networks.

Initial studies suggested that molecular interaction network topology is related to biological function and evolution.

However, further whole-network analyses did not lead to a unified view on what this relation may look like, with

conclusions highly dependent on the type of molecular interactions considered and the metrics used to study them.

It is unclear whether global network topology drives function, as suggested by some researchers, or whether it

is simply a byproduct of evolution or even an artefact of representing complex molecular interaction networks as

graphs.

Nevertheless, network biology has progressed significantly over the last years. We review the literature, focusing

on two major developments. First, realizing that molecular interaction networks can be naturally decomposed

into subsystems (such as modules and pathways), topology is increasingly studied locally rather than globally.

Second, there is a move from a descriptive approach to a predictive one: rather than correlating biological network
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topology to generic properties such as robustness, it is used to predict specific functions or phenotypes.

Taken together, this change in focus from globally descriptive to locally predictive points to new avenues of re-

search. In particular, multi-scale approaches are developments promising to drive the study of molecular interaction

networks further.

1 Introduction

Over the last half century, our understanding of life at the molecular level has advanced tremendously.

This is made possible by continuously improving technology for measuring the presence or concentrations of

molecules at a genome-wide level, such as the microarray (transcriptomics), mass spectrometry (proteomics,

metabolomics) and next-generation sequencing (genomics). Perhaps more importantly from a systems bi-

ology perspective, similar technology and protocols have been developed to measure interactions among

molecules, leading to so-called interactomics [1]. Protein-protein interactions are measured using yeast-two-

hybrid technology and tandem affinity purification amongst others [2], and stored in a variety of databases [3];

interactions between DNA and proteins, such as histones and transcription factors, are found using yeast-

one-hybrid and chromatin immunoprecipitation [4] and deposited in databases such as JASPAR [5] and

FactorBook [6]; enzyme-metabolite interactions are measured using enzymatic assays and can be found in

for example, BRENDA [7], KEGG [8] and MetaCyc [9]. Besides physical interactions, many indirect inter-

actions have been reported, such as genetic interactions [10], general epistatic interactions [11] and predicted

functional interactions [12].

This molecular interaction data is the cornerstone of many computational approaches aiming to analyze,

model, interpret and predict biological phenomena, many at a genome-wide scale [13]. Interactions are

often thought of as constituting networks, a view already proposed quite early [14] which recently came

to full fruition [15]. Networks are now used as vehicles for modeling, storing, reporting, transmitting and

interpreting molecular interactions [16]. Often they are represented as graphs, although this is not straightfor-

ward for many molecular interactions. For example, metabolic networks, representing physical interactions

between enzymes and metabolites as well as conversions between metabolites, are ideally represented by
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hypergraphs [17] but are often reduced to simple graphs [18] for further analysis.

Although graphs are convenient representations of molecular interaction networks, it was quickly realized

that they could be treated similarly to large systems of interacting particles: small sets of interactions

might be difficult to understand, but statistical properties relating to all interactions could contain valuable

information [19]. This led to network biology [20]: a combination of systems biology, graph theory and

computational and statistical analyses in which the topology of the graphs representing molecular interaction

networks themselves became the subject of study. In subsequent work, statistically maintained properties,

such as scale-freeness, were found in molecular networks of different types. In similar analyses, graphs

were mined for statistically overrepresented network motifs [21], small subgraphs, suggesting that certain

interaction patterns are common to many networks [22].

Despite their apparent universality, it proved difficult to derive biological conclusions from the patterns dis-

covered in these initial global statistical analyses of molecular interaction networks. They may therefore be

labeled as descriptive, pointing at generic underlying properties rather than leading to verifiable hypothe-

ses. In time, molecular interactions networks were studied more locally, leading to more tangible biological

insights. For example, clustering was used to discover significant biological modules and their interconnec-

tion patterns, which shed some light on evolutionary constraints of organisms [23]. Ranking of nodes by

topological features (such as degree) was shown to relate to biological importance of a gene or protein and

may for example be used to prioritize targets for development of pharmaceuticals [24]. We label such ap-

proaches suggestive. Finally, by studying networks even more locally, typically neighborhoods surrounding a

few nodes, it has become possible to derive predictive results from molecular interaction networks. A typical

approach is to compute a topological fingerprint of the neighborhood around a node; nodes are found to be

functionally similar when their fingerprints are similar [25].

Over the past decade, network biology has thus transformed from being an initially descriptive approach

to a predictive tool that is routinely applied to discover biologically relevant facts. In this survey, we chart

this progression, showing that it corresponds well to a focus change from global to local. Many reviews of

developments in network biology have appeared over the last years; here we list those most closely related

to ours. Pržulj [26] reviews the use of protein interaction networks in network biology, touching on some

of the techniques discussed throughout this review and calling for more integration of biological knowledge

with network theory. A review of network theory from the perspective of data mining may be found in

Pavlopoulos et al. [27]. This review covers a variety of network metrics with an especially strong focus on
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clustering and node centrality. Likewise, Cho et al. [13] review several data-mining approaches applicable

to molecular networks. A related topic is that of random molecular networks, which serve as benchmarks

against which data mining results are measured. Such networks are generally produced through processes

mimicking evolution, several of which are reviewed by Foster et al. [28] and Sun & Kim [29]. Finally, many

recent reviews focus on the use of network biology in diagnosing disease [30–32], in particular network-based

disease markers.

