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Abstract— Exploiting the power of the expectation operator
and indicator (or Bernoulli) random variables, we present the
exact governing equations for both the SIR and SIS epidemic
models on networks. Although SIR and SIS are basic epi-
demic models, deductions from their exact stochastic equations
without making approximations (such as the common mean-
field approximation) are scarce. An exact analytic solution of
the governing equations is highly unlikely to be found (for
any network) due to the appearing pair (and higher order)
correlations. Nevertheless, the maximum average fraction yI
of infected nodes in both SIS and SIR can be written as a
quadratic form of the graph’s Laplacian. Only for regular
graphs, the expression for the maximum of yI can be simplied to
exhibit the explicit dependence on the spectral radius. From our
new Laplacian expression, we deduce a general upper bound
for the epidemic SIS threshold in any graph.

I. INTRODUCTION

Although the Susceptible-Infected-Removed (SIR) and
the Susceptible-Infected-Susceptible (SIS) model are basic
corner-stones in epidemics (see e.g. [1]–[6]), exact stochastic
equations for SIR have, to the best of our knowledge, not
been published yet for an arbitrary network, while for SIS,
we refer to [7]–[9]. A network is described by an adjacency
matrix A, with degree vector D = (d1, d2, . . . , dN ) where
dk is the degree of node k. For simplicity, we assume an
undirected network (A = AT ) that does not change over
time. In addition to the many applications ranging from
cyber security over information diffusion [10] to biological
diseases [1], [5], we explore these (relatively) simple epi-
demic processes on graphs to understand the influence of
the topology of complex networks [11] on properties of a
dynamic process. First, we describe both the SIS and SIR
model on any network in a stochastic, Markovian setting
and refer for non-Markovian SIS epidemics to [12], [13].

In a SIS epidemic process, the viral state of a node
i at time t is specified by a Bernoulli random variable
Xi (t) ∈ {S, I}: Xi (t) = S for a healthy, but susceptible
node and Xi (t) = I for an infected node. A node i at time
t can be in one of the two states: infected, with probability
vi(t) = Pr[Xi(t) = I] or healthy, with probability 1−vi(t),
but susceptible to the infection. We assume that the curing
process per node i is a Poisson process with rate δ and that
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the infection rate per link is a Poisson process with rate
β. Obviously, only when a node is infected, it can infect
its direct neighbors, that are still healthy. Both the curing
and infection Poisson process are independent. The effective
infection rate is defined by τ = β

δ . This is the general
continuous-time description of the simplest type of a SIS
epidemic process on a network.

In the SIR model, a node can be in one of the three states.
When a node j is healthy, but susceptible to the virus, at time
t, his state Yj = S. A node j can be infected, Yj = I , by its
direct neighbors that are infected. The infection is modelled
by a Poisson process with rate β. Finally, an infected node
j can be cured, after which it is removed from the infection
process, Yj = R. The curing is modelled by a Poisson
process with rate δ. All Poisson processes are independent.
This formulation describes a continuous-time SIR process on
a graph.

There exist other formulations of the SIR process. For
example, the discrete-time counter part, in which a node is
removed at the end of each time-slot and infected neighbors
can infect a susceptible node with probability p, is termed a
Reed-Frost process and is related to bond percolation [14].
Draief and Massoulié [15] show that a Reed-Frost process
is related to the growth of an Erdős-Rényi graph. The SIR
process is also related to a Markov discovery process on a
graph (see [16, p. 349-351]). Newman [14] has presented
a generating function approach for SIR, though implicitly
assuming a mean-field approximation. The above Markovian
description of SIS and SIR, based on independent Poisson
processes, seems the most general one that still allows us
to write the general governing equations for any graph.
Deviating from a Markov process, by choosing other than
the exponential interaction time (for infection and/or curing,
see [12], [13]) or by incorporating dependencies between
the infection and curing process, will complicate the analysis
considerably. This argument provides the main motivation to
explore how far we can push the analysis to obtain physical
insight.

