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Abstract 

 

The relationship between structural and functional brain networks is still highly 

debated. Most previous studies have used a single functional imaging modality to 

analyze this relationship. In the present work, we use multimodal data, from 

functional MRI, magnetoencephalography and diffusion tensor imaging, and assume 

that there exists a mapping between the connectivity matrices of the resting-state 

functional and structural networks. We investigate this mapping employing group-

averaged as well as individual data. We indeed find a significantly high goodness of 

fit level for this structure-function mapping. Our analysis suggests that a functional 

connection is shaped by all walks up to the diameter in the structural network in both 

modality cases. When analyzing the inverse mapping, from function to structure, 

longer walks in the functional network also seem to possess minor influence on the 

structural connection strengths. Even though similar overall properties for the 

structure-function mapping are found for different functional modalities, our results 

indicate that the structure-function relation is modality-dependent. 
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1) Introduction 

Applying network science has become a common practice in neuroscience to 

understand functional interactions in the healthy brain and to identify abnormalities in 

brain disorders (Stam, 2014). The collection of these functional connections is often 

referred to as the functional network and is facilitated by the underlying structural 

network, i.e. the set of physical connections between neuronal populations. At the 

same time, functional connections influence modulations of these physical 

connections by long-term potentiation, plasticity or neuromodulation. In recent years, 

there has been an increasing interest to understand the emergence of functional 

brain networks given the constraints of the underlying structural network (Deco et al., 

2012; Senden et al., 2014; Abdelnour et al., 2014; Honey et al., 2009). However, the 

mutual relationship between the structural and functional networks remains highly 

debated (Robinson, 2012; Robinson et al., 2014; Deco et al., 2014). 

Empirical studies have revealed an overlap between structural and (resting-

state) functional connections, i.e. the presence of both a structural and functional 

connection between two brain regions (van den Heuvel et al., 2009; Skudlarski et al., 

2008; Hermundstad et al., 2013). However, this overlap is imperfect as functional 

interactions between brain regions exist in absence of direct structural connections, 

and also indirect structural connections with the length of two links cannot fully 

account for these functional connections either (Honey et al., 2009). Moreover, the 

overlap between structural and functional connections also depends on the time 

scale considered, where functional connections estimated from larger time windows 

strongly overlap with the underlying structural connections, for smaller time windows 

there can be a structural-functional network discrepancy due to distributed delays 
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between neuronal populations that cause transient phase (de-)synchronization 

(Messé et al., 2014; Honey et al., 2007; Ton et al., 2014).  

On larger time scales, several properties of the underlying structural network 

have been shown to play an essential role in shaping the functional networks, such 

as the Euclidian distance between two brain regions (Alexander-Bloch et al., 2013). 

However, taking into account Euclidean distance alone is insufficient to explain the 

emergence of long-range functional connections (Vértes et al., 2012). Two recent 

studies showed that such long-range functional connections may be explained by the 

product of the degree of two nodes in the structural network, indicating the crucial 

role of structural hubs for explaining long-range functional connections (Tewarie et 

al., 2014; Stam et al., 2015). Moreover, Goñi and colleagues (Goñi et al., 2014) 

demonstrated that shortest paths in the structural network and perturbations from 

these paths are strong predictors for functional connections as these paths are 

favorable because of metabolic efficiency and fast communication.  

Given these dependencies between structural and functional networks, the 

challenge is to integrate these different interdependencies into a single framework, 

for which we may need a more abstract representation. For example, a significant 

overlap in the connectivity profile of structural and functional networks suggests that 

part of the functional network connectivity matrix is a linear mapping from its 

structural counterpart. In addition, functional connections can also be accounted for 

by several other higher order features of the structural network as outlined above, 

which refer to non-linear relationships (see (Tewarie et al., 2014) for an example of 

such non-linearity). Based on the presence of these linear and non-linear features of 

the relationship between structural and functional networks, we go one step further 

by assuming that there is a mathematical function that maps the adjacency matrix of 
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the structural network onto that of the (resting-state) functional network and vice 

versa (see Figure 1b and Eq. (1) below). If we further assume that our mathematical 

function is analytic (Whittaker et al., 1996; Titchmarsh, 1939), then the map between 

structural and functional network can be expressed by a weighted sum of the matrix 

powers as explained in Section 2.2. Our method consists of a data-driven approach, 

from which the successive coefficients of this matrix mapping are determined. The 

major advantage of our method is that an a-priori specific form of a function is not 

needed. Another implication of such a function is the possible existence of an 

inverse function, i.e. a mapping from functional networks back to structural networks. 

Most previous studies have found relationships between structural and 

functional networks using a single functional neuroimaging modality (Honey et al., 

2009; Damoiseaux and Greicius, 2009), often using functional MRI (fMRI). As the 

fMRI response is an indirect measure for neuronal activity and contains non-

neuronal signals, a structure-function dependency based on this modality could 

deviate from the same dependency derived from neuroimaging modalities that 

directly measure neuronal activity and connectivity. In contrast to fMRI, 

magnetoencephalography (MEG) measures neuronal activity and connectivity 

directly with excellent temporal resolution. However, given the increasing interest in 

multimodal imaging approaches there is a need to understand the modality 

dependency of the structure-function relationship in a single framework. A data-

driven approach in the form of a matrix function may be helpful when investigating 

the modality dependency of the structural-functional network relationship: different 

modality-dependent coefficients may point to different specific functions for each 

modality. The relevance of elucidating the modality dependency of a mathematical 

function can be extended to the clinical field where we could answer questions such 
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as: which modality would be the most sensitive for picking up functional network 

changes given disease-specific structural network damage? 

The aim of the present study is to analyze the structural-functional network 

relationship through a mathematical function in a multimodal framework. We use two 

datasets containing multimodal imaging data ranging from diffusion tensor imaging 

(DTI) data to MEG and fMRI data. We extend our analysis by also considering the 

relationship between structural and functional networks at the subject level in a third 

data set and finally discuss how that relationship can be interpreted 

neurobiologically. 

 

2) Materials and Methods 

2.1) Participants and Data Acquisition 

In total, we use three data sets, which all have been used in different previous 

studies. The first two data sets are group-averaged data sets, obtained from two 

different centers, but analyzed together in one mapping. 

i. A group-averaged structural imaging data set, i.e. a DTI network from 80 

healthy subjects in 78 cortical automated anatomical labeling (AAL) brain 

areas (Gong et al., 2009). 

ii. Two group-averaged data sets with functional imaging data, i.e. resting-state 

MEG and fMRI signals in the same 78 AAL cortical areas, one with 17 and 

another with 21 healthy subjects (Tewarie et al., 2014; Tewarie et al., 2015).   

iii. An individual data set from 11 healthy subjects structural and functional 

imaging data, i.e. with DTI, resting-state MEG and fMRI time-courses in 219 

brain areas (Douw et al., 2015). 
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For the group-averaged structural connectivity matrix, we use a literature-based 

structural network (data set (i)) (Gong et al., 2009). In every subject, cortical regions 

in the AAL atlas were considered to be connected if the end points of two white 

matter tracts were located in these regions (Gong et al., 2009). Then, a group-

averaged structural connectivity matrix was obtained by testing each possible 

connection for its significance using a non-parametric sign test.  

For the group-averaged functional imaging data set (data set (ii)), we use data 

obtained from our own imaging center. We employ the first data set with 17 healthy 

controls for our main analysis and the second data set from 21 healthy controls only 

for validation (Tewarie et al., 2014; Tewarie et al., 2015). The study was approved by 

the institutional ethics review board of the VUmc and all subjects gave written 

informed consent prior to participation. Both fMRI and MEG data sets underwent to 

some extent different pipelines (Tewarie et al., 2014; Tewarie et al., 2015) and are 

obtained from two different MEG scanners (CTF and Elekta). Detailed information 

about data acquisition and post-processing can be found in the previous papers. In 

short, for both MEG and fMRI cortical networks were constructed using the same 

cortical AAL regions as for the structural network consisting of 78 cortical regions 

(Gong et al., 2009). The Pearson correlation coefficient was computed between time 

signals to construct functional networks for fMRI for each subject (the absolute value 

was taken to avoid negative matrix elements). For MEG, a beamformer approach 

was used to reconstruct neuronal activity in AAL regions. Subsequently, the phase 

lag index (PLI), a measure for phase-synchronization, was computed between time 

series to reconstruct a functional connectivity matrix for each subject in the alpha2 

frequency band (10-13 Hz) (Stam et al., 2007). The present study can be considered 

as a continuation from previous work where we found a strong relationship between 
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structural and functional networks in the alpha2 band and therefore we limited our 

analysis to this frequency band, although the fit could be generalized (Tewarie et al., 

2014). Similar to the structural connectivity matrix, we averaged functional 

connectivity matrices across subjects for fMRI and MEG separately to obtain one 

group-averaged functional connectivity matrix for each modality. The averaging over 

multiple subjects was pursued in the attempt of reducing noise. 