Our review adds to the existing literature by taking a high-level view of network biology as moving from

descriptive to predictive, and by maintaining a clear focus on research exploiting the topology of molecular

interaction graphs. The remainder of the paper is organized as follows: in Section 2, a brief overview of

relevant biological and mathematical theory is presented. Sections 3-5 then give a chronological overview

of research on the graph topology of molecular interaction networks, moving from descriptive to suggestive

and predictive. We end with a conclusion and outlook in Section 6.

2 Network Biology

For the purposes of this review, we define network biology to be the study of the topology of graph represen-

tations of molecular interaction networks, both to describe such networks and as a tool to make biological

predictions. We briefly review graph theory and discuss graph representations of molecular interaction

networks.

2.1 Graph Theory

Graph theory is the study of graphs: structures representing relationships between pairs of objects. The

set N of objects in a graph G are called nodes; the relationships between the objects are captured by a set

L of node pairs called links. When nodes u and v are linked (i.e. {u, v} ∈ L), u is said to be a neighbor of

v and vice-versa. In directed graphs, used for modeling non-symmetric relationships such as activation or

repression, each link is directed and has a source node (origin) and a target node (destination). The number

of neighbors of a node u is called its degree. Figure 2 shows examples of directed graphs. Weighted

graphs model non-binary relations by associating scalars or weights with links. An example is the affinity

with which proteins bind to one another. Box 1 lists some metrics often used to study graphs. Many more

metrics in the context of network biology are covered in [27].

4



Metric types Metric descriptions

Degree Distribution The statistical distribution followed by the degrees of the nodes in a net-
work. Many real-world networks have degree distributions that depart
sharply from those of classical random network models (Box 3).

Path Metrics In an unweighted graph G, the shortest path between nodes u and v is
the minimum number of links one must traverse to move from u to v.
If G is weighted, the shortest path is that with the minimal sum of link
weights. The average shortest path or characteristic path length
is the average length of all shortest paths (between all node pairs) in a
network.

Centrality Metrics A centrality metric gives a ranking of nodes according to their “impor-
tance”. The simplest measure is degree centrality – the degree of a
node specifies its importance. Closeness centrality is the reciprocal of
the sum of the shortest paths to all other nodes (i.e. a node whose close-
ness centrality is high is close to many nodes). Betweenness centrality
is the fraction of shortest paths passing through a node. Eigenvector
centrality and Pagerank are measures of how frequently one arrives
at a node when performing a random walk on a network.

Table 1: Graph metrics reduce structural properties of network to (vectors of) real numbers, facilitating the
comparison of different networks.

An induced subgraph G′ of G is a subset of the nodes of G, along with all links whose endpoint nodes

are both in G′. In a bipartite graph, the nodes can be split into two sets such that no two vertices in the

same set are adjacent. A complete bipartite graph in which all nodes from the first set are connected to all

nodes in the second is said to be complete.

2.2 Molecular Interaction Networks

Molecular biology is the study of all cellular processes involving DNA, RNA, proteins and metabolites. A

simplified overview of common interactions between these molecules is shown in Figure 1 (a). Although

simplified, models such as Figure 1 (a) are still complex. Researchers generally study models with fewer

molecules and interactions, such as the signaling pathway model in Figure 1 (b).

Both Figures 1 (a) and (b) focus on interactions and can therefore be represented as networks. But neither

is a graph, since Figure 1 (b) contains non-pairwise relationships and Figure 1 (a) contains multiple types

of relationships while both contain multiple types of nodes. Complex interaction models that distinguish

between node and link types are useful when the focus of study is on a small molecular subsystem but

a hindrance when the aim is the discovery of interaction patterns across large sets of interactions. When

pattern discovery is the aim, networks are reduced to graphs by including only links and nodes modeling
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Type of network Network description

Association networks Association networks model any kind of relation between molecules (e.g.
binding, co-expression and structural similarities). Examples of associ-
ation networks are gene co-expression networks and protein simi-
larity networks.

Functional networks Functional networks model functional relations between pairs of
molecules (usually genes or proteins). A link implies that both are in-
volved in the same function, process or phenotype. Genetic interac-
tion networks represent interactions where a double mutation leads to
an epistatic effect, i.e., worse or better than expected based on the single
mutation.

Protein-protein Interaction
Networks (PPI Networks)

Protein-protein interaction networks are undirected networks that model
protein binding. PPI networks are derived from high-throughput exper-
iments using techniques such as yeast two-hybrid screening, mass spec-
trometry and tandem affinity purification [2]. Signaling networks are
related to protein interaction networks, but their links are directed ac-
cording to the flow of molecular signals.

Transcription-regulatory
Networks (TR Networks)

Transcription-regulatory networks are bipartite networks with one set
of nodes representing genes and the other representing transcription fac-
tors (TFs). TFs are products of genes (modeled by gene-TF links) whilst
genes are regulated by TFs (modeled by TF-gene links). Data for such
networks is derived through the process of chromatin immunoprecipi-
tation (ChIP) [33]. Gene regulatory (GR) networks are related
to TR networks but contain only genes. Their links represent indirect
regulatory relationships.