II. GOVERNING EQUATIONS

In this paper, we analyse the SIR and SIS process rig-
orously and exploit the power of the (linear) expectation
operator E [.] and the indicator random variable 1x (which
equals one if the condition x is true, else it is zero) to
remain closer to the physics of the epidemic process. The
SIR governing equation for the probability that a node j is



infected reads

dPr [Yj = I]

dt
= E

[
−δ1{Yj=I} + 1{Yj=S}β

N∑
k=1

akj1{Yk=I}

]
(1)

where the time-dependence of Yj (t) has been omitted for
simplicity. In words, the change in the probability that a
node j is infected at time t equals the expectation of (a)
the rate β times the number of infected neighbors (specified
by the adjacency matrix element akj), given that node j is
susceptible minus (b) the rate δ given that the infected node
is cured (and thereafter removed). Next, the dynamic process
that removes nodes satisfies

dPr [Yj = R]

dt
= E

[
δ1{Yj=I}

]
= δ Pr [Yj = I] (2)

which says that the time-derivative of the probability that a
node j is removed from the process equals the expectation
of the rate δ, given that node j is infected. Finally, a node
is either healthy but susceptible, infected, or cured (and
removed); in other words, 1{Yj=S}+1{Yj=I}+1{Yj=R} = 1.

The first equation (1) is complicating due to the interaction
with other infected nodes in the network, but (1) is of exactly
the same form as the corresponding SIS governing equation
[17],

dPr [Xj = I]

dt
= E

[
−δ1{Xj=I}+1{Xj=S}β

N∑
k=1

akj1{Xk=I}

]
However, in the SIS process, there are only two nodal
states (or compartments) possible so that 1{Xj=S} +
1{Xj=I} = 1, which leads to fewer equations than in the
SIR process. We proceed by rewriting equation (1) using
E
[
1{Yj=S}∩{Yk=I}

]
= Pr [Yj = S, Yk = I],

dPr [Yj = I]

dt
= −δPr [Yj = I] + β

N∑
k=1

akj Pr [Yj = S, Yk = I]

After invoking the law of total probability [16, p. 27],

Pr [Yk = I] = Pr [Yj = S, Yk = I] + Pr [Yj = I, Yk = I]

+ Pr [Yj = R, Yk = I]

the SIR governing equation (1) becomes

dPr[Yj = I]

dt
= β

N∑
k=1

akjPr[Yk = I]− δ Pr[Yj = I]

− β
N∑
k=1

akjPr[Yj = I,Yk = I]

− β
N∑
k=1

akj Pr[Yj = R,Yk = I] (3)

The first two terms on the right-hand side in (3) describe
the spread of the infection from infected neighbors minus
the nodal curing, while the third term excludes infection
spread to an infected or removed node j. This last term
grows over time, because (2) illustrates that the probability
to become removed is non-decreasing over time. Relation
(3) explains the bell-shape of Pr [Yj (t) = I] as a function

of time t: initially the third term is small and near to
exponential growth arises from the first and second term.
As the number of removed nodes increases over time, the
third term counteracts the initial growth and forces its decline
towards extinction (for large t). The SIS differential equation
corresponding to (3) is

dPr [Xj = I]

dt
= β

∑N

k=1
akj Pr [Xk = I]− δ Pr [Xj = I]

− β
∑N

k=1
akj Pr [Xj = I,Xk = I] (4)

The governing equations (3) and (4) lead to the following
comparison: On the same network under the same infec-
tion and curing rates and starting from one infected node,
the infection probability Pr[Yj = I] in SIR epidemics is a
lower bound for the infection probability Pr [Xj = I] in
SIS epidemics. By starting the two processes on a same
network with the same initially infected node, the additional
positive term

∑N
k=1 akjPr[Yj = R,Yk = I] in (3) shows that,

at any time, Pr[Yj = I] ≤ Pr [Xj = I] for any node j ∈
G. Physically, the removal process in SIR cannot increase
the spread of infection in the network with respect to SIS
epidemics. As a consequence, the N -intertwined mean-field
approximation (NIMFA) [18] upper bounds, besides SIS,
also SIR epidemics.

Another interesting observation, also made in [19], is that
the removal process in SIR epidemics prevents that a node
can be infected twice, which implies that the SIR infection
process spreads over the network as a growing discovery tree
(without loops). Above the epidemic threshold, most nodes
are infected once (and discovered), while below the epidemic
threshold, the SIR infection tree dies out before infecting
most nodes once. Thus, in contrast to SIS epidemics, SIR
infection travels from a node i to a node j along a path,
and not a walk. The tree spreading property of SIR epi-
demics naturally maps SIR epidemics into a time-depending
Bellman-Harris branching process [20] on a network.