 For the individual data set (data set (iii)), eleven healthy participants were 

included, exclusion criteria being psychiatric or neurological disease and use of 

medication influencing the central nervous system. This study was approved by 

MGHs institutional review board, and was performed in accordance with the 

Declaration of Helsinki. All participants gave written informed consent before 

participation. Pre-processing methodology of the DTI and fMRI data has been 

described in detail before (Douw et al., 2015). In short, a surface-based atlas 

approach was used for connectivity analysis of the fMRI and DTI data, using a 

parcellation scheme with 219 cortical surface parcels (Daducci et al., 2012; Gerhard 

et al., 2011). In addition, for every entry of the fMRI-based adjacency matrix the 

absolute value was taken to avoid negative matrix elements. MEG eyes-open 

resting-state data were collected in a magnetically shielded room with a 306-channel 

whole-head system (Elekta-Neuromag, Helsinki, Finland) and a sampling rate at 

1037 Hz. Vertical and horizontal electro-oculograms were acquired simultaneously 

for off-line eye-movement artifact rejection. Head positions relative to the MEG 

sensors were recorded from four head-position indicator coils attached to the scalp. 

Landmark points of the head were digitized using a 3-D digitizer (Polhemus 

FASTRAK). MEG data underwent a number of pre-processing steps: (1) bad 

channel and bad epoch rejection, (2) eye-movement artifact removal via Signal 
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Space Projection (SSP), (3) downsampling with a decimate factor of 8 (to reduce 

computational expense). To compute the physical forward solution (lead fields), a 

single-layer boundary element method was applied to model the brain volume 

conduction, following an established procedure (Hämäläinen and Sarvas, 1987). The 

lead field of freely-oriented dipoles was then evaluated at each location. In solving 

the inverse problem, current density at each source location was approximated by a 

minimum 2-norm estimate in the same six frequency bands as was used for the 

second dataset (Hämäläinen and Ilmoniemi, 1994), with noise covariance computed 

from empty-room recordings on the same day (also band-pass filtered). For each 

subject, the cortical surface defined by the boundary between the gray and the white 

matter was reconstructed using FreeSurfer (Fischl et al., 1999), after which time 

series from the abovementioned 219 cortical surface parcels were reconstructed. 

The PLI was used as a connectivity measure on these time series (Stam et al., 

2007). An average connectivity matrix per participant was calculated over all epochs. 

 

2.2) Mathematical background 

We will refer to matrix A as the binary adjacency matrix of the structural network for 

the group-averaged data (data set (i)) and to matrix W as one of the possible 

representations of the functional networks, WMEG for MEG functional networks and 

WfMRI for fMRI functional networks. Both A and W are NxN symmetric matrices, 

where N equals the number of cortical regions (N=78 for data set (i) and (ii); N=219 

for data set (iii)). For both group-averaged and individual data, the matrix W has real 

elements wij between 0 and 1. In the case of the individual data, the structural 

network is described by a weighted adjacency matrix V with real elements between 0 

and 1. 



   10 

As mentioned before, we assume that there exists a function f such that  

W = f(A)       (1) 

or W = f(V) in the case of a weighted structural connectivity matrix V (see also Figure 

1). Under quite mild conditions (Markushevich, 1985), the inverse f -1 of the function f 

exists such that 

A = f -1(W) .       (2) 

If f(z) is a function of the complex number z and analytic in a disk with radius R 

around z0, then f(z) possesses a Taylor series in the complex plane ℂ that converges 

for all points z that lie in a disk with radius R around the point �� ∈ ℂ, 

���� = ∑ �
������ − ���
�
�    with �
���� = �
!
������
��� |��� ,	          (3) 

where |z-z0|<R and R is called the radius of convergence (Whittaker et al., 1996; 

Titchmarsh, 1939). It can be shown (Van Mieghem, 2011; Higham, 2008) that, if f(z) 

is analytic around z0 and, hence, possesses a Taylor series (3), then for all matrices 

A, the matrix function f(A) also satisfies this Taylor series, provided each eigenvalue 

λ of A obeys | λ - z0 | < R. Caley-Hamilton's famous theorem (Van Mieghem, 2011) 

states that any square matrix A satisfies its own characteristic polynomial, which 

implies that we can write �� = �������, where ����� is a polynomial of degree n in z. 

Iteratively using the Caley-Hamilton theorem to the powers of � ≥ � in Eq. (1), 

���� =  �
������ − ��!�
 +
���


�
 �
������ − ��!�

�


�
 

shows that ∑ �
������ − ��!�
�
�  can be written as a polynomial of order at most N-1 

in A. In summary, any analytic function f, defined by (3), of a matrix A is a polynomial 

in A of degree at most N-1 (N is the number of nodes, here cortical regions, in the 

network), 
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���� =  #
[�]�

���


�
, 

(4) 

where ck[f] are coefficients depending on the function f (provided each eigenvalue λ 

of A lies within the disk, i.e. obeys | λ - z0 | < R). Because all the analyzed matrices 

have only zeros on the diagonal, their trace is 0. Since the trace equals the sum of 

the eigenvalues of a matrix (Van Mieghem, 2011), the average of the eigenvalues of 

the empirical matrices here is zero, which suggests us to choose z0 = 0.  

 

2.3) Mathematical Methodology 

The first term #�[�] ∙ ! in (4), which is the product of the constant coefficient c0[f] and 

the identity matrix I, provides an offset to adjust the diagonal elements of our fitted 

matrix. In order to obtain a better goodness of fit, we introduce an offset also for all 

non-diagonal elements of our matrix. We define this offset as the error matrix E = c * 

J, where J = u *uT is the all-one-matrix, # ∈ ℝ and u is the all-one vector, u= (1, …, 

1)T. The constant error matrix E can be justified as a first approximation of the part 

that we do not know yet about the mapping between the structural and functional 

brain network. Thus, our fitting function is defined as 

��(���� =  #
[�]�
 + )
(


�
, 

(5) 

where K ≤ N-1 is the maximal fitted exponent (N is the dimension of matrix A). We 

use the non-linear regression algorithm in MATLAB (using the routine nlinfit.m 

version R2015a) to estimate the coefficients in (5) by iterative least-squares 

estimation (for details see SI-H).  
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Denoting *+ := f(K)(A), we evaluate the goodness of fit of our mappings using 

the Frobenius norm (Van Mieghem, 2014, p. 549). In particular, we compute the sum 

of squared errors (SSE), slightly modified as 

,,) ≔	  �./0 − .1/0�2,
/

0�

�

/�
 

(6) 

where N=78 regions in the case of the group-averaged data and N=219 in the case 

of the individual data. Here, we only sum the elements of the lower triangular and the 

diagonal, because all our matrices are symmetric. Since the sum of squared errors is 

proportional to the number of fitted elements and to compare the different data sets 

with each other, we introduce a normalized version of SSE where we divide SSE by 

the degrees of freedom, which is in our case the number of fitted elements minus 

one 

,,)�345 ≔	
∑ ∑ 6./0 − .1/072/0��/�

8�93: 	, 

(7) 

where dftop=N*(N-1)/2+N-1, N number of regions. Similarly, we can define the 

goodness of fit measure from (7) for the function f -1: W → A by interchanging W and 

A in the description above. When we map all entries of one matrix onto the entries of 

another matrix, we implement our matrix mapping in the so-called topological domain 

(at the level of the whole adjacency matrix). The same mapping can also be 

analyzed in the spectral domain, i.e. at the level of the eigenvalues of the matrices 

(see SI-A.3).  