Metabolic Networks Metabolic Networks are bipartite networks that model the relationships
between the chemical reactions that occur in cells and the substrates
involved in the reactions (the solid gray lines in Figure 1 (a)). Reduced,
non-bipartite metabolic networks containing only metabolites or only
reactions are also often studied.

Table 2: Commonly studied molecular interaction networks.

one or two concepts and by converting non-pairwise links to pairwise links. The graph in Figure 1 (c) is

one possible simplification of the pathway in Figure 1 (b). While network and graph are thus two distinct

concepts, we will henceforth use the term network to refer to both concepts. Box 2 lists several such

networks commonly studied.
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Figure 1: From biological models to networks. (a) Simple overview of molecular interactions in the cell.
(b) Part of the MAPK/ERK pathway modeled as a network. (c) Homogenous protein interaction graph
representation of part of the MAPK/ERK pathway.
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(a) (b) (c)

(d)

Figure 2: Some motifs thought to be overrepresented in molecular interaction networks. Arrowheads indicate
link directionality. (a) A four-node feed-back motif. (b) A four-node bi-fan motif. (c) A three-node feed-
forward motif. (d) Three-node motif signature for a network.

3 Descriptive Analysis

During the 1990’s, researchers in various scientific fields started studying macro-scale systems in which

individual entities locally interact in simple ways, leading to complex behavior emerging at a global scale.

Examples include telecommunications networks [19, 42], social relationship structures [35] and biological

interactions from the molecular to the ecological scale [21].

The structure of the above networks departed significantly from the random network models – the Erdős-

Renýı model [34] and the Watts-Strogatz model [35] – commonly used in that day to model large networks (see

Box 3). Real-world networks had short average path lengths and degree distributions approximating power

laws [19]. The slopes of the degree distributions, when plotted on log-log axes, tended to fall within a narrow

range, regardless of the numbers of nodes in these networks. This independence of scale or scale-freeness

was thought be indicative of networks formed through gradual growth processes based on preferential

attachment: every time a node is added to a network, it is linked to existing nodes with probabilities

proportional to the degrees of those nodes [19,20].

In biology, initial studies on molecular interaction networks matched the topologies observed in other real-
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Type of network Network description

Erdős-Renýı (ER) [34] The oldest class of random networks. To construct a graph instance,
links are added between each pair of nodes with probability p (a param-
eter).

Watts-Strogatz (WS) [35] A kind of generalization of ER networks in which links of a regular
lattice are rewired. Characterized by high clustering coefficients and
short average path lengths.

Barabási-Albert (BA) [19] A class of random networks constructed one node at a time, with new
nodes preferentially attaching to existing high-degree nodes. These net-
works are scale-free (i.e. hub-like) and more closely resemble molecular
interaction network networks than ER or WS networks.

Duplication-divergence These networks, inspired by gene duplication and subsequent diver-
gence (in sequence, interaction and function) [36] are generated by du-
plicating nodes and randomly removing/adding links. Architecturally,
duplication-divergence networks are similar to Barabási-Albert net-
works [37,38]

Fixed node degrees Random networks characterized by their specific node degree sequences
that are generated either by randomly rewiring the links of an existing
network [39] or through the configuration model [40,41].

Table 3: In graph theory, topological characteristics of a network are often compared to those of instances of
random network models. Listed are a few widely used random network models in which nodes represent a
single concept; these are generally unsuitable for generating networks in which nodes correspond to multiple
concepts (e.g. metabolites and reactions in metabolic networks) since additional structural constraints apply
to their connectivity.

world networks. Gene co-expression networks [43], protein-protein interaction networks [44], metabolic net-

works [45] and transcription regulation networks [20] all contain aspects of scale-free networks. Nevertheless,

although various random network models reproduce some salient properties of molecular networks, each has

been criticized for not being consistent with other important aspects of molecular networks [46–49].

Molecular networks are often also highly clustered, implying modular design (see Box 4) and supporting

the idea that biological systems are modular at all levels [50]. An early study on the S. cerevisiae PPI

network showed proteins with similar functional annotations to be highly connected, strongly suggesting

modularity [25]. Similarly, in the yeast TR network, highly co-expressed genes were found to be clustered [51].

Evidence for hierarchical modularity was found in a PPI network [52] and in the metabolic networks of several

organisms [53]. In general, molecular interaction networks were increasingly thought to consist of modules,

linked through connector or linker nodes [54]. In other words, molecular networks are networks of networks

that can tolerate disruptions to individual modules but whose functions are sensitive to disruptions module

of connectors.

Although early attempts at understanding molecular interaction networks took a top-down approach, char-
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Network decomposition Decomposition description

Modules are induced subgraphs whose link density is high in comparison to the
rest of the graph. This definition is deliberately vague, as what con-
stitutes a module depends on the context and the algorithm used to
discover modules.

Motifs are small subgraphs, usually of 3 or 4 nodes, whose over- or underrepre-
sentation may indicate that their structures are important or detrimental
to the system [21]. Usually, all distinct motifs in a network are counted,
yielding a motif signature for the network that may then be compared
to signatures obtained by sampling from an appropriate random net-
work null model (see Box 3) to determine over- or underrepresentation.
A signature for all motifs on 3 nodes is shown in Figure 2 (d). Motif
signatures can be used to characterize networks.

