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Abstract 
 
Quality of service (QoS) routing provides 
increased network utilization compared to the 
classical best-effort routing. However, effective 
QoS routing algorithms require frequent 
distribution of the link state information, which 
can impose a significant burden on the network 
resources. In this paper we investigate the 
triggering link state update policies with respect to 
the performance measures: link blocking, update 
error and average time between successive 
updates. In order to limit the excessive number of 
link state advertisement messages (LSA) we use 
two concepts: hold-down timer and moving 
average filtering. Using simulations, based on the 
topology independent “local view” simulation 
model, we compare the triggering link state update 
policies under both concepts. Our results show 
that the moving average outperforms the widely 
accepted hold-down timer concept.  
 
1. Introduction 

 
Quality of service (QoS) routing provides 

increased network utilization compared to the 
classical best-effort routing. Furthermore, it fulfils 
the multiple constraint demands of the 
communication sessions. Effective QoS routing 
algorithm requires frequent distribution of the link 
state information in order to “refresh” the routing 
tables with most up-to-date information. However, 
this frequent distribution of the routing information 
can cause significant burden on the network 
resources. The mechanism used for efficient 
generation and advertisement of the link state 
update information (LSA) is called the link state 
update policy. The link state update policy can be 
periodic or trigger-based. In the case of the periodic 
update policy, each node in the topology 
periodically advertises information on its available 
link resources. For the case of the trigger-based 
policy each node monitors the utilized link 
resources and triggers the LSA upon a “significant” 
change. Although periodic updates introduce a 
predictable overhead for exchanging link-state 
information, triggered updates can offer more 

accurate link-state information for the same average 
rate of update messages.  

The impact of the different link state update 
policies on the QoS routing has attracted relatively 
small research attention so far. A. Shaikh et al. [1] 
investigated how the performance and overheads of 
the QoS routing relate to the link-state update 
policies. G. Apostolopoulos et al. [2] identified the 
parameters that determined the QoS cost, namely 
(a) policy for triggering updates (b) sensitivity of 
this policy and (c) hold down timers that limit the 
rate of updates. M. Peyravian and R. Onvural [3] 
proposed the combined: triggered and periodic 
update policy to substantially reduce the number of 
link state updates in the P-NNI framework. 
However, these studies do not consider other means 
for limiting the excessive number of link state 
updates (LSA) than the hold-down timer. The 
concept of the hold-down timer does not allow for 
the link state update policy to be adaptive with 
respect to the changes of the flow arrival rate. 

In our paper, we review threshold- and 
exponential classes-based triggering link-state 
update policies aimed to provide consistent 
information on the network resources to the QoS 
routing algorithm. We perform simulation study in 
order to compare them in terms of the following 
performance measures: (1) link state update error, 
(2) average time between updates and (3) link 
blocking probability. We further elaborate on 
problems and propose a new effective technique for 
limiting the number of LSA – the moving average 
filtering. This new technique is adaptive to versatile 
flow rates unlike the hold-down timer. It is based 
on our observation that the link state trend (filtered 
link state), rather than every instant link state 
change, carries relevant routing information. 

In our simulation study we show that for the 
trigger-based link state update policies, proposed 
moving average technique for limiting the number 
of LSA is more efficient than the widely adopted 
hold down timer. 

The reminder of the paper is organized as 
follows. In the section 2 we explain the link state 
update policies and the metric stabilization 
problem. Further, to limit the excessive LSA 
triggering we propose the moving average filter 



instead of the hold-down timer. The section 3 
describes the evaluation environment and the 
performance measures we use to evaluate and 
compare the link state update policies. In the 
section 4 we summarize our main results and finally 
give conclusions in the section 5.  
 