 

3) Results 
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Mapping structural networks to functional networks 

Firstly, we estimated the coefficients in Eq. (5) for the mapping from structural 

networks to functional networks at the group level (see SI Table 2 for K = 6). For 

both modalities, we can observe that the SSEnorm becomes lower, i.e. the fit 

becomes better, for increasing number of terms (Figure 2). Similarly, with an 

increasing number of fitted coefficients in Eq. (5), the patterns of the fitted functional 

connectivity matrices resemble better the empirical fMRI and MEG connectivity 

matrices (Figure 3, for a complete list of the ROIs see SI B.1). However, for the 

group-averaged data, there seems to be a limit for the number of terms, since 

including terms of 6th order and higher did not significantly improve the estimation 

anymore for both MEG and fMRI under the 5% significance level. For these group-

averaged networks, the best fit was reached for the mapping f : A → WMEG. We 

obtained significantly different values of the estimated coefficients for the two 

different modalities under the 5% significance level (see SI Figure 21, 95% 

confidence intervals did not overlap), indicating a modality-dependent mapping. For 

the mapping f: A → WfMRI, estimated coefficient values showed a clear decrease 

when going from lower to higher order terms, indicating that lower order terms in the 

expansion (5) contribute more to the estimation of the fMRI network (SI Figure 21). 

For the mapping f: A → WMEG, this steep decline in coefficients for higher order terms 

was not observed (see SI Figure 21). The SSEnorm for the data set of individual 

healthy controls was slightly higher (i.e. worse) than for the group-averaged matrices 

(Figure 4). Similar to the group level results, the mapping from structural to MEG 

networks provided better fits than from structural to fMRI networks also at the 

individual level. 
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We repeated the same analysis where either the structural or functional 

connectivity matrices were substituted by a reshuffled version of the empirical matrix 

(for details see SI-G). The results of this analysis are also displayed in Figure 2, 

showing a higher SSEnorm for all reshuffled cases compared to the original matrices, 

that is, the empirical results differed significantly (p < .001) from the reshuffled 

results. In addition, we observe that the decline in SSEnorm was in most cases for the 

reshuffled matrices rather narrow in comparison with the empirical matrices (Figure 

2). Thus, the observed relationship between structure and function can hardly be 

reproduced by any reshuffled versions of the matrices. For individual networks, the 

average performance of the reshuffled matrices was also worse than the empirical 

original results (Figure 4). We tested the empirical results versus their reshuffles for 

significant difference with a Mann-Whitney-Wilcoxon (MWW) test and displayed the 

p-values in Table 1. From this test results, we can conclude that the mapping f : V → 

WfMRI was able to outperform its random reshuffle for  all subjects (see Table 1). But 

the goodness of fit for the mapping f : V → WMEG was for 5 out of 11 subjects not 

better than the random reshuffles, indicating that the relation between the two 

matrices is less unique than for the anatomical matrix and the fMRI matrices. In 

order to cross-validate our mapping, we ran the same analysis on a second group-

averaged data set (with similar processing pipeline) and found overlapping 

confidence intervals for the estimated coefficient values (Figures 5 and 6). 

 

Mapping functional networks to structural networks 

By reversing the role of A and W and following the same approach as before, we 

obtained goodness of fit values for the inverse mapping. More specifically, for the 

group-averaged data, we acquired better fits when starting from WfMRI than from 
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WMEG (see Figures 7 and 8). Similar to the mapping from structural to functional 

networks, the estimated coefficients were significantly different under the 5% 

significance level for the two modalities for the group-averaged data pointing towards 

a modality-dependent mapping (see SI Figure 22, 95% confidence intervals did not 

overlap). An overview of the estimated coefficients for this data set is given in SI 

Table 2. Furthermore, similar to the mapping f, no significant improvement of the 

goodness of fit level was found by including terms of a higher order than 5 for f -1: 

WMEG → A. Even including W5
fMRI in the mapping f -1: WfMRI → A hardly improved the 

fit (no significant improvement under the 5% significance level). Applying the same 

approach for the individual data, we were able to reach a lower overall error, thus a 

better fit, for f -1 than for f and the differences in modalities with respect to the 

residuals were very small for f -1 (see Figure 9). 

To have a benchmark for the overall residuals, we again repeated the same 

analysis with reshuffled matrices. Similar to f, the function f -1 outperformed the 

random reshuffles for group-averaged networks (see Figure 7, p-value of 0% for 

MWW-test). On the subject level, the function f -1 obtained significantly better results 

for the empirical matrices than their random reshuffles for most of the individuals 

under the 5% significance level (two outliers for the p-values of the MWW-test for f-1: 

WfMRI → A, see Table 1 and Figure 9). Again, the same analysis using the second 

group-averaged data set for MEG revealed only for the estimated coefficients c1[f] 

and c2[f] from (5) significant differences between the first and the second data set 

(for K = 5, Figures 10 and 11). For fMRI, a significant difference could only be 

determined for c1[f] but not for the other estimated coefficients from (5), which again 

cross-validates our mapping between different data sets. 
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Moreover, the whole analysis was repeated multiple times to check for the 

stability of the estimated coefficients, which resulted in exactly the same coefficients 

every time, underlining the robustness of our results. We also analyzed in more 

detail which connections were well predicted by our approach and which were 

estimated less accurately (see SI Figures 27-34). A corresponding analysis in the 

spectral domain (see SI-B.2 for the results) illustrated that the estimated coefficient 

values were similar to those in the topology domain for the function f but not for f -1 

(see SI Figures 17-20). The dissimilarities between the spectral and topology domain 

are most probably due to eigenvector perturbations between the different analyzed 

empirical matrices. These eigenvector perturbations can probably be traced back to 

noisy measurements (see SI-F).  

 

4) Discussion 

In this study, we have analyzed the mutual dependency of structural and (resting-

state) functional networks in a multimodal framework by assuming that there exists a 

mathematical function that allows for a mapping between the two networks. This 

function was then analyzed without assuming a priori any specifics and by estimating 

the coefficients for the mappings in both directions (i.e. structural to functional and 

functional to structural networks). Our analysis convincingly implicated that our 

assumption of a mapping between the two networks was justified because we 

reached overall good fits outperforming random reshuffles and resulting in similar 

matrix patterns. However, our results also indicated that the mapping was modality-

dependent as the coefficients for mappings with MEG- or fMRI-based networks 

significantly differed. 
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The existence of such a mathematical function points towards the fact that the 

functional connectivity of the brain can be described by a combination of the 

underlying structural connections. Because of the stability of the estimated 

coefficients and their cross-validation across different data sets, such a mathematical 

function could potentially be used to predict structure from function or vice versa in 

future studies. Also, once we can use this mathematical framework to predict 

'healthy' functional connectivity, we can compare the matrix to the actual measured 

functional network of the patient and identify possible malicious connections 

indicating disease. 

 

4.1) Neurobiological interpretation 

If we consider the case of a binary structural adjacency matrix, then the matrix 

element (Ak)ij equals the number of walks of length k between node i and node j. 

Each term ck[f]A
k can be considered as the contribution of walks with hopcount k to 

the functional network (see SI Figure 23). Here, hopcount is defined as the number 

of intermediate links between two nodes in a walk (length of the walk). Our approach 

confirms the ideas postulated by Robinson and co-workers that a functional 

connection can be regarded as a sum of all possible walks between two regions 

(Robinson, 2012; Robinson et al., 2014). Additionally, our approach returns the 

coefficients ck[f], which can be interpreted as the influence of all walks with hopcount 

k (see SI Table 2 and Figure 23). In contrast to a path, a walk can traverse the same 

node more than once. Potential loops in walks are also in line with the belief that re-

entry loops can act as a resonating system to enhance a signal that needs to be 

spread over a long distance (Goñi et al., 2014). 
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In contrast to most previous studies, we followed a multimodal approach 

analyzing the mapping for MEG and fMRI data. As opposed to studies that assumed 

a specific function beforehand, we followed a data-driven approach by fitting 

coefficients of the general expression (5). More precisely, fMRI networks seemed to 

be shaped by walks of lower hopcount in the structural network since the coefficients 

were higher for these configurations (see SI Figure 21). In contrast, for MEG 

networks all walks from the underlying structural network up to hopcount 5 appeared 

to contribute more or less equally to the resulting fitted functional network matrix (see 

SI Figure 21). Overall, we found that estimations from structural networks were more 

accurate when predicting MEG networks on both individual and group level than 

when predicting fMRI networks. However, when the functional network was used to 

predict the structural one, we saw only small differences at the individual level 

between the modalities but at the group level the fitting using fMRI matrices 

performed better. These observations together with the significantly different 

coefficients for MEG and fMRI confirm the modality dependency of the mapping. If ρ 

denotes the diameter of the network, defined as the hopcount of the longest shortest 

path in a graph (Van Mieghem, 2011), our analysis for both fMRI and MEG suggests 

that the diameter of the unweighted structural network (ρ = 6) is directly related to the 

number of terms K = 5 in (5) that are sufficient for the best fit of the mapping from 

structural to functional networks. Hence, a functional connection between two 

regions seems only to be shaped by walks in the structural network that are shorter 

than the diameter of this structural network. The important role of the diameter in this 

fitting procedure can also be mathematically justified (see also SI-A.2). 