Graphlets are similar to motifs but always fully connected. As with motifs,
graphlets are used to construct signatures that capture the local charac-
teristics of a network [55].

Table 4: Modules, motifs and graphlets. These concepts are used to decompose networks into smaller units
that are easier to study.

acterizing networks using global metrics such as their degree distributions, it was soon suggested that global

behavior of the cell could be the result of local features [56], a bottom-up view. One view was that behavior

of molecular interaction networks emerges from the interactions of many small subgraphs or motifs (see

Box 2), in the same way that the behavior of a computer results from the interactions of simple logic cir-

cuits [21]. Statistical overrepresentation of a motif is thought to be evidence that the motif offers a functional

advantage to its host organism. Such motifs – feed-back loops, feed-forward loops and bi-fan motifs (see

Figure 2) – all have analogues in the electronic world [21]. This fitted well with the increasing popularity

of systems biology [57] that advocated an engineering-inspired approach to study biology. Simple motifs

may act as sign-sensitive delay mechanisms or as input response-accelerators, depending on their mix of

activators and repressors [22]. More complex motifs may even act as logic circuits, switches and memory

states, making them interesting building blocks for synthetic biology [58].

Motifs can also be used to characterize networks more globally. Global motif signatures were found to be

unique for different types of networks [21] but conserved between organisms [59], providing further evidence

that motifs embody underlying design principles in different types of molecular interaction networks, that

are preserved across evolution [22].

The global, module and motif views led to the idea that molecular networks are organized at multiple levels

of complexity [60]. At the local level, motifs act as small control circuits or building blocks. Motifs aggregate
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into modules that, through the interactions of their motifs, implement more complex biological processes. At

the global level, modules are connected to each other – and may thus exchange information or molecules –

through a small number of linker nodes. The fact that certain topological features, such as scale-free degree

distributions, are common among molecular networks suggests that the designs of these networks are shaped

at all levels by evolutionary mechanisms.

The case for an architecture based on a hierarchy of motifs, modules and global properties was strong and

it appeared to be universal, so that its presence came to be assumed. At the local level, overrepresented

motifs were used to filter spurious links from noisy high-throughput networks by rejecting links that did not

form part of motif structures [61]. At the global level, the assumption of power-law degree distributions led

researchers to propose the evolutionary processes of duplication and divergence as leading to preferential

attachment in the formation of molecular networks [36].

3.1 Limits to the Descriptive Approach

Details of the multi-layered view were increasingly disputed as data quality improved and as researchers

revisited interpretations of older findings. At the global level, the most contested trait was that of scale-

freeness, a property found to arise under many circumstances, challenging its significance [62]. Careful

examination of molecular interaction data showed that some non-scale-free distributions fit degree distribu-

tions of molecular networks as well as scale-free distributions [63, 64]. More contentious was the suggestion

that some global features are modeling artifacts. The hub-like architecture of protein interaction networks

was questioned, since no protein can realistically bind to the number of proteins suggested by hub nodes;

hub nodes are more likely to represent groups of proteins that only appear to be individuals owing to ex-

perimental limitations [46]. Likewise, metabolic networks do not display short average path lengths when

metabolite paths are traced; shortest path algorithms on metabolic networks do not take into account the

requirement that all metabolites be present for a reaction to occur and their direct application to these

networks is meaningless [17].

At the module level, it was found that modules are less clearly delineated than previously assumed. There

appeared to be many connections between modules, making it difficult to distinguish linker nodes [65].

Without linker nodes, assignment of nodes to modules is more difficult, leading to “fuzzy” modules. Motifs

were also criticized. The bi-fan motif, found to be overrepresented in molecular networks [21] and assumed

to be functionally important, was shown to have no characteristic behavior when considered as a dynamic
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system [66]. If motifs lack characteristic behavior, aggregates of motifs, such as motif clusters, cannot

be assumed to implement specialized biological functions. Motif signatures (Box 4 and Figure 2 (d)) of

networks were argued to be by-products of simple evolutionary mechanisms (such as gene duplication and

divergence) [67]. Evolution may thus not be driven by motifs; rather, motifs may be the inevitable result of

the self-organizing effects of evolution.

Although there is less universal structure in molecular networks than once thought, the original multi-layered

model is still useful, albeit with some modifications. There is much evidence that molecular networks are not

scale-free, but they are generally heavy-tailed [64], meaning that they have a few hubs and many low-degree

nodes. Motifs may not be simple biological circuits [21], but they established the idea that local structure

is important; one way in which this was later exploited was to compute node signatures for use in function

prediction in molecular networks [55] and alignment of molecular networks [68]. Perhaps the most important

contribution of the layered view was the idea that molecular networks are organized at multiple levels; the

molecular organization of the cell cannot be understood at one scale only.

3.2 Topological Features as Target or By-product of Evolution

The global approach was not meant to be purely descriptive: its original goal was the discovery of universal

architectural features. Universality suggests that organisms are selected because they posses such features

and would provide clues about the topological requirements that are essential to life.