III. JOINT PROBABILITIES

There are two ways to proceed from (3): either we deduce
the governing equations for the two-pair probabilities as in
[17], followed by higher order joint probabilities until all 2N

SIS and 3N SIR linear Markov equations are established or
we try to “close” the equations [3, p. 653-654], as coined in
epidemiology. Here, we propose a new method to compute
all equations for higher order joint probabilities. Indeed,
interchanging the derivative and expectation operator in (1)
yields

d1{Xj=I}

dt
= −δ1{Xj=I} + 1{Xj=S}β

∑N

k=1
akj1{Xk=I}

(5)
Strictly speaking, the derivative of an indicator does not exist,
but we agree to formally define it by the random variable



equation (5). Next, making the same reversal of operators,

Ξ =
d

dt
E

[
n∏
j=1

1{Xj=I}

]
formally

= E

[
d

dt

n∏
j=1

1{Xj=I}

]

= E

[
n∑

m=1

n∏
j=1;j 6=m

1{Xj=I}
d1{Xm=I}

dt

]
substituting (5) and executing the E [.] returns the correct
result1,

Ξ = −δnE

[
n∏
j=1

1{Xj=I}

]

+ β

n∑
m=1

N∑
k=1

akmE

[
1{Xk=I}

n∏
j=1;j 6=m

1{Xj=I}

]

− β
n∑

m=1

N∑
k=1

akmE

[
1{Xk=I}

n∏
j=1

1{Xj=I}

]
For each combination of n out of N states, such a differential
equation for the joint probability

E

[
n∏
j=1

1{Xj=I}

]
= Pr [X1 = I,X2 = I, . . . , Xn = I]

can be written. The expectation in the last summation
contains, except when

(
1{Xj=I}

)2
= 1{Xj=I} occurs, a

product of n + 1 different random variables Xj , for which
a new differential equation is needed as outlined above. A
similar method applies for a product of different indicators,
n1∏
j=1

1{Yj=I}
n∏

j=n1+1

1{Yj=R}, where we define from (2) that

d1{Yj=R}
dt = δ1{Yj=I}. The analysis also shows that the

derivative of the n-th order joint probability includes joint
probabilities of order n + 1, except if all nodes (n = N )
are included and that an exact description thus requires
governing equations for all 1 ≤ n ≤ N joint probabilities,
resulting in 2N SIS and 3N SIR linear Markov equations.

The most evident way of closure, which is an approxi-
mation method, is to assume independence between nodes
and states. For example, if we close the first-order equa-
tions such as (3) by replacing Pr [Xj = I,Xk = I] by the
product f (Pr [Xj = I]) g (Pr [Xk = I]), where f and g are
functions, we transform the set of linear equations in first-
order, Pr [Xm = I], and second-order, Pr [Xj = I,Xk = I],
variables to non-linear equations, though with less variables
(only first-order probabilities). This type of approximation
is also termed a mean-field approximation, that assumes
independence between the infection state of any two nodes.

IV. PROPERTIES FROM FIRST-ORDER EQUATIONS

In the sequel, we continue to explore what can be deduced
from the first-order equations above without either higher-
order deduction nor closure. We first review a known result
on the epidemic threshold for the SIS process that also
applies to the SIR process: The epidemic threshold of the

1The formal method can be made mathematically rigorous (using the
framework of stochastic differential equations).

SIR and corresponding SIS process on any graph G is lower
bounded by

τc ≥
1

λ1
(6)

where λ1 is the largest eigenvalue of the adjacency matrix
A. Directly from (3) and (4), we deduce that

dPr [Yj (t) = I]

dt
≤ β

N∑
k=1

akj Pr [Yk (t) = I]− δPr [Yj (t) = I]

(and similarly for Pr [Xj (t) = I]). The lower bound (6) the
follows by a similar argument as in [12]. The lower bound
(6) for the epidemic threshold also holds for directed graphs.
Since the SIR infection probability lower bounds that of SIS
in a same graph (with same initial conditions), τc;SIS ≤
τc;SIR, which was earlier noted by Parshani et al. [19].