Besides the possibility of predicting the functional network using the structural 

network, our analysis also has practical implications on how communication 
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processes shape brain activity. Bullmore and Sporns proposed the hypothesis that 

the brain is optimized for efficiency and robustness (Bullmore and Sporns, 2012). 

Our findings seem to be in line with this idea since the brain seems to use not only 

(structural) shortest paths (most efficient from a network perspective) for 

communication but is also transmitting information through less efficient paths or 

walks. Thus, there seems to be some kind of degeneracy in the brain (Price and 

Friston, 2002). From a network science perspective, spreading information not only 

through the shortest path makes the (healthy) brain function more robust against link 

breakage. However, there seems to be an upper bound for the length of the paths 

that the brain uses for communication, which corresponds to the diameter of the 

structural brain network. Walks that are longer than the diameter are highly inefficient 

for communication. The diameter therefore seems to symbolize the trade-off 

between efficiency and robustness (Bullmore and Sporns, 2012). It is this 

degeneracy and robustness that could keep two regions functionally connected 

when the direct structural connection is damaged in disease. In multiple sclerosis, 

the structural network gets damaged due to lesions and diffused white matter 

damage. With this theory we could predict which detours are likely to be taken for 

functional connections in order to uphold (sub)-optimal network efficiency. Thus, 

based on the damaged structural network we could be able to make predictions on 

how this damaged structural network might map onto a functional network. These 

practical implications seem to agree with several studies that have shown that the 

averaged path length is higher in diseases than in the healthy brain (Stam, 2014). 

Our mathematical approach incorporates previous models on the relationship 

between structural and functional networks into one single model. For example, a 

previous study found that the shortest paths and detours along these paths in the 
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structural network were the strongest predictors for functional connections (Goñi et 

al., 2014). This result agrees with our finding of the structural-functional network 

mapping being dependent on the combination of walks with small hopcounts 

(corresponding to the shortest paths in the network) and detours from these shortest 

paths. Also the suggestion that network diffusion has the ability to predict functional 

connections (Abdelnour et al., 2014) is in line with our work. Network diffusion 

indicates that information is not merely transmitted through the shortest paths, but 

also through less efficient paths. Furthermore, our mathematical function also 

includes the predictive value of common neighbors for functional connections (Vértes 

et al., 2012). The term c2[f]A
2 in (5) corresponds to the weighted number of walks 

between any pair of nodes with hopcount 2, i.e. walks from any node i to a node j via 

a common neighbor. In a previous study, Tewarie and coworkers (Tewarie et al., 

2014) demonstrated that the degree product between nodes in the structural network 

together with the Euclidean distance has the ability to predict the functional 

connections between these nodes. We observed here that our approach with the 

sum of structural matrices Ak in (5) is correlated not only with the degree product (SI 

Figure 24) but also with the complete previous model (including Euclidean distance, 

SI Figure 25). 

Predicting the structural network from the functional network has received 

relatively little attention (Robinson et al., 2014; Abdelnour et al., 2014; Deco et al., 

2014; Robinson, 2012). We assumed that the structural network is a weighted sum 

of powers of the functional network matrix W. However, unlike the structure-to-

function mapping f, the interpretation of this mathematical function is less 

straightforward: If we define the weight of a walk as the product of all weights along 

this walk, then the matrix entry (Wk)ij represents the summed weights of all possible 
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walks with hopcount k between node i and node j. Similar to the function f, we find 

for f -1 that higher powers of W do not contribute substantially to the goodness of fit 

of our mapping. In contrast to the powers of a binary matrix, Wk does not only 

contain the number of walks with hopcount k but also incorporates information about 

their weight structure. Still, we can conclude that longer walks in the functional 

network seem to influence the structural brain network less. Practically, this result 

not only helps us to reconstruct the structural connections when we have only the 

functional connectivity matrices, but it also indicates that a direct structural 

connection between two brain regions seems to be influenced not only by their direct 

functional connectivity but also by the (functional) communication within a small 

hopcount neighborhood of those two regions. 

Using an additional data set of individual healthy controls (data set (iii)), we 

found that our mapping can also be generalized to the individual level. For the 

individual mappings, we also found that nearly all mappings were able to outperform 

their reshuffled benchmark except for some outliers (see Table 1). Furthermore, we 

compared the results of the group-averaged data and the individual data (each of 

these containing data from multiple modalities). In the case of the mapping from 

structural to functional networks, the performance when using individual fits was 

similar to that obtained when using the group-averaged matrices (see Figures 2 and 

4). However, for the inverse mapping, the individual mappings provided a much 

better fit than the group-averaged mappings. These results could potentially be 

explained by the following factors: (1) there exists an even stronger relationship 

between function and structure at the individual level, (2) the use of weighted 

structural connectivity matrices (instead of the binary group-averaged structural 

connectivity matrix), which are more representative of the underlying fiber bundle 
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structure or (3) the fact that the structural and functional information were gathered 

from the same group for data set (ii) (in contrast, the group-averaged structural and 

functional connectivity matrices were based on two different sets of healthy controls).  

 

4.2) Technical implications 

Our approach may provide important information about the DTI-obtained structural 

network that is generally missed due to methodological issues with crossing versus 

kissing fibers which usually affect inter-hemispheric connections. Given the 

functional networks, a mapping to the structural network could also allow to 

distinguish between genuine and false positive connections, which are inherently 

present in DTI data (Thomas et al., 2014). For example, in the structural networks 

estimated from MEG and fMRI networks we observed more homologous inter-

hemispheric connections than in the actual empirical structural network (see the off-

diagonal in SI Figure 14). In addition, for MEG functional connectivity metrics, there 

are well known methodological issues with volume conduction, signal leakage and 

field spread. By using our approach and trying out different functional connectivity 

metrics, one could aim to find the common properties of these mappings, i.e. those 

that are invariant of the functional metric that was used. 

 

4.3) Methodological considerations 

Firstly, we investigated the relationship between the structural network and static 

patterns of (resting-state) functional connectivity, as functional connectivity was 

estimated over epochs of several seconds. Therefore, our approach does not 

consider the dynamical aspects of functional connectivity. It is well known that 

functional networks obtained from smaller time windows correspond less to the 
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structural network (Messé et al., 2014; Honey et al., 2007; Ton et al., 2014) and 

therefore our approach could be less applicable to these smaller time scales.  

Secondly, the mapping employed in this study can certainly be influenced by 

the choice of the parcellation of brain regions. However, as long as the ratio between 

genuine (functional or structural) connections and noise in the matrices remains 

similar between parcellation atlases, we do not expect it to have a significant impact 

on the goodness of fit of our mapping. Despite the well-known limitations of the AAL 

atlas, it still provides a commonly used framework in neuroimaging studies. By using 

it, the results from our study are directly relevant for this existing body of work. We 

also provided a suggestion of how to overcome the dimension differences of the 

matrices of different parcellations mathematically in SI-I.  

Thirdly, our mapping can be influenced by noise in the matrices, such as the 

presence of false positives in the structural connectivity matrix. However, by 

randomly adding some connections on top of the existing connections to the 

structural network and redoing the analysis, we observed that the fluctuation in 

goodness of fit was relatively small (see SI Figure 26).  

