
Link State Update Policies for Quality of Service Routing

Bojan Lekovic, Piet Van Mieghem
B.Lekovic@its.tudelft.nl; P.VanMieghem@its.tudelft.nl

Delft University of Technology, Faculty of Information Technology and Systems

P.O. Box 5031, 2600GA Delft, The Netherlands

Abstract

Quality of service (QoS) routing provides
increased network utilization compared to the
classical best-effort routing. However, effective
QoS routing algorithms require frequent
distribution of the link state information, which
can impose a significant burden on the network
resources. In this paper we investigate the
triggering link state update policies with respect to
the performance measures: link blocking, update
error and average time between successive
updates. In order to limit the excessive number of
link state advertisement messages (LSA) we use
two concepts: hold-down timer and moving
average filtering. Using simulations, based on the
topology independent “local view” simulation
model, we compare the triggering link state update
policies under both concepts. Our results show
that the moving average outperforms the widely
accepted hold-down timer concept.

1. Introduction

Quality of service (QoS) routing provides

increased network utilization compared to the
classical best-effort routing. Furthermore, it fulfils
the multiple constraint demands of the
communication sessions. Effective QoS routing
algorithm requires frequent distribution of the link
state information in order to “refresh” the routing
tables with most up-to-date information. However,
this frequent distribution of the routing information
can cause significant burden on the network
resources. The mechanism used for efficient
generation and advertisement of the link state
update information (LSA) is called the link state
update policy. The link state update policy can be
periodic or trigger-based. In the case of the periodic
update policy, each node in the topology
periodically advertises information on its available
link resources. For the case of the trigger-based
policy each node monitors the utilized link
resources and triggers the LSA upon a “significant”
change. Although periodic updates introduce a
predictable overhead for exchanging link-state
information, triggered updates can offer more

accurate link-state information for the same average
rate of update messages.

The impact of the different link state update
policies on the QoS routing has attracted relatively
small research attention so far. A. Shaikh et al. [1]
investigated how the performance and overheads of
the QoS routing relate to the link-state update
policies. G. Apostolopoulos et al. [2] identified the
parameters that determined the QoS cost, namely
(a) policy for triggering updates (b) sensitivity of
this policy and (c) hold down timers that limit the
rate of updates. M. Peyravian and R. Onvural [3]
proposed the combined: triggered and periodic
update policy to substantially reduce the number of
link state updates in the P-NNI framework.
However, these studies do not consider other means
for limiting the excessive number of link state
updates (LSA) than the hold-down timer. The
concept of the hold-down timer does not allow for
the link state update policy to be adaptive with
respect to the changes of the flow arrival rate.

In our paper, we review threshold- and
exponential classes-based triggering link-state
update policies aimed to provide consistent
information on the network resources to the QoS
routing algorithm. We perform simulation study in
order to compare them in terms of the following
performance measures: (1) link state update error,
(2) average time between updates and (3) link
blocking probability. We further elaborate on
problems and propose a new effective technique for
limiting the number of LSA – the moving average
filtering. This new technique is adaptive to versatile
flow rates unlike the hold-down timer. It is based
on our observation that the link state trend (filtered
link state), rather than every instant link state
change, carries relevant routing information.

In our simulation study we show that for the
trigger-based link state update policies, proposed
moving average technique for limiting the number
of LSA is more efficient than the widely adopted
hold down timer.

The reminder of the paper is organized as
follows. In the section 2 we explain the link state
update policies and the metric stabilization
problem. Further, to limit the excessive LSA
triggering we propose the moving average filter

instead of the hold-down timer. The section 3
describes the evaluation environment and the
performance measures we use to evaluate and
compare the link state update policies. In the
section 4 we summarize our main results and finally
give conclusions in the section 5.