One property thought to emerge from natural selection is robustness, the ability to maintain function under

perturbations [69]. Network biologists have sought to explain robustness in terms of topological characteris-

tics. In PPI networks, the number of interaction partners of nodes initially appeared to correlate with their

essentiality [56]: robustness may come from the fact that PPI networks have few hubs and many low-degree

nodes. In metabolic networks, almost the opposite is true, with networks being susceptible to disruption

of low-degree linker nodes that connect metabolic modules [70]. However, in both cases the systems are

resilient to most perturbations but susceptible to targeted attacks, a property known as highly optimized

tolerance [71].

After-the-fact attempts to match topology to properties such as robustness were eventually called into

question. In silico evolution experiments with simple gene-regulatory networks showed that many such

structural features emerge from network dynamics rather than selective pressure [72]. Other such network
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evolution experiments suggested that the drivers could be simple processes such as reuse, genetic drift and

mutation [67,73,74]. Even higher-level organization such as modularity is thought to arise from such simple

processes [23]. A study comparing a metabolic network to a network of atmospheric chemical reactions found

large topological similarities and concluded that many large-scale topological features have no functional

nor evolutionary significance, the so-called neutral theory of chemical reaction networks [75]. In

bacteria, horizontal gene transfer is thought to play an important role in module formation, as cells adopt

clusters of foreign genetic material wholesale in reaction to environmental variability [76]. Nevertheless, the

extent of this influence was recently questioned, stressing possible interplay between variability and gene

transfer [77,78].

Not all network features emerge through network dynamics. Selection pressure does seem necessary for the

fine-tuning of topological features and may in some cases be responsible for the difference between a robust

and fragile network [79]. In simulations of metabolic network evolution, hubs emerge when networks are se-

lected for their ability to grow [80]. In models of GR network evolution, sparsity (i.e. low link counts) emerges

when selectional stability (which models energy minimization of the mutation process) is enforced [81]. Even

modularity may rely on selection pressure, albeit in a more subtle form. When networks are evolved and

selected for their ability to prosper in varying conditions, modularity is found to emerge and, crucially, to be

maintained [82]. A similar result was obtained by subjecting randomly generated metabolic networks (i.e.,

not generated by a procedure mimicking evolution) to a range of environments and assessing the amount of

biomass they produced [83].

4 Suggestive Analysis

Since the early days of network biology, data mining was used to discover unexpected (ir)regularities in

molecular interaction networks. Some findings were already discussed in Section 3 (the use of clustering to

discover functional annotation, the existence of hub proteins). While data mining techniques shed light on

aspects of biological function, they do not necessarily lead to directly testable hypotheses. In this sense, we

call the methods in this section “suggestive”. We describe four strategies for extracting network regularities:

significant feature detection, clustering, central and hub node discovery and network homology.

Significant Feature Detection The idea behind this strategy is that unlikely patterns in molecular networks

are indicative of underlying “design” processes (such as evolution). The likelihood of a feature is determined
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by considering its distribution in network instances generated using a random network model (see Box 3).

In early work, PPI networks were rewired (link pairs were shuffled) to generate random networks [39].

The connections between high-degree nodes in the original protein interaction network were found to be

statistically unlikely in rewired networks, leading to the hypothesis that interactions between high-degree

proteins are suppressed in evolution, perhaps to control cross-talk in the cell. Modules and motifs [21] can

also be considered as significant features. Some of the clustering algorithms mentioned earlier in this section

explicitly assess cluster significance as a function of its likelihood [84].

Such significant features can sometimes be biologically interpreted. Statistical analysis of miRNA targets in

a human signaling network found that miRNAs tend to target proteins that are part of positive feedback

motifs [85]. Similarly, cancer genes tend to be part of positive feedback motifs whilst genes that are highly

methylated tend to be part of negative feedback motifs [86]. In both of these cases, the motifs are interpreted

as amplification or dampening circuits, analogous to electronic circuits. An interesting recent view is that

individual motifs are not necessarily significant but that large clusters of positive or negative feedback motifs

act as stochastic amplifiers or dampers, respectively [87].

The advantage of significant feature detection lies in its simplicity: existing techniques are used to analyze

and compare the input network and networks derived from a random model. But this is also its main

drawback: choosing an incorrect random network model can make features appear significant when they are

not.

Clusters Modules in complex systems tend to be highly internally connected whilst sharing only a few con-

nections with the outside world. Graph clustering is an approach to discover such modules by decomposing

a network into a number of subnetworks or clusters that are internally highly connected. The “big data”

era has inspired development of clustering algorithms that efficiently deal with large datasets.

In network biology, general clustering algorithms have been used to discover functional modules in gene co-

expression networks [88] and genomic cooccurence networks [89]. Since proteins in complexes highly interact

with one another, graph clustering has also been used to discover protein complexes in PPI networks [54].

Here we mention a few of such general clustering algorithms; the interested reader is referred to [90] for a

more thorough overview. Most modern clustering algorithms are based on physical models, data mining

techniques or spatial partitioning. Physics-inspired approaches include spin models [91, 92], random walk

models [93,94] and synchronization models [95]. Data mining approaches treat cluster discovery as a problem
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of significant feature discovery. A few clustering algorithms discussed below are (at least partially) based on

this idea. Spatial partitioning approaches associate distance metrics on pairs of nodes that are then clustered

using approaches such as k-means clustering. A number of such distance metrics are discussed later in the

context of “neighborhood homology” later in this review.