Fourthly, we have chosen the alpha2 band because of high SNR for this 

frequency band. The mapping between structure and function may be different in 

terms of coefficients for the other frequency bands because we face there to some 

extent a different structure in the matrices. To explore the mapping for different 

frequency bands is a goal for future studies. Since the PLI probably underestimates 

the connectivity strengths (Stam et al., 2007), future research should apply our 

methods on other connectivity measures as well which will probably lead to different 

mappings in terms of different coefficients. Previous studies have used the amplitude 

envelope correlation to study MEG/fMRI similarity (Brookes et al., 2011). This metric 
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may be used in future studies to analyze structural versus functional network 

mappings but this is beyond the scope of the present study. 

 

5) Conclusion 

In the present study, we have demonstrated that, irrespective of the functional 

imaging modality, the relationship between structural and functional networks can be 

described by a mapping. Such a mathematical function can predict resting-state 

functional networks from the structural network and vice-versa. This mathematical 

function can be described by a weighted sum of matrix powers which represent in 

the binary case the number of walks up to a certain hopcount in the network. Thus, 

according to our analysis, a functional connection seems to be shaped by shorter 

walks up to the diameter in the underlying structural network. This result provides a 

general framework that incorporates previously published models on the relationship 

between structural and (stationary) functional networks. Also when analyzing the 

mapping from functional to structural networks, longer walks in the functional brain 

network appear not to have a big influence on the structural connections. We found 

different coefficients for MEG and fMRI for our mapping, which point towards a 

modality dependency for the structure-function relationship. Furthermore, this 

mathematical function could help to reduce noise and artifacts for the empirical 

estimation of structural and functional networks. We were also able to extend this 

mapping relationship to the subject level. For future work, differences in individual 

mappings between patients and healthy controls may provide insights in the 

disrupted relationship between the structural and functional brain networks in various 

diseases. 
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Figures 

 

Figure 1: (a) Visualization of the structural and functional brain network (for fMRI 

and MEG) for the group-averaged data set, the colors of the different regions 

represent here their node strength (i.e. the sum of their surrounding link weights). (b) 

Visualization of the mapping between their adjacency matrices. 
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Figure 2: Visualization of the fitted matrices for different maximal fitted exponents K 

(abbreviation: maxexp) for the function f : A  → WfMRI and f : A → WMEG vs. the 

empirical matrices for the group-averaged data set.  
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Figure 3: SSEnorm for the group-averaged data set for different maximally fitted 

exponents K displayed together with the results of the reshuffled matrices. For each 

mapping we ran the same analysis with 100 reshuffled versions of the matrix A and 

with 100 reshuffled versions of matrix W. 
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Figure 4: SSEnorm for the individual data set for different maximally fitted exponents 

K (after averaging over all 11 individual SSEnorm results) displayed together with the 

averaged result of the reshuffled matrices. For each mapping we ran the same 

analysis with 100 reshuffled versions of the matrix V and with 100 reshuffled 

versions of matrix W. 
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Figure 5: Estimated coefficients for the mapping f : A  → WMEG for K=5 together with 

their 95% confidence interval for the first group-averaged data set and a second 

group-averaged data set. 
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Figure 6: Estimated coefficients for the mapping f : A  → WfMRI for K=5 together with 

their 95% confidence interval for the first group-averaged data set and a second 

group-averaged data set. 
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Figure 7: Visualization of the fitted matrices for different maximal fitted exponents K 

(abbreviation: maxexp) for the function f -1 : WfMRI → A and f -1 : WMEG → A vs. the 

empirical matrices for the group-averaged data set.  
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Figure 8: SSEnorm for the group-averaged data set for different maximally fitted 

exponents K displayed together with the results of the reshuffled matrices. For each 

mapping we ran the same analysis with 100 reshuffled versions of the matrix A and 

with 100 reshuffled versions of matrix W. 
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Figure 9:  SSEnorm for the individual data set for different maximally fitted exponents 

K (after averaging over all 11 individual SSEnorm results) displayed together with the 

averaged result of the reshuffled matrices. For each mapping we ran the same 

analysis with 100 reshuffled versions of the matrix V and with 100 reshuffled 

versions of matrix W. 
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Figure 10: Estimated coefficients for the mapping f -1 : WMEG → A for K=5 together 

with their 95% confidence interval for the first group-averaged data set and a second 

group-averaged data set. 
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Figure 11: Estimated coefficients for the mapping f -1 : WfMRI → A for K=5 together 

with their 95% confidence interval for the first group-averaged data set and a second 

group-averaged data set. 
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Table 1: p-values for the comparison between SSEnorm for the empirical and 

reshuffled matrices. 

Mapping p1 p2 p3 p4 p5 p6 

f -1 : WfMRI  → V .887 <.001* <.001* <.001* .002* .003* 

f : V → WfMRI .001* <.001* <.001* <.001* .011* <.001* 

f -1 : WMEG  → V .001* <.001* <.001* <.001* <.001* <.001* 

f : V → WMEG .339 <.001* .018* <.001* <.001* .827 

 p7 p8 p9 p10 p11  

f -1 : WfMRI  → V <.001* .390 <.001* <.001* <.001*  

f : V → WfMRI <.001* <.001* <.001* <.001* <.001*  

f -1 : WMEG  → V <.001* <.001* .001* <.001* .002*  

f : V → WMEG <.001* .975 .815 <.001* .130  

 

Table 1: p-values for the comparison between SSEnorm for the empirical and 

reshuffled matrices. The matrix V denotes the structural network matrices for the 

individual data and the different columns are for the different 11 analyzed persons 

(p1 till p11). Note that in most cases a significantly better goodness-of-fit was 

obtained for the empirical matrices than for the reshuffled matrices (p<.05, indicated 

with *). 
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A Theory

We provide here some mathematical background of our method.

A.1 Matrix functions

If f (z) is a function of the complex number z and analytic in a disk with radius R around z0, then it

can be shown (see Section 2.2) that for all matrices A, the matrix function f(A) can be expressed as

a polynomial of degree at most N − 1,

f (A) =
N−1∑

k=0

ck [f ]A
k

where the coefficients ck [f ] can be specified as

ck [f ] =
1

k!

N∑

m=1

f (λm)∏n
j=1;j 6=m (λm − λj)

dk

dxk

N∏

j=1;j 6=m

(x− λj)

∣∣∣∣∣∣
x=0

Only if f is a polynomial of degree m at most N − 1, we find, for all 0 ≤ k ≤ N − 1, that

fk (0) = ck [f ] ,

where fk(0) is the k-th coefficient of the Taylor series of f for the development point z0 = 0.

A.2 Role of the diameter

An explanation for the importance of the diameter could be as follows: The matrix powers I, A, A2,

A3,... are all linearly independent of each other up to Aρ (Van Mieghem, 2011). For higher powers,

we cannot be sure of their dependency. Our analysis shows that using higher powers of the structural

connectivity matrix than its diameter (ρ = 6) does not improve the goodness of fit of our estimation.

Furthermore, in the binary matrix A, the sum
∑m

k=1A
k can have zero entries for all m < ρ. Reducing

the number of zero entries can also be a reason why the goodness of fit increases gradually until adding

Aρ and then converges.

A.3 Analysis in the spectral domain

If a mapping postulated in the previous section is valid, then such a mapping should also hold in

the spectral domain (Van Mieghem, 2011). Provided A is symmetric such that A = XΛXT , where

the matrix X contains the eigenvectors of A in the columns and Λ = diag(λk), 1 ≤ k ≤ N , with

λ1 ≥ λ2 ≥ . . . ≥ λN the real eigenvalues of A, then there exists an alternative to compute f (A).

Since eigenvectors are orthogonal, the matrix X is an orthogonal matrix satisfying XTX = I and

XXT = I, where the latter follows from the fact that X−1 = XT and the fact that a matrix and its

1



inverse commute. We assume here that all eigenvalues are different, as is the case in most real-world

networks (Van Mieghem, 2011). Then,

f (A) = Xf (Λ)XT =
N∑

k=0

f (λk)xkx
T
k (1)

where xk is the eigenvector of A belonging to the eigenvalue λk. Using the spectral form (1) in our

assumption (1) reveals that

W = Xf (Λ)XT , (2)

Since W is symmetric, the spectral decomposition equals

W = YΥY T (3)

where Y is the orthogonal matrix containing the eigenvectors y1, y2, . . . , yN belonging to the eigenvalues

µ1 ≥ µ2 ≥ . . . ≥ µN and Υ = diag(µk) , 1 ≤ k ≤ N is the diagonal matrix of the eigenvalues of W .