2. Link-State Update Policies

 Although QoS requirements may be
characterized by several dynamic parameters:
bandwidth, delay, delay-jitter, and loss, we see the
bandwidth as the primary link metric for defining of
the QoS. The initial deployments of QoS routing
are likely to focus only on bandwidth to reduce
algorithmic complexity. Therefore, we choose the
link bandwidth utilization as the metric to be
monitored in order to decide on link state update.
The policies used to send information on the
utilized bandwidth can be classified as: periodic
and trigger based. In the case of the periodic update
policy, the originating router periodically advertises
information on the available bandwidth. Trigger
based policies monitor the utilized bandwidth and
trigger LSA upon a “significant” change. Although
periodic updates introduce a predictable overhead
for exchanging link-state information, triggered
updates can offer more accurate link-state
information for the same average rate of update
messages. The triggering policies are classified [2]
into:
• Class based triggering policies (CBT). Link

bandwidth is divided into adjacent bandwidth
classes and an update is triggered when the
current link state value crosses a class
boundary. This policy is characterized by two
constants: B and f (f >1), which are used to
define unequal (exponentially distributed)
classes: (0,B); (B, (f+1)B); ((f+1)B,
(f2+f+1)B);… For f=1 we get equal classes.
With B we set the base class and with f, we
influence the number of classes. Very often a
large number of updates are generated due to
the fluctuation of the bandwidth consumption
around the class boundaries. In order to limit
the excessive number of unimportant updates,
the hold-down timer is used [1,2,3]. The hold-
down time is the minimal time spacing
between consecutive updates. The hold down
timer significantly reduces the number of LSA
messages.

• Threshold based triggering policies (TBT).
An update is triggered when the relative
difference between the current and the
previously advertised link bandwidth exceeds a
certain threshold, e.g. 40%. As the link

utilization approaches the link capacity, the
advertised values of the available bandwidth
are decreasing, thus triggering more frequent
updates. Again, excessive LSA messages can
be greatly reduced by introducing the hold-
down timer.

2.1. The Problem

The concept of the hold-down timer does not
allow for the link state update policy to be adaptive
with respect to the changes of the flow arrival rate.
The hold-down time is a fixed value set by a
network administrator and cannot accommodate
versatile flow arrival rates. For high arrival rates the
changes in utilization are more frequent and the
hold-down time is apparently large. Some
important changes of the bandwidth utilization
cannot be observed during this hold-down time. On
the other hand, if the mean arrival rate is small but
the flows are long lived and the utilization is still
high, the hold-down time will be too short, thus
allowing for unnecessary updates. It is difficult to
propose a hold-down time that would enable the
link state update policy to perform equally well in
conditions of versatile flow arrival rates. Finally,
sudden bandwidth “spikes” after the hold-down
time can be so rapid and so perishable, that the
triggering of the LSA could be unnecessary.

2.2. Moving average instead of Hold-down time

The above problem formulation suggests
monitoring the bandwidth trend, rather then every
instant change in bandwidth, in order to trigger the
LSA message. Smoothed bandwidth utilization
curve does not carry information on the
unimportant changes, which could cause excessive
LSAs, but contains valuable information on the
utilization trend. In order to accomplish smoothing
we “filter-out” the bandwidth utilization curve with
the moving average technique. A simple moving
average technique computes the mean of the
successive values of the bandwidth utilization taken
each time upon the arrival or the departure of the
flow. The size of an averaged set is called the
sample size (N). Each time a newly computed
average, based on N past values of real bandwidth
utilization, is compared to the previously advertised
value. The appropriate relative or absolute change
of the “moving” average is monitored to decide on
the LSA triggering. The moving average approach
is adaptive in nature. If the flow arrival rate is high
then the next moving average point will appear
sooner and the LSAs will be more frequent.
Conversely, the lower the flow arrival rate

(bandwidth change rate) the longer the period until
the next moving average point appears and hence,
the LSAs are less frequent. The hold-down time is
no longer needed.

3. Evaluation Environment

In order to evaluate the performance of the
presented link state update policies for both the
moving average and the hold-down time concept
we use simulations. We choose to simulate the
traffic behavior and the link state update policies of
one single link (the local view approach), rather
than of the whole network. In this way, the
simulation time is significantly reduced.