2. Link-State Update Policies  
 
 Although QoS requirements may be 
characterized by several dynamic parameters: 
bandwidth, delay, delay-jitter, and loss, we see the 
bandwidth as the primary link metric for defining of 
the QoS. The initial deployments of QoS routing 
are likely to focus only on bandwidth to reduce 
algorithmic complexity. Therefore, we choose the 
link bandwidth utilization as the metric to be 
monitored in order to decide on link state update. 
The policies used to send information on the 
utilized bandwidth can be classified as: periodic 
and trigger based. In the case of the periodic update 
policy, the originating router periodically advertises 
information on the available bandwidth. Trigger 
based policies monitor the utilized bandwidth and 
trigger LSA upon a “significant” change. Although 
periodic updates introduce a predictable overhead 
for exchanging link-state information, triggered 
updates can offer more accurate link-state 
information for the same average rate of update 
messages. The triggering policies are classified [2] 
into: 
• Class based triggering policies (CBT). Link 

bandwidth is divided into adjacent bandwidth 
classes and an update is triggered when the 
current link state value crosses a class 
boundary. This policy is characterized by two 
constants: B and f (f >1), which are used to 
define unequal (exponentially distributed) 
classes: (0,B); (B, (f+1)B); ((f+1)B, 
(f2+f+1)B);… For f=1 we get equal classes. 
With B we set the base class and with f, we 
influence the number of classes. Very often a 
large number of updates are generated due to 
the fluctuation of the bandwidth consumption 
around the class boundaries. In order to limit 
the excessive number of unimportant updates, 
the hold-down timer is used [1,2,3]. The hold-
down time is the minimal time spacing 
between consecutive updates. The hold down 
timer significantly reduces the number of LSA 
messages. 

• Threshold based triggering policies (TBT). 
An update is triggered when the relative 
difference between the current and the 
previously advertised link bandwidth exceeds a 
certain threshold, e.g. 40%. As the link 

utilization approaches the link capacity, the 
advertised values of the available bandwidth 
are decreasing, thus triggering more frequent 
updates. Again, excessive LSA messages can 
be greatly reduced by introducing the hold-
down timer. 

 
2.1. The Problem 
 

The concept of the hold-down timer does not 
allow for the link state update policy to be adaptive 
with respect to the changes of the flow arrival rate. 
The hold-down time is a fixed value set by a 
network administrator and cannot accommodate 
versatile flow arrival rates. For high arrival rates the 
changes in utilization are more frequent and the 
hold-down time is apparently large. Some 
important changes of the bandwidth utilization 
cannot be observed during this hold-down time. On 
the other hand, if the mean arrival rate is small but 
the flows are long lived and the utilization is still 
high, the hold-down time will be too short, thus 
allowing for unnecessary updates. It is difficult to 
propose a hold-down time that would enable the 
link state update policy to perform equally well in 
conditions of versatile flow arrival rates. Finally, 
sudden bandwidth “spikes” after the hold-down 
time can be so rapid and so perishable, that the 
triggering of the LSA could be unnecessary.  
 
2.2. Moving average instead of Hold-down time 
 

The above problem formulation suggests 
monitoring the bandwidth trend, rather then every 
instant change in bandwidth, in order to trigger the 
LSA message. Smoothed bandwidth utilization 
curve does not carry information on the 
unimportant changes, which could cause excessive 
LSAs, but contains valuable information on the 
utilization trend.  In order to accomplish smoothing 
we “filter-out” the bandwidth utilization curve with 
the moving average technique. A simple moving 
average technique computes the mean of the 
successive values of the bandwidth utilization taken 
each time upon the arrival or the departure of the 
flow. The size of an averaged set is called the 
sample size (N). Each time a newly computed 
average, based on N past values of real bandwidth 
utilization, is compared to the previously advertised 
value. The appropriate relative or absolute change 
of the “moving” average is monitored to decide on 
the LSA triggering. The moving average approach 
is adaptive in nature. If the flow arrival rate is high 
then the next moving average point will appear 
sooner and the LSAs will be more frequent. 
Conversely, the lower the flow arrival rate 



(bandwidth change rate) the longer the period until 
the next moving average point appears and hence, 
the LSAs are less frequent. The hold-down time is 
no longer needed.  
 
3. Evaluation Environment 
 

In order to evaluate the performance of the 
presented link state update policies for both the 
moving average and the hold-down time concept 
we use simulations. We choose to simulate the 
traffic behavior and the link state update policies of 
one single link (the local view approach), rather 
than of the whole network. In this way, the 
simulation time is significantly reduced. 
 