Using the properties of orthogonal matrices, we find from (2) the diagonal matrix f (Λ) = diag(f (λk))

as

f (Λ) = XTWX.

With (3), we obtain

f (Λ) =
(
XTY

)
Υ
(
Y TX

)
. (4)

Since both f (Λ) and Υ are diagonal matrices and
(
XTY

)
=

(
Y TX

)−1
, there must hold that

f (λk) = µk (5)

for each 1 ≤ k ≤ N . Furthermore, from (4) follows that

(
Y TX

)
f (Λ) = Υ

(
Y TX

)
. (6)

From (5) and the fact that we multiply the matrix Y TX with the same diagonal matrix from both

sides, we can conclude that (under the condition that all eigenvalues are different) Y TX = I and

therefore X = Y .

In summary, equation (1) implies that both the structural matrix A and the functional matrix W

must have the same eigenvectors and that the function f maps the eigenvalues (ordered) of A onto

those of W (also ordered, see (5)). Moreover, (5) shows that f (x) is non-decreasing in x.

If the empirical matrices have different eigenvectors, then that difference may be due to noise of

the measurement. If the difference cannot be explained by noise perturbation, our assumption in (1)

that there exists an analytic function f needs to be revisited and a more general form of our fitting

function can be considered with matrix coefficients instead of scalar ones

F (A) =
∞∑

k=0

Fk (A− z0I)
k (7)

where Fk are N ×N matrices, which reduces when N = 1 again to our previous assumption (3).
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B Data Analysis

B.1 Visualization of best fits

In Figures 12, 13 and 14, we visualized the best fitted matrices of the group-averaged data set on a

bigger scale to better localize the biggest discrepancies between our best fits and the empirical findings.

The numbers on the axes of the matrices, 1 to 78 refer to specific brain regions. You can find on the

next page a complete list of the regions of interest (ROIs) that we display mostly with numbers:
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1 Rectus-L 40 Rectus-R

2 Olfactory-L 41 Olfactory-R

3 Frontal-Sup-Orb-L 42 Frontal-Sup-Orb-R

4 Frontal-Med-Orb-L 43 Frontal-Med-Orb-R

5 Frontal-Mid-Orb-L 44 Frontal-Mid-Orb-R

6 Frontal-Inf-Orb-L 45 Frontal-Inf-Orb-R

7 Frontal-Sup-L 46 Frontal-Sup-R

8 Frontal-Mid-L 47 Frontal-Mid-R

9 Frontal-Inf-Oper-L 48 Frontal-Inf-Oper-R

10 Frontal-Inf-Tri-L 49 Frontal-Inf-Tri-R

11 Frontal-Sup-Medial-L 50 Frontal-Sup-Medial-R

12 Supp-Motor-Area-L 51 Supp-Motor-Area-R

13 Paracentral-Lobule-L 52 Paracentral-Lobule-R

14 Precentral-L 53 Precentral-R

15 Rolandic-Oper-L 54 Rolandic-Oper-R

16 Postcentral-L 55 Postcentral-R

17 Parietal-Sup-L 56 Parietal-Sup-R

18 Parietal-Inf-L 57 Parietal-Inf-R

19 SupraMarginal-L 58 SupraMarginal-R

20 Angular-L 59 Angular-R

21 Precuneus-L 60 Precuneus-R

22 Occipital-Sup-L 61 Occipital-Sup-R

23 Occipital-Mid-L 62 Occipital-Mid-R

24 Occipital-Inf-L 63 Occipital-Inf-R

25 Calcarine-L 64 Calcarine-R

26 Cuneus-L 65 Cuneus-R

27 Lingual-L 66 Lingual-R

28 Fusiform-L 67 Fusiform-R

29 Heschl-L 68 Heschl-R

30 Temporal-Sup-L 69 Temporal-Sup-R

31 Temporal-Mid-L 70 Temporal-Mid-R

32 Temporal-Inf-L 71 Temporal-Inf-R

33 Temporal-Pole-Sup-L 72 Temporal-Pole-Sup-R

34 Temporal-Pole-Mid-L 73 Temporal-Pole-Mid-R

35 ParaHippocampal-L 74 ParaHippocampal-R

36 Cingulum-Ant-L 75 Cingulum-Ant-R

37 Cingulum-Mid-L 76 Cingulum-Mid-R

38 Cingulum-Post-L 77 Cingulum-Post-R

39 Insula-L 78 Insula-R
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We can see that the patterns of the fitted matrices seem to be similar to the empirical ones and

that the value range is overlapping. Therefore, we can conclude that also only from visual inspections

of the fitted matrices our mapping seems to be convincingly accurate.

B.2 Spectral data analysis

After plotting the eigenvalue couples (λk, µk) in a scatter plot, we can obtain the function f in the

spectral domain (see (5)). Polynomial functions were fitted to all possible combinations of scatter

plots (i.e. for the combinations structure-function (MEG/fMRI) and vice versa) by minimizing the

sum of squared errors. An example of such a fit is depicted in Figure 15.

For the goodness of fit in the spectral domain, we computed the adjusted R2 value for the different

mappings (see Figure 16). Overall, we reached already for K ≥ 4 with all combinations of matrices

an adjusted R2 value of higher than 0.9 indicating a good fit of our mapping. We followed the same

approach here as we did for the topology domain, and reversed A and W to repeat the spectral

analysis for the function f−1 : W → A. Results of this analysis can also be found in Figure 16. For

this spectral approach, the adjusted R2 value did not improve much after adding the same number of

terms as was used for the mathematical function in the topology domain (compare Figures 16 with

Figure 2). Thus, a functional expression with K = 5 was again sufficient for the analyzed mappings.

This conclusion held for both modalities (fMRI and MEG) and for both functions f : A → W and

f−1 : W → A.

Since we conducted a similar analysis in the topology and in the spectral domain respectively for

the functions f and f−1, we compared the estimated coefficient values for the spectral and topology

domain. For a correct comparison, we must omit the error matrix E in (5) in the topology domain.

A plot of the estimated coefficient values and confidence intervals (obtained by the least squared

parameter estimation in MATLAB) is illustrated in SI Figures 17 and 18 for the mapping of structural

to functional matrices and in SI Figures 19 and 20 for the other direction. For the mapping f , we

only faced small differences between the coefficients (see SI Figures 17 and 18) and in most cases

their confidence intervals were overlapping. But for the other direction, function f−1, we observed

quite different estimated coefficients. In the case of f−1 : WMEG → A we obtained large confidence

intervals when many (> 5) coefficients were fitted (see SI Figure 19), implying insecure estimations

of their exact value. This result is in agreement with the finding that 5 coefficients were sufficient to

describe the mapping between W and A (Figure 2), and that these extra coefficients did not contribute

relevant information to the mapping. The discrepancies between the estimated coefficient values in the

topology and spectral domain could be originating from the different eigenvectors of the 3 analyzed

empirical matrices. These eigenvector perturbations can potentially be caused by noise in the different

measurement techniques.

C Comparison of fitted coefficient values for different modalities

In Table 1, we displayed the different estimated values for the coefficients of our mapping for a maximal

fitted exponent of K = 6 and z0 = 0 for the group-averaged data set. In addition, in Figures 21 and 22

we show the different coefficient values (without the offset estimates) for the two modalities for both
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(a) WMEG
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(b) W̃MEG
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Figure 12: Visualization of the best fits for the function f , which was W̃MEG (for K = 6 with an error

matrix E), under the empirical adjacency matrix WMEG for the group-averaged data set.
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(a) WfMRI
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(b) W̃fMRI
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Figure 13: Visualization of the best fits for the function f , which was W̃fMRI (for K = 6 with an

error matrix E), under the empirical adjacency matrix WfMRI for the group-averaged data set.
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(a) A
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(b) Ã
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Figure 14: Visualization of the best fits for the function f−1, which was Ã (again for K = 6 with an

error matrix E) under the empirical adjacency matrix A for the group-averaged data set.
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Figure 15: Scatter plot of the eigenvalues of the structural matrix A against the eigenvalues of WfMRI

with a least-squared fitted polynomial function with a maximal fitted exponent of K = 6 (including

the intercept f0) for the group-averaged data set.
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Figure 16: Adjusted R2 value of the different mappings in the spectral domain for different maximal

fitted exponents K for the group-averaged data set for z0 = 0.
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Figure 17: Plot of the estimated coefficient values for different maximal exponents K with their 95%

confidence interval as an errorbar for the mapping f : A → WMEG for the group-averaged data

set. The spectral and topology approach are marked in blue and red, respectively. Note that, the

confidence intervals of the coefficient values overlap and the distance between the estimated coefficient

values is becoming smaller when more coefficients are used.
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Figure 18: Plot of the estimated coefficient values for different maximal exponents K with their 95%

confidence interval as an errorbar for the mapping f : A → WfMRI for the group-averaged data set.