For SIS epidemics, the lower bound (6) was earlier proved
in [8], though in a much less general and elegant form. More
importantly, the lower bound τ

(1)
c = 1

λ1
appeared as the

exact epidemic threshold in NIMFA, where the superscript
(1) in τ (1)c refers to the first order mean-field approximation.
We deem it important to underline the difference: in the
exact SIS and SIR model, the epidemic threshold τc is
lower bounded by τ (1)c = 1

λ1
, while in approximate analyses

(mean-field), the epidemic threshold is found to be equal to
τ
(1)
c = 1

λ1
. For some graphs (such as the complete graph),

the first order mean-field approximation τ
(1)
c is very sharp,

while for other graphs (such as the star), τ (1)c = 1
λ1

is less
accurate [21].

The lower bound τ
(1)
c = 1

λ1
is of great practical use:

if the effective infection rate τ can be controlled such that
τ ≤ τ (1)c or the network can be designed to lower the spectral
radius λ1 of a graph [22], then the network is safeguarded
from long-term, massive infection. The lower bound (6)
cautions the widely cited belief of a zero-epidemic threshold
in scale-free networks [23]: any finite network must have a
strictly positive epidemic threshold. Even when the mean-
field epidemic threshold τ (1)c → 0 when limN→∞ λ1 = ∞,
it may be possible, due to the lower bound in (6), that the
exact threshold τc > 0 is non-zero. An upper bound for
dPr[Xj(t)=I]

dt (and similarly for SIR) follows from the Hölder
inequality [16, p. 90] with 1

p + 1
q = 1 and p > 1,

E
[
1{Xi=I}1{Xk=I}

]
≤
(
E
[
1p{Xi=I}

])1/p(
E
[
1q{Xk=I}

])1/q
substituted into (4) as

dPr [Xj = I]

dt
≥ β

N∑
k=1

akj Pr [Xk = I]− δ Pr [Xj = I]

− β(Pr[Xi = I])
1/p

N∑
k=1

akj(Pr[Xk = I])
1−1/p

and the right-hand side can be maximized with respect to p.
Unfortunately, the steady-state solution of the above set of
N non-linear equations equals Pr [Xj = I] = 0 for any node
j and any p > 1. Recently, Boguña et al. [24] have proposed
an approximate, coupling type of argument to deduce an



upper bound for the epidemic threshold. Although their new
method is ingenious and physically convincing, a proven
upper bound is still lacking. Below, we fill this gap by
presenting a new and general upper bound for the epidemic
threshold τc in any network in Theorem 2 below.

By definition, the steady-state is attained for the time
t → ∞ at which the derivatives of the probabilities do not
change anymore. If dPr[Yj=R]

dt = 0 in (2) for any node j, then
Pr [Yj = I] = 0 implying that there are no infected nodes
anymore in the network. In both SIS (due to the absorbing
state [8], [9]) and SIR epidemics, the infectious disease
eventually disappears from the network! Consequently, the
time-dependent (SIR) or metastable/quasi-stationary (SIS)
behavior is physically of interest. The final part expresses
the exact prevalence in terms of the graph’s Laplacian Q =
∆−A (see e.g. [25]) and is proven in Appendix A:

Theorem 1: Denoting the (random) vector wI =(
1{Y1=I}, 1{Y2=I}, . . . , 1{YN=I}

)
and similarly for wR, the

average number of infected nodes (or prevalence) satisfies
for SIR epidemics

dyI
dt∗

= −yI +
τ

N
E
[
wTI QwI − wTI AwR

]
(7)

while for SIS epidemics (denoted by a tilde)

dỹI
dt∗

= −ỹI +
τ

N
E
[
w̃TI Qw̃I

]
(8)

where t∗ = δt is the scaled time and Q = ∆ − A is the
Laplacian of the graph with ∆ = diag(d1, d2, . . . , dN ).

From (2), we see that the average fraction of removed
nodes satisfies dyR

dt∗ = yI . Apart from the steady-state, also
the maximum in (7) occurs at dyI

dt∗ = 0 and, at that value of
time t∗, it satisfies

yImax =
τ

N
E
[
wTI QwI − wTI AwR

]
(9)

illustrating that the corresponding ỹImax in SIS is larger
(because, in SIS, wR = 0 and w̃I is not smaller on average
than wI ). In a regular graph, each node has degree r and
Q = rI −A so that (9) simplifies to

yImax =
τ

N
E
[
rwTI wI − wTI A(wI + wR)