3.1. The Local View Approach 
 

In an arbitrary network we isolate one node and 
one of its links. We monitor the traffic behavior of 
this link. We assume that a dynamic routing scheme 
is deployed. All the traffic source nodes or 
traversed nodes, that forward traffic to the isolated 
link, can be logically aggregated into a so-called 
complex traffic source node. They are the 
“upstream” nodes of the observed link. The rest of 
the topology is the collection of “downstream” and 
idle nodes (nodes that do not influence the link 
traffic). The complex source node generates 
aggregated traffic. The mean arrival rate of the 
traffic generated by the upstream nodes is affected 
by the change of overall route preference in the 
following way. The routing protocol advertises 
periodically, or upon a significant change, the state 
of the link (e.g. available bandwidth) throughout 
the network. The link state information is used at 
each node by the routing algorithm for calculating 
the new routing tables. The packets or flows are 
then forwarded according to these new routing 
tables. As a consequence, the observed link may 
remain part or be excluded from the shortest paths 
that previously traversed this link. In our 
simulations, we modeled the aggregated traffic of 
the complex source node as a Poisson arrival with 
the mean arrival rate λ. 

The link state information sent back to the 
network presents the feedback mechanism to 
improve the network efficiency. After an update, if 
the link is underutilized, some extra nodes will 
route traffic towards this link, thus causing an 
increase in the mean arrival rate λ of the aggregated 
traffic. Conversely, if the link is over utilized, after 
the link-state advertisement, fewer source nodes 
will route traffic via the observed link thereby 
decreasing the aggregated mean arrival rate. The 
change in the aggregated mean arrival rate after 

every update, is modeled by the change-point 
model: 

...... 112 →→→→→ +−− kkkk λλλλ  
As an update occurs at the moment k, the mean 
arrival rate of the aggregated traffic λk updates into 
λk+1.  

)(1 kk f λλ =+  
To reflect the route flapping (oscillation of traffic 
load) the function f is chosen in such a manner that 
every next value of the aggregated mean arrival rate 
is opposite of the previous. A high mean arrival rate 
is superseded by a low one and vice versa but 
within certain limits. The λmax corresponds to the 
full amount of link utilization (link capacity). We 
limit our observation to the high load area and 
choose for f the linear function: 

maxmax1 )(1 λλλλ +−
−

=+ b
ab kk  

Different levels of the total average link utilization 
and the magnitude of traffic oscillations are 
obtained by changing the slope coefficients: a and b 
(a>b>0). 
  
3.2. Simulation model 
 

In our model we make the following 
assumptions. Flows arriving to the system are 
generated according to a Poisson arrival process. 
There is no queuing of flows. All the flows in the 
system are served simultaneously. The service time 
distribution is exponential. There are no elastic 
flows in the system. Because of the fixed QoS 
demands (fixed bandwidth), the arrival of a new 
flow does not cause a departure rate change in other 
flows. Each flow in the system occupies a certain 
resource (bandwidth) that we denote as a server. If 
the resources are fully occupied every new flow is 
blocked.  The queuing model that fits into our 
assumptions is M/M/N/N [4]. At the output of the 
M/M/N/N system the bandwidth change is 
monitored by the link state update policy. The link 
state update policy decides on when to trigger 
update. The update value (a sample of the utilized 
bandwidth) is fed back to the “complex source 
node” represented by the change-point model. The 
feedback has a natural delay – flooding delay. Here, 
for simplicity, we assume that the flooding time is 
negligibly small. Upon an update, the change-point 
model calculates the new mean arrival rate. This 
new arrival rate loads the observed link. In this way 
we model the route flapping.  
 
 
 



4. Results 
 

The performance measures we use to compare 
different link state update policies are: (a) link flow 
blocking, (b) link state update error and (c) 
average time between updates. We choose the 
parameters for the link state update policies such 
that their performance in terms of the link flow 
blocking and the link state update error is on 
average alike. In this way, the estimated average 
time between successive updates can be compared 
for different update policies. 

Simulations were run until 50.000 flows were 
generated. The first 10.000 calls are considered as 
warm-up calls and omitted from the statistics. 
Triggering policies are simulated with the hold 
down time of the same range and step. In the case 
of a threshold based update policy, the threshold 
varies from 10% to 60% with the step 10%. For 
exponential classes, the base class is set equal to the 
requested bandwidth per call, while the f parameter 
varies from 1.1 (link capacity is divided into 28 
classes) to 2.0 (7 classes) with the step 0.1. Finally, 
the same policies were simulated with the moving 
average concept of the metric stabilization (instead 
of the hold down time), where the sample size 
varies from 20 to 200 with the step 20. Figure 1 to 
Figure 6 present the simulation results. 
 