The spectral and topology approach are marked in blue and red, respectively. Note that, in nearly

all cases, the confidence intervals of the coefficient values overlap pointing towards similar estimated

coefficients for the spectral and topology domain.
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Figure 19: Plot of the estimated coefficient values for different maximal exponents K with their 95%

confidence interval as an errorbar for the mapping f−1 : WMEG → A for the group-averaged data set.

The spectral and topology approach are marked in blue and red, respectively.
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Figure 20: Plot of the estimated coefficient values for different maximal exponents K with their 95%

confidence interval as an errorbar for the mapping f−1 : WfMRI → A for the group-averaged data set.

The spectral and topology approach are marked in blue and red, respectively.
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mappings together with their 95% confidence intervals, from structure to function and from function

to structure. In both displayed figures, the 95% confidence intervals for the estimated coefficients

of the different modalities do not overlap indicating significantly different coefficients using the 5%

significance level. This table and these confidence intervals show clearly the differences between the

different analyzed mappings pointing towards a modality-dependent mapping.

Table 1: Estimated coefficient values for a maximal exponent of K = 6 and z0 = 0 for the group-

averaged data set.
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D Interpretation with walks

In Figure 23, we visualized our mapping in terms of the number of walks of the structural brain

network (without the error matrix E).

E Comparison with a previous study

In Figures 24 and 25, we compare our results with a previous study (Tewarie et al., 2014). Tewarie and

coworkers (Tewarie et al., 2014) demonstrated that the degree product between nodes in the structural

network together with the Euclidean distance has the ability to predict the functional connections

between these nodes. If we merely focus on the degree product, we observe that our approach with the

sum of structural matrices Ak (see Eq. (5)) is correlated with the degree product (SI Figure 24). The

correlation between those two measures is indeed positive with a Spearman correlation of R = 0.57

(p-value < 0.001). There are two clouds in the scatterplot: the upper cloud corresponds to direct

connections whereas the lower cloud corresponds to all possible indirect connections, consisting of

all walks larger than one. If we investigate the relationship between the previous model (including

degree product and Euclidean distance as predictors for functional connectivity) and the mapping

approach from this paper, the Spearman correlation R becomes higher (R = 0.64, p-value < 0.001, see

Figure 25). This result raises the question whether the Euclidean distance as a separate term in a model

for explaining functional connections is required (Alexander-Bloch et al., 2013). In our approach, we

only incorporated topological distance, which means the distance with respect to intermediary nodes

and links in the structural network, and not Euclidean distance; however, these findings might suggest

that topological distance and Euclidean distance between nodes are related.
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Figure 21: Plot of the estimated coefficient values for maximal fitted exponent K = 5 with their

95% confidence interval as an errorbar for the mapping from structural to functional networks for

the group-averaged data set. Note that the displayed intervals do not overlap, thus we face here

significantly different estimated values.

F Error analysis

The equation (1) assumes that W and A are known exactly. In reality, all types of error mask the

true structure so that we actually measure

W̃ = W + εWRW

where RW is a realization of a random matrix with unit norm and εW is the maximum amplitude of

the error. Similarly,

Ã = A+ εARA

and the assumption becomes

W̃ = f
(
Ã
)

or

W + εWRW = f (A+ εARA)
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different estimated values.
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(a) WMEG
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(b) WfMRI
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Figure 23: Visualization of a simplified version of our model (from (4) where ck = ck[f ]): Walks of

different length between node i and j, first the direct connection, then with one intermediate node,

with two and so on, adding up to the functional connectivity matrix.

Using the Taylor expansion (3),

f (A+ εARA) =
∞∑

k=0

fk (A) εkA (RA)
k

up to first order (assuming that εA is sufficiently small!), then

W + εWRW = f (A) + f1 (A) εARA +O
(
ε2A

)

Invoking the assumption (1) shows a relation between the different types of errors

εWRW = f1 (A) εARA +O
(
ε2A

)

Given that the assumption (1) is correct and that A is known exactly, we could derive a method

to improve the measurements W̃ based on Section SI-A.3, which suggests that all eigenvectors of W

are fixed and known (i.e. X is the same as for A), so that W̃ needs to be modified to incorporate this

property. This analysis is a suggestion for future work.

To investigate the influence of false positives in the structural matrix, we randomly added con-

nections (1 % new connections) in the structural matrix of the group-averaged data set and redid the

analysis (power series in topology domain with 6 terms). The results can be found in the boxplots of

the goodness of fit (SSEnorm) in SI Figure 26. If we define the change in SSEnorm due to noise as the

noise influence NI whereas NI(SSEnorm) := standard deviation(SSEnorm)/mean(SSEnorm), then

we can calculated

NI(SSEnorm)(WfMRI → A) = 0.0174

NI(SSEnorm)(WMEG → A) = 0.0169

NI(SSEnorm)(A → WfMRI) = 0.0124

NI(SSEnorm)(A → WMEG) = 0.0158.
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Figure 24: Scatter plot of the structural degree product against the sum of the powers of the structural

matrix A (from power k = 1 up to k = 6).

Figure 25: Scatter plot of the estimated fMRI correlation matrix from the distance and degree model

described in a previous study (Tewarie et al., 2014) against the estimated values using the mapping

approach on the structural matrix A.
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(a) f−1 : WfMRI → A and f−1 : WMEG → A

different modalities
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Figure 26: Boxplot of the variations in SSEnorm in the topology domain for K = 6 with group-

averaged data for z0 = 0. To investigate the influence of false positives in the structural connectivity

matrix, we randomly added connections (1% new connections) in the structural matrix and redid the

analysis.

It can be observed from the above that the change in goodness of fit is small in the presence of little

noise (in the order of 1%), thus the mapping does not seem to be sensitive to small noise fluctuations.

If we analyze the region-to-region variability, we find that the inter-hemispheric connections were

often quite different between the empirical matrix and its fitted version (see the secondary diagonal in

Figures 27 - 30 where we displayed the absolute error). This result confirms our interpretation about

the more homologous inter-hemispheric connections in the fitted networks than in the empirically

observed networks. Furthermore, we were also interested in which regions benefitted more from an

increasing number of coefficients (darker regions in SI Figures 31-34). Those regions that benefitted

from an increasing number of fitted coefficients were possibly most influenced by longer walks in the

underlying structural network. For the estimated structural and functional networks by our mapping

we observe as a result quite a diverse homogenous spreading of the benefitting regions over the entire

group of regions except for the diagonal and secondary diagonal. Thus, we can again conclude that

the inter-hemispheric connections are probably benefitting most from our mapping approach.
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Figure 27: Absolute distance matrix between the best fit for Ã = f(WfMRI) (K = 6, z0 = 0) and the

empirical matrix A for the group-averaged data set.
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Figure 28: Absolute distance matrix between the best fit for Ã = f(WMEG) (K = 6, z0 = 0) and the

empirical matrix A for the group-averaged data set.
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Figure 29: Absolute distance matrix between the best fit for W̃fMRI = f(A) (K = 6, z0 = 0) and the

empirical matrix WfMRI for the group-averaged data set.
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Figure 30: Absolute distance matrix between the best fit for W̃MEG = f(A) (K = 6, z0 = 0) and the

empirical matrix WMEG for the group-averaged data set.
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Figure 31: Absolute differences in the error for 2 in comparison with the error for 6 fitted coefficients

(K = 6, z0 = 0) for the mapping f−1 : WfMRI → A for the group-averaged data set. Note that darker

areas correspond here to regions that benefitted more from a higher number of coefficients.
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Figure 32: Absolute differences in the error for 2 in comparison with the error for 6 fitted coefficients

(K = 6, z0 = 0) for the mapping f−1 : WMEG → A for the group-averaged data set. Note that darker

areas correspond here to regions that benefitted more from a higher number of coefficients.
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Figure 33: Absolute differences in the error for 2 in comparison with the error for 6 fitted coefficients

(K = 6, z0 = 0) for the mapping f : A → WfMRI for the group-averaged data set. Note that darker

areas correspond here to regions that benefitted more from a higher number of coefficients.