Whilst general algorithms can be applied to molecular networks, clustering algorithms that exploit the specific

structure of molecular networks may achieve better results. MCODE is a heuristic algorithm developed

to detect complexes in protein interaction networks [96]. Other examples include Restricted Neighborhood

Search Clustering [97] and CODENSE, an algorithm for finding dense subgraphs [98]. A number of algorithms

based on local neighborhood statistics were proposed as well, for example to find subgraphs of PPI networks

that are active according to high-throughput measurements (ActiveModules [99] and MATISSE [100]). More

generally, a likelihood score for the density of a subgraph can be used in (greedy) optimization algorithms

to mine dense subgraphs, such as in CEZANNE, which finds functional modules in gene co-expression

networks [100].

Besides fully connected clusters, clusters that resemble bi-cliques (complete bi-partite subgraphs, see Sec-

tion 2.1) have been shown to be common and biologically relevant in protein interaction networks [101].

Furthermore, clusters in bipartite networks such as TR and metabolic networks are also manifested as bi-

clique-like networks. Algorithms have been proposed to mine such (bi-)clique clusters [102,103]. Specialized

algorithms for bipartite networks have also been developed, such as SAMBA, that integrates additional

biological data to discover modules [104].

A still-difficult problem is the discovery of overlapping clusters. Many molecules are components of multiple

modules (e.g. proteins are part of multiple protein complexes, metabolites are inputs to multiple metabolic

reactions) whilst most existing clustering algorithms place each molecule in exactly one cluster. A relatively

simple approach is to group molecules in topics and to apply node-based clustering on the topics; a node

that belongs to topics in different clusters would be a member of (at least) two clusters. Recent research uses

the more restricted case of edge clustering (which is equivalent to topic clustering on topics of two nodes

each) with good success [105–107].

Clustering is a useful technique to gain understanding of the modular construction of a molecular net-

work, but caution is required. Recovered clusters may not reflect actual biological modules; inaccurate

clustering can arise from badly chosen clustering criteria (in particular from criteria unrelated to biological
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constraints) [108]. Algorithms that produce overlapping clusters may assign nodes to too many or too few

clusters and rigorous techniques for handling such problems are still lacking.

Central Nodes and Hubs Early findings in network biology suggested that some nodes are more important

or central [109] (see Box 1) in molecular interaction networks. This manifestation of highly optimized

tolerance entails that the survival of an organism depends more on the presence of a few central nodes

than on most other, less central nodes. First, it was found that disrupting the highly connected, “hub-like”

p53 gene in the human signaling leads to cancer [110]. It was subsequently shown that the number of

interaction partners of a protein (i.e., degree centrality) in the S. cerevisiae protein interaction network is

correlated with its lethality [56]. Research on protein interaction networks [111], co-expression networks [112]

and synthetic genetic interaction networks [113] showed similar correlations. Furthermore, the number of

interaction partners was shown to be negatively correlated with the rate of evolution in protein interaction

networks [114], metabolic networks [115] and transcription-regulatory networks [116], further supporting the

idea that central nodes are important.

Closeness centrality was used to find central metabolites in metabolic networks [117]. Betweenness centrality

was used to identify bottleneck nodes – nodes of low degree whose removal is fatal to the organism [118].

Both of these metrics fit the interpretation of central nodes as being chemical flow routers. In signaling

networks, disruption of central nodes has been linked to cancer, suggesting that they act as information co-

ordinators/routers [119,120]. However, not all centrality measures can be easily related to routing, examples

of which include subgraph centrality [121], coreness centrality [122], bipartivity (the fraction of closed loops

including the node that are of even length) [123] and node hierarchy [124].

In spite of the initial positive findings, further experiments on S. cerevisiae showed little correlation between

protein degree and essentiality [125], a finding strengthened by computer simulations of gene expression [126].

This cast doubt on the use of centrality measures alone to predict node functionality. Some researchers have

sought to refine the notion of centrality by considering interaction patterns of central nodes: those that

interact with many interaction partners simultaneously are called “party” hubs whilst those that interact

with a few of their partners at a time are called “date” hubs [127]. Party hubs are thought to be global

coordinators that connect components within network modules whilst date hubs may be local coordinators

that connect network modules [127]. However, this distinction has been challenged with the availability of

new data that does not show such clear distinctions between central nodes [128].
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Even if node centrality is not as well correlated with node function as hoped, research in this field has shown

that hubs do tend to be more essential than non-hubs. Furthermore, subversion of central nodes has been

implicated in the formation of cancer [119,129], suggesting possibly useful drug targets.

It has been suggested that a simple explanation for the essentiality of high degree nodes is that they are more

likely to interact with essential complexes and their removal breaks such complexes [125]. The implication

is that local topology is a deciding factor in essentiality. Indeed, versions of existing centrality measures

modified to take more local information into account are better at predicting which nodes are essential [130].

However, it is important not to conflate node essentiality, a concept tied to survivability, with the influ-

ence that a node exerts on a network. The latter concept is discussed in the next section in the guise of

“controllability”.