 

 
Fig 1. Link blocking-TBT  

hold-down time (up), moving average(down) 

 

 
Fig 2. Update error – TBT  

hold-down time (up), moving average(down) 
 

 

 
Fig 3. Average time between updates –TBT 

hold-down time (up), moving average (down) 



 

 
Fig 4. Link flow blocking – CBT 

hold-down time(up), moving average(down) 

 

 
Fig 5. Link state update error –CBT  

hold-down time(up), moving average(down) 

 

 
Fig 6. Average time between updates –CBT 
hold-down time(up), moving average(down) 

 
Figures 1 and 2 show that the moving average 

concept of the metric stabilization performs better 
than the hold-down timer concept hence the 
blocking and the link state update error are smaller. 
The figures also show that neither blocking nor 
update error significantly increase with the increase 
in the threshold value.  

In Figure 3, for the same threshold based 
policies, the moving average concept significantly 
outperforms the hold-down timer. For the threshold 
value set to 60%, the average time between updates, 
for the moving average is 230 time units and for the 
hold-down timer 116. For the smaller blocking and 
update error (Figures 1 and 2), the moving average 
concept produces 48% less number of LSA 
messages (and thus less routing protocol and 
computational overhead).  

In Figure 4, the link flow blocking results for 
the hold-down time and moving average are 
comparable. The link flow blocking does not 
increase with the decrease in number of bandwidth 
classes (increase in f). 

In Figure 5, the link update error is less in the 
case of the moving average. Again, for the both, the 
moving average and the hold-down timer, there is 
no significant increase in the update error for the 
decreased number of bandwidth classes (from 28 to 



7). These results imply, that the optimal number, 
for exponential class based policies should be 7.  

Figure 6 shows that for 7 bandwidth classes, the 
moving average outperforms the hold-down timer. 
The average time between updates is 114 time 
units, for the moving average, compared to 104 
time units for the hold-down time concept. In the 
same time the link flow blocking is unaffected and 
the update error is decreased.  

The lowest possible protocol overhead and 
computational cost (the largest average time 
between updates) is achieved in the case of the 
exponential class based policy for f=2 (capacity is 
divided into 7 classes) and in the case of the 
threshold based policy for the threshold value of 
60%. For high loads, the classes are relatively small 
and the thresholds are easily exceeded. 
 
5. Conclusions  
 

In this paper, we have reviewed periodic and 
triggering link-state update policies aimed to 
provide consistent information on the network 
resources to QoS routing algorithm. We have 
chosen to monitor the link bandwidth utilization as 
the most important QoS metric for the link state 
updates. In order to limit the excessive number of 
possible updates we have considered the hold-down 
timer mechanism. Given that fixed hold-down timer 
cannot adapt to versatile flow arrival rates and may 
allow for unnecessary updates, we have further 
considered the moving average filtering of the 
bandwidth utilization as the mechanism to limit the 
number of updates. Both update limitation concepts 
have been evaluated by the simulation study. A 
topology independent, “local view approach” has 
been put forward to simulate the single link 
behaviour under the link state update policies and 
the conditions of high load. We emulated the 
network reaction (route flapping) to newly 
advertised link state by a so-called “change point 
model”.  

In the case of the threshold based update policy, 
the link flow blocking and the link-state update 
error are fairly stable with the increase in threshold 
level (from 10% to 60%). The “moving average” 
approach, for the threshold value 60%, is 
significantly better than the hold-down timer in 
terms of the average time between updates (number 
of LSA messages reduced by 48%). The moving 
average concept produces smaller update error and 
smaller blocking. 

In the case of exponential classes based update 
policy, the link flow blocking and the link-state 
update error are fairly stable with the decrease in 
number of classes (from 28 to 7). For the optimal 

number of classes (7) the moving average is better 
than the hold-down timer. The link blocking and 
the update error are slightly in favour of the moving 
average. 

Our main conclusion is that the moving average 
concept reduces excessive number of link state 
updates in more efficient way than the hold down 
timer concept proposed in [1,2,3].  
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