3.1. The Local View Approach

In an arbitrary network we isolate one node and
one of its links. We monitor the traffic behavior of
this link. We assume that a dynamic routing scheme
is deployed. All the traffic source nodes or
traversed nodes, that forward traffic to the isolated
link, can be logically aggregated into a so-called
complex traffic source node. They are the
“upstream” nodes of the observed link. The rest of
the topology is the collection of “downstream” and
idle nodes (nodes that do not influence the link
traffic). The complex source node generates
aggregated traffic. The mean arrival rate of the
traffic generated by the upstream nodes is affected
by the change of overall route preference in the
following way. The routing protocol advertises
periodically, or upon a significant change, the state
of the link (e.g. available bandwidth) throughout
the network. The link state information is used at
each node by the routing algorithm for calculating
the new routing tables. The packets or flows are
then forwarded according to these new routing
tables. As a consequence, the observed link may
remain part or be excluded from the shortest paths
that previously traversed this link. In our
simulations, we modeled the aggregated traffic of
the complex source node as a Poisson arrival with
the mean arrival rate λ.

The link state information sent back to the
network presents the feedback mechanism to
improve the network efficiency. After an update, if
the link is underutilized, some extra nodes will
route traffic towards this link, thus causing an
increase in the mean arrival rate λ of the aggregated
traffic. Conversely, if the link is over utilized, after
the link-state advertisement, fewer source nodes
will route traffic via the observed link thereby
decreasing the aggregated mean arrival rate. The
change in the aggregated mean arrival rate after

every update, is modeled by the change-point
model:

...... 112 →→→→→ +−− kkkk λλλλ
As an update occurs at the moment k, the mean
arrival rate of the aggregated traffic λk updates into
λk+1.

)(1 kk f λλ =+
To reflect the route flapping (oscillation of traffic
load) the function f is chosen in such a manner that
every next value of the aggregated mean arrival rate
is opposite of the previous. A high mean arrival rate
is superseded by a low one and vice versa but
within certain limits. The λmax corresponds to the
full amount of link utilization (link capacity). We
limit our observation to the high load area and
choose for f the linear function:

maxmax1)(1 λλλλ +−
−

=+ b
ab kk

Different levels of the total average link utilization
and the magnitude of traffic oscillations are
obtained by changing the slope coefficients: a and b
(a>b>0).

3.2. Simulation model

In our model we make the following
assumptions. Flows arriving to the system are
generated according to a Poisson arrival process.
There is no queuing of flows. All the flows in the
system are served simultaneously. The service time
distribution is exponential. There are no elastic
flows in the system. Because of the fixed QoS
demands (fixed bandwidth), the arrival of a new
flow does not cause a departure rate change in other
flows. Each flow in the system occupies a certain
resource (bandwidth) that we denote as a server. If
the resources are fully occupied every new flow is
blocked. The queuing model that fits into our
assumptions is M/M/N/N [4]. At the output of the
M/M/N/N system the bandwidth change is
monitored by the link state update policy. The link
state update policy decides on when to trigger
update. The update value (a sample of the utilized
bandwidth) is fed back to the “complex source
node” represented by the change-point model. The
feedback has a natural delay – flooding delay. Here,
for simplicity, we assume that the flooding time is
negligibly small. Upon an update, the change-point
model calculates the new mean arrival rate. This
new arrival rate loads the observed link. In this way
we model the route flapping.

4. Results

The performance measures we use to compare
different link state update policies are: (a) link flow
blocking, (b) link state update error and (c)
average time between updates. We choose the
parameters for the link state update policies such
that their performance in terms of the link flow
blocking and the link state update error is on
average alike. In this way, the estimated average
time between successive updates can be compared
for different update policies.

Simulations were run until 50.000 flows were
generated. The first 10.000 calls are considered as
warm-up calls and omitted from the statistics.
Triggering policies are simulated with the hold
down time of the same range and step. In the case
of a threshold based update policy, the threshold
varies from 10% to 60% with the step 10%. For
exponential classes, the base class is set equal to the
requested bandwidth per call, while the f parameter
varies from 1.1 (link capacity is divided into 28
classes) to 2.0 (7 classes) with the step 0.1. Finally,
the same policies were simulated with the moving
average concept of the metric stabilization (instead
of the hold down time), where the sample size
varies from 20 to 200 with the step 20. Figure 1 to
Figure 6 present the simulation results.