Global Homology The principle of homology states that biological systems related by evolution are struc-

turally similar. Its converse – structural similarities imply common heritage – is often used to predict the

function of unknown proteins and genes. In networks, topological similarity can likewise be used to infer

functional similarity. Using this approach, metabolic networks of 43 organisms were found to display hierar-

chical modularity [53]; these modules were found to center around core metabolites [131]. In the same vein,

the connectivity of a protein in a PPI network was shown to be proportional to its age. In a study on three

species, common proteins are likely to be older than those present in only a single species [132].

The approaches above focus on high-level similarities between networks without attempting to match indi-

vidual nodes in the networks. By performing such alignments, clustering and significant feature detection

applied across species can lead to more insight. In an early example, the glycolytic pathways of 17 organ-

isms were aligned [133] and revealed many interesting differences between species in this essential part of

metabolism. Alignment of the E. coli metabolic network to those of other organisms identified enzymes

whose genes were candidates for horizontal gene transfer [38]. The average degree of these candidates is

higher than that of other enzymes, implying that they are central to metabolism. Thus, ancestors to E. coli

replaced their central enzymes with better functioning enzymes from other species.

Data Mining in Biological Networks Suggests Biological Findings Data mining techniques have been successfully

applied in network biology to suggest biological functions for genes and proteins. The common theme is that

instead of considering global properties of biological networks, they focus on subnetworks, from individual

nodes to neighborhoods and features shared between networks. This increased focus allows the derivation
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of more tangible biological results. However, when analyses are based on comparisons to random network

models (Box 3), such as in significant feature detection, the problem of telling these apart from evolutionary

by-products remains.

5 Predictive Analysis

The data mining approaches discussed in Section 4 reveal the large-scale organization of molecular networks

in some detail but do not, in general, yield testable biological hypotheses. Approaches that do give such

results tend to be based on network generalizations of existing principles in molecular biology: guilt-by-

association, homology and differential analysis.

Guilt-by-association The principle of guilt-by-association is based on the observation that if most of the

interaction partners of a molecule are associated with some property (such as a specific biological process or

molecular function [134]), the molecule itself is also likely to be associated with that property [135]. Guilt-by-

association has been used to assign functions to proteins with unknown roles based on the functions shared

by the majority of their direct neighbors (i.e. interaction partners) in protein interaction networks [25]. The

properties shared by the majority of a node’s neighbors do not necessarily yield the best annotations [136]

and more sophisticated approaches, such as Markov random fields trained on node neighborhoods [137], have

been developed as alternatives.

By only taking direct interactions into account, the above applications of guilt-by-association ignore the

impact of potentially informative indirect interactions. So-called n-hop features have been used to predict

disease associations of proteins in PPI networks [138]. Another technique for incorporating indirect neighbors

is graph diffusion, an idea derived from the study of diffusion in physical systems. Here, properties of nodes

are diffused across links in a network; properties that diffuse in high quantities to nodes with unknown roles

are used to annotate these nodes [139]. In both n-hop methods and graph diffusion, interaction strength

between nodes depends on the path structure between the nodes.

Path structure need not be the only determinant of interaction strength. Nodes that are members of the same

biological module may have similar functions [25]. Thus, a node whose role is unknown can be annotated

with the functions appearing most frequently in the module(s) to which it belongs. Whilst we do not

know what the biological modules are, we can compute approximate modules through clustering. Such an

approach has been used to annotate unknown proteins in S. cerevisiae protein interaction networks [102].
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Guilt-by-association is a simple and effective technique that extends naturally to networks. However, it is

only effective when the roles of the majority of molecules in a network are known, limiting the technique to

well-studied organisms.

Neighborhood Homology Since the use of homology is pervasive in biology, we expect the principle to extend

to networks. Indeed, in Section 4 it was already discussed how networks found in different organisms have

similar structural properties. Predictive approaches use topological and possibly biological similarity to

match similar nodes across different networks. Once nodes are aligned, the function of a protein or gene

whose role is unknown can be predicted, if the function of its matched node in the other network is known.

The first network alignment algorithms operated at a local level, attempting to match only small parts of

entire networks to one another [68, 140]. Global alignment is more difficult, because networks to be aligned

generally differ in size. Moreover, homology is not a one-to-one relation: many nodes may align to many

nodes. There are two main approaches for performing global alignment:

1. Cluster the nodes in each network and compute topological matching scores on the clusters [141, 142]

(“matching clusters”).

2. Select groups of nodes in different networks that are pairwise similar in local neighborhoods and

possibly biological labels [143,144] (“clustering matches”).

The first type of algorithm has the disadvantage that the clustering step precedes matching and thus ignores

potentially useful information. Many algorithms of the second type associate feature vectors of topological

(and possibly biological) attributes with nodes that are then used to compute node similarity. Various metrics

have been used [145]. The Jaccard coefficient, a measure of overlap between sets of binary attributes, has

been widely used, an example of which was the prediction of protein function in human PPI networks [146].

The h-confidence metric [147] is a data-mining tool for discovering associations and has been used in protein

function prediction. Specialized metrics, such as the graphlet distance (tailored to graphlet signatures [55])

have been used to discover genes implicated in cancer [148].

Variations of clustering algorithms, looking for dense subgraphs within one network, have been proposed

to mine subgraphs similar in two networks. For example, the PathBlast algorithm combined a statistical

score for protein similarity and probability of a reported protein interaction to mine pathways or complexes

occurring in PPI networks of different species [140]. Similar approaches were applied to assign functions to
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proteins [149] and to align metabolic pathways [150].