10 20 30 40 50 60 70

10

20

30

40

50

60

70

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04Frontal L

Parietal L

Occipital L

Temporal L

Cingulate ROIs L

Frontal R 

Parietal R

Occipital R

Temporal R

Cingulate ROIs R

Figure 34: Absolute differences in the error for 2 in comparison with the error for 6 fitted coefficients

(K = 6, z0 = 0) for the mapping f : A → WMEG for the group-averaged data set. Note that darker

areas correspond here to regions that benefitted more from a higher number of coefficients.

24



G Reshuffled matrices

We used one reshuffling technique on all matrices: we selected two matrix entries at random and

then exchanged their entries in the matrix (their link weights in the network). We repeated this step

5000 times to obtain a reshuffled version of every matrix, which is again symmetric. Thereby we

preserved the distribution of the weights. After generating 100 reshuffled matrices, we compared the

goodness of fit distribution of the mappings using reshuffled matrices to our empirical results (see SI

Figures 35 and 36). More precisely, for each mapping from any matrix M to N , we first replaced the

underlying matrix M with a reshuffled version of this adjacency matrix and ran the same mapping

analysis on it. Then we replaced the image matrix N with a randomly reshuffled version of itself

(keeping the underlying matrix M as the original empirical matrix) and ran the fitting algorithm on

that combination (thus always one empirical matrix with one reshuffled version of the other matrix

together).

For the group-averaged data set, the fit errors of 100 reshuffled matrices were larger compared

to those obtained using the experimental data for all analyzed mappings (see SI Figures 35 and 36).

Therefore, we can conclude that the mapping from structure to function (and vice versa) fails when

reshuffled connections are used. Therefore, the empirical matrices seem to possess a special struc-

ture making the relationship between the structural and functional brain network closer than when

reshuffled version of those matrices are used.

For the data set of individual healthy controls, we also used 100 reshuffled matrices of their

structural and functional networks, respectively, and displayed the percentage of those matrices that

achieved better goodness of fit than our empirical data (see SI Figures 37 and 38).

When using 5 coefficients or more, we obtained good results for the mapping f : V → WfMRI

for nearly all subjects. Only subject number 5 seems to be an exception which could be due to

some measurement errors or specific individual attributes of that subject. We also identified two

individuals as outliers whose goodness of fit level did not outperform the random reshuffles for the

mapping f−1 : WfMRI → V . The function f−1 starting from MEG networks obtained good results

for K > 2. The only mapping that was not able to outperform the reshuffled matrices as a benchmark

for most of the subjects was f : V → WMEG in the individual healthy control data. To sum up, for

the individual structure-function relationships, in most of the cases the mapping performs worse when

we apply it to random reshuffles indicating a high goodness of fit level for the mapping between the

original empirical matrices.

H Details of the fitting procedure

In order to use the non-linear regression algorithm in MATLAB (using the routine nlinfit.m version

R2015a) to determine the coefficients in (5) by iterative least squares estimation, we need to adapt

our data first. Because all involved matrices are symmetric, we only need to fit the lower triangular

matrices and the diagonal to get our fitting results. Thus, we first write all matrices in a vectorized

form only containing their lower triangular and diagonal entries. For any matrix M of dimension

N×N this vector will be denoted by ltd(M). To be able to use the standard equation Y = X ·β (with

X design matrix, β parameter vector and Y image matrix) for a linear model, we need to define the
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(a) f : A → WfMRI

(b) f : A → WMEG

Figure 35: Plot of the normalized sum of squared errors (SSEnorm) of the function f in the topology

domain for different maximal fitted exponents K and always in combination with a randomly reshuf-

fled matrix R (RMEG, RfMRI and Are denoting the reshuffled versions of WMEG, WfMRI and A,

respectively) averaged over a range of z0 values from −3 till 3 (always including an error matrix E)

for the group-averaged data set.
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(a) f−1 : WfMRI → A

(b) f−1 : WMEG → A

Figure 36: Plot of the normalized sum of squared errors (SSEnorm) of the function f−1 in the topol-

ogy domain for different maximal fitted exponents K and always in combination with a randomly

reshuffled matrix R (RMEG, RfMRI and Are denoting the reshuffled versions of WMEG, WfMRI and

A, respectively) averaged over a range of z0 values from −3 till 3 (always including an error matrix

E) for the group-averaged data set.
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(a) f : Vre → WMEG
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(b) f : V → RMEG
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(c) f−1 : RMEG → V
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(d) f−1 : WMEG → Vre
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Figure 37: Plot of the percentages of reshuffled matrices that resulted in a lower normalized sum

of squared errors (SSEnorm) in the topology domain for different maximal fitted exponents K with

individual healthy controls results for all mapping including MEG (V denoting the weighted structural

matrix and Vre denoting its randomly reshuffled version) for z0 = 0 (with an error matrix E).
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(a) f : Vre → WfMRI
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(b) f : V → RfMRI
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(c) f−1 : RfMRI → V
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(d) f−1 : WfMRI → Vre
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Figure 38: Plot of the percentages of reshuffled matrices that resulted in a lower normalized sum

of squared errors (SSEnorm) in the topology domain for different maximal fitted exponents K with

individual healthy controls results for all mappings including fMRI (V denoting the weighted structural

matrix and Vre denoting its randomly reshuffled version) for z0 = 0 (with an error matrix E).
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variables for our case. In the case of f(A) = W , the response Y is just the image matrix W written

as a vector containing the lower triangular and diagonal entries, Y = ltd(W ). The design matrix X is

in the case of K as the maximal exponent

X =
(
ltd(J) ltd(I) ltd(A) ltd(A2) ... ltd(AK)

)

Therefore, the parameter vector β has the length (K + 2), where the first entry will be the coefficient

c in front of the all-one matrix J and the second one is the coefficient for the identity matrix I and

the others are in front of the matrix powers of A. Because the matrix powers of A are exploding

in magnitude quickly, we normalize all the matrices beforehand dividing every entry by the absolute

maximum entry of each matrix, which has the consequence that all matrices now have values between

0 and 1. Then, the nlinfit.m algorithm can be applied to our data using the underlying function

myfun.m displayed here

function F = myfun(beta,xdata)

F = xdata*beta;

end

where xdata refers to our design matrix X and beta is the parameter vector β. Because our model

resembles a GLM, we could also use the pseudo-inverse of our design matrix xdata (pinv(xdata))

and multiply it with the vectorized matrix Y in order to obtain the same estimated coefficients. In

order to obtain the coefficient values for the original powers of the A matrix, we have to denormalize

the estimated values by dividing the estimated coefficients each by the absolute normalization value

from before.

I Dimension differences

In practice, the m×m measured matrix W ∗ may be of a different dimension than the N×N matrix W .

If m ≥ N , then we can transform the measured matrix W ∗ to W as follows. Since W ∗ is symmetric,

the spectral decomposition is

W ∗ = Y ∗Υ∗Y ∗T

where the diagonal matrix Υ∗ = diag
(
µ∗
1, . . . , µ

∗
N , µ∗

N+1, . . . , µ
∗
m

)
with the real eigenvalues ordered

as |µ∗
1| ≥ |µ∗

2| ≥ . . . ≥ |µ∗
m|. The ordering here is different than the usual ordering in Section A.3,

because eigenvalues of W may be negative (in principle; although those of a correlation matrix are

non-negative). Next, we let µk = µ∗
k for 1 ≤ k ≤ N and µk = 0 for k > N and

Y ∗ =

[
(Y11)N×N (Y12)N×(m−N)

(Y21)(m−N)×N (Y22)(m−N)×(m−N)

]

so that

W̃ ∗ =

[
Y11 Y12

Y21 Y22

][
Υ O

O O

][
Y11 Y12

Y21 Y22

]T

=

[
Y11ΥY T

11 Y11ΥY T
21

Y21ΥY T
11 Y21ΥY T

21

]

from which we choose W = Y11ΥY T
11. This method is well-known in the theory of singular value

decompositions (see e.g. (Golub and Loan, 1996)) and provides the best N ×N (in the mean-square

sense) approximation of an m×m matrix.
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