Fig 1. Link blocking-TBT

hold-down time (up), moving average(down)

Fig 2. Update error – TBT

hold-down time (up), moving average(down)

Fig 3. Average time between updates –TBT

hold-down time (up), moving average (down)

Fig 4. Link flow blocking – CBT

hold-down time(up), moving average(down)

Fig 5. Link state update error –CBT

hold-down time(up), moving average(down)

Fig 6. Average time between updates –CBT
hold-down time(up), moving average(down)

Figures 1 and 2 show that the moving average

concept of the metric stabilization performs better
than the hold-down timer concept hence the
blocking and the link state update error are smaller.
The figures also show that neither blocking nor
update error significantly increase with the increase
in the threshold value.

In Figure 3, for the same threshold based
policies, the moving average concept significantly
outperforms the hold-down timer. For the threshold
value set to 60%, the average time between updates,
for the moving average is 230 time units and for the
hold-down timer 116. For the smaller blocking and
update error (Figures 1 and 2), the moving average
concept produces 48% less number of LSA
messages (and thus less routing protocol and
computational overhead).

In Figure 4, the link flow blocking results for
the hold-down time and moving average are
comparable. The link flow blocking does not
increase with the decrease in number of bandwidth
classes (increase in f).

In Figure 5, the link update error is less in the
case of the moving average. Again, for the both, the
moving average and the hold-down timer, there is
no significant increase in the update error for the
decreased number of bandwidth classes (from 28 to

7). These results imply, that the optimal number,
for exponential class based policies should be 7.

Figure 6 shows that for 7 bandwidth classes, the
moving average outperforms the hold-down timer.
The average time between updates is 114 time
units, for the moving average, compared to 104
time units for the hold-down time concept. In the
same time the link flow blocking is unaffected and
the update error is decreased.

The lowest possible protocol overhead and
computational cost (the largest average time
between updates) is achieved in the case of the
exponential class based policy for f=2 (capacity is
divided into 7 classes) and in the case of the
threshold based policy for the threshold value of
60%. For high loads, the classes are relatively small
and the thresholds are easily exceeded.

5. Conclusions

In this paper, we have reviewed periodic and
triggering link-state update policies aimed to
provide consistent information on the network
resources to QoS routing algorithm. We have
chosen to monitor the link bandwidth utilization as
the most important QoS metric for the link state
updates. In order to limit the excessive number of
possible updates we have considered the hold-down
timer mechanism. Given that fixed hold-down timer
cannot adapt to versatile flow arrival rates and may
allow for unnecessary updates, we have further
considered the moving average filtering of the
bandwidth utilization as the mechanism to limit the
number of updates. Both update limitation concepts
have been evaluated by the simulation study. A
topology independent, “local view approach” has
been put forward to simulate the single link
behaviour under the link state update policies and
the conditions of high load. We emulated the
network reaction (route flapping) to newly
advertised link state by a so-called “change point
model”.

In the case of the threshold based update policy,
the link flow blocking and the link-state update
error are fairly stable with the increase in threshold
level (from 10% to 60%). The “moving average”
approach, for the threshold value 60%, is
significantly better than the hold-down timer in
terms of the average time between updates (number
of LSA messages reduced by 48%). The moving
average concept produces smaller update error and
smaller blocking.

In the case of exponential classes based update
policy, the link flow blocking and the link-state
update error are fairly stable with the decrease in
number of classes (from 28 to 7). For the optimal

number of classes (7) the moving average is better
than the hold-down timer. The link blocking and
the update error are slightly in favour of the moving
average.

Our main conclusion is that the moving average
concept reduces excessive number of link state
updates in more efficient way than the hold down
timer concept proposed in [1,2,3].

References:

[1] A. Shaikh, J. Rexford, and K. Shin, “Evaluating
the Impact of Stale Link State on Quality-of-
Service Routing”, IEEE/ACM Transactions on
Networking, Vol. 9, No. 2, April 2001.
[2] G. Apostolopoulos, R. Guerin, and S. Kamat,
“Quality of service routing: A performance
perspective”. In Proceedings of the ACM
SIGCOMM '98, pages 17--28, Vancouver, BC,
September 1998.
[3] M. Peyravian and R. Onvural, “Algorithm for
efficient generation of link-state updates in ATM
networks”, Computer Networks and ISDN Systems,
vol. 29, pp. 237--247, January 1997
[4] Mischa Schwartz, Telecommunication Networks
Protocols, Modeling and Analysis, Addison-Wesley
Publishing Co 1987.