Differential Analysis Diagnosis of many diseases (such as cancer) is based on the fact they influence the

regulation programs of cells. Traditionally, this involved finding changed expression of marker genes, or

specific gene mutations, i.e. focusing on the nodes in the network. Network biology allows additional fo-

cus on node relations, making it possible to diagnose molecular diseases that cannot be well characterized

by the traditional techniques [151]. This so-called differential analysis, finding changes in network struc-

ture [31], is currently complicated by the fact that construction of high-quality molecular networks requires

considerable time and resources. One common way around this is to use an existing high-quality network,

typically a PPI or TR network, as a scaffold onto which noisy high-throughput patient data (typically gene

expression or methylation data) is overlaid. If multiple measurements are available for each patient, gene

coexpression/comethylation values can be computed and overlaid as link weights on PPI links.

Expression changes of genes/proteins linked to central nodes in molecular networks have been proven to be

reliable markers of disease. Differential expression around topologically central nodes in protein interaction

networks has been used to diagnose cancer [152,153]. Disease central nodes (i.e., nodes implicated in disease)

have been similarly used in the diagnosis of breast cancer and leukemia [154]. More recently, co-expression

changes around biologically central nodes, such as signaling hubs, have shown to be even more reliable disease

markers [155,156].

More elaborate differential approaches consider changes in expression patterns of subnetworks, instead of only

central nodes. Automatic extraction of such subnetworks based on topology and measurements such as gene

expression has revealed subnetworks associated with cancer (in which differential gene/protein expression

could be used for diagnosis of the disease) [86, 157] as well as subnetworks that are implicated in heart

failure [158]. An alternative to automatic extraction is to use biological modules based on theoretical

knowledge; such an approach has been used in cancer prognosis [159].

Differential diagnosis, despite its relative newness has quickly grown to a large field. Our discussion is

necessarily limited by the scope of this review; the interested reader is referred to recent reviews that

consider the discipline in much more depth [31,32,160].

Relating Topology to Biological Properties Leads to Predictive Power The data mining techniques discussed

in Section 4 are mostly based on topological information. In contrast, the predictive approaches discussed

above depend on additional biological information. This approach to network biology clearly yields more
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testable hypotheses than the suggestive and descriptive approaches.

Since we do not, in general, have good models of biological function at large scales, predictive approaches are

most often applied to small groups of nodes or subnetworks. There are exceptions with metabolic networks

being the most prominent. Flux balance analysis (FBA) [161,162] is a framework for computing steady-state

reaction rates in such networks based on reaction stoichiometry, assuming the cell attempts to achieve some

objective such as maximum growth. FBA is often used in a predictive way, but has also been applied in a

“suggestive” setting, e.g. to study robustness of metabolic networks [70]. FBA allows one to take additional

physical constraints into account, such as thermodynamic interactions [163] or responses to signaling [164];

for an extensive overview see [165].

The biggest problem with incorporating additional biological knowledge into existing models is that, for

any given biological attribute, we seldom have complete data. Two recent ideas, “controllability” and

“observability”, potentially allow to use partial (local) knowledge to predict global state. Controllability

refers to “driver” nodes that have a large influence on the state of a system [166]; observability is almost

complementary, focusing on a small set of appropriately chosen observation nodes whose properties allow re-

construction of the global system state [167]. These techniques promise to allow associating local information

with driver/observation nodes and to predict global properties from limited available data.

6 Conclusion and outlook

In this review, we have summarized common research themes in the field of network biology. We find a slow

movement from global to local analysis, arguing that this trend emerged from a need to draw more concrete

biological knowledge from networks.

The survey findings seem to suggest that one must either choose between untestable abstract hypothe-

ses about large-scale topological patterns or small-scale results that neglect large-scale topology. But the

successes of local techniques lie not in their focus on the local but because they tightly couple topological

observations to biological knowledge. From this starting point, we see two broad research directions for

improving the explanatory power of large-scale topology patterns. The first approach is theoretical and

is aimed at making descriptive and suggestive techniques more predictive, whilst the second approach is

practical and extends the predictive techniques to work at larger topological scales.

The theoretical research direction entails the improvement of network evolution models in order that they
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reproduce as much of the topological aspects of real molecular networks as possible. Better models of network

evolution can better reveal the topological features that are by-products of evolution, permitting researchers

to concentrate on explaining topological results that cannot be explained by the models. An additional

benefit is that these models could themselves lead to biological insight.

In the practical direction, we propose the application of predictive techniques to various “resolutions” of

molecular networks, that is, multi-resolution analysis. Lower resolution versions of a network are typically

obtained by grouping subnetworks into meta-nodes (by analogy, the entire street network of a city is rep-

resented by a single city node in national road maps). How nodes are grouped depends on the topological

properties that must be maintained in low-resolution network versions. Node clustering techniques from Sec-

tion 4 can be used to produce low-resolution networks by grouping node clusters into meta-nodes. Another

promising technique that aims to maintain random-walk properties is spectral coarse graining [168].

The two research directions outlined above are by no means the only possible paths for developing network

biology. Rather, they show this young field still has much potential for development; we expect that future

researchers will bring us unexpected biological insights with the help of network biology.
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