]
Since wTI wI =

∑N
j=1

(
1{Yj=I}

)2
=
∑N
j=1 1{Yj=I} = NZI

and, thus yI = NE
[
wTI wI

]
, we have

yImax =
τ

N

E
[
wTI A(wI + wR)

]
rτ − 1

(10)

which illustrates (in agreement with (6) because λ1 = r) that
yImax = 0 when τ < 1

r because E
[
wTI A(wI + wR)

]
≥ 0

and yI ≥ 0. Only for regular graphs, the epidemic threshold
in both SIS and SIR epidemics appears directly from the
exact equation (10). For special regular graphs such as the
complete graph, we can elaborate (10) even further. The
natural extension from regular graphs to any graph is to
bound the degree vector as dminu ≤ D ≤ dmaxu and (14)
becomes{

dyI
dt∗ ≥ (τdmin − 1) yI − τ

NE
[
wTI A(wI + wR)

]
dyI
dt∗ ≤ (τdmax − 1) yI − τ

NE
[
wTI A(wI + wR)

]

from which, for any graph, we find that

τ

N

E
[
wTI A(wI + wR)

]
τdmax − 1

≤ yImax ≤
τ

N

E
[
wTI A(wI + wR)

]
τdmin − 1

illustrating, with (6), that the epidemic threshold obeys
1

dmax
≤ 1

λ1
≤ τc. Since E

[
wTI A(wI + wR)

]
can still be

zero for τ > 1
dmin

, we cannot conclude that τc ≤ 1
dmin

.
In summary, a regular graph exhibits similar properties as
derived from mean-field or deterministic analyses. The larger
the heterogeneity in degree distribution as in most real-world
networks [11], the larger we may expect that approximate
analyses deviate (see e.g. [21] for a star graph).

An upper bound for the SIS epidemic threshold, proven
in Appendix B, is

Theorem 2: The SIS epidemic threshold τc in graph G is
upper bounded by

τc ≤
1

dmin (1− εG) ,
(11)

where εG=limỹI↓0max(k,l)∈LPr[Xk = I|Xl = I] .

The conditional probability εG in Theorem 2 can be
upper bounded by εG ≤ εKN

, because just at the onset
of infection (ỹI ↓ 0), the maximum conditional infection
probability εG on a link (k, l) in the graph G is largest in the
complete graph. Exact computations on the complete graph
[9], [21] demonstrate that τc = 1

N

(
1 + c√

N
+O

(
N−1

))
for a constant c, implying that εKN

= O
(

1√
N

)
for large

N . Hence, for large N , Theorem 2 leads to the upper bound

τc ≤
1

dmin

(
1 +O

(
1√
N

))
(12)

for any graph2. Theorem 2 (and its proof) also emphasizes
the role of the joint probability of infection at end nodes of
a same link, which laid at the basis of the pairwise approx-
imation [26] and is considered as a significant improvement
over first-order mean-field approximations.

The upper bound (12) is sharp for regular graphs, although
(12) can be large for realistic networks with broad (e.g.
power law) degree distribution. The general upper bound (11)
and lower bound (6) are, of course, less tight than specific
upper and lower bounds of particular classes of graphs, such
as regular trees, whose values are found in [26, Table II]
based on the work of Pemantle [27], extended by Liggett
[28].

Finally, after tedious manipulations, the governing equa-
tion of the variance of the fraction of infected nodes in SIS

2For large N , a lower bound for τc cannot be of the form

1

dmin − x

where x is a fixed integer independently of N , because for the complete
graph KN , 1

dmin−x
= 1

N−1−x
= 1

N

(
1 + 1+x

N
+O

(
N−2

))
which is

smaller than the exact threshold.



epidemics is

dVar
[
Z̃I

]
dt∗

=
2τ
{
E
[
Z̃Iw̃

T
I Qw̃I

]
− ỹIE

[
w̃TI Qw̃I

]}
N

+
1

N

(
ỹI +

τ

N
E
[
w̃TI Qw̃I

])
− 2Var

[
Z̃I

]
The variance is extremal when

dVar[Z̃I ]
dt∗ = 0, thus

Var
[
Z̃I

]∣∣∣
ex

=
τ

N

{
E
[
Z̃Iw̃

T
I Qw̃I

]
− ỹIE

[
w̃TI Qw̃I

]}
+

1

2N

(
ỹI +

τ

N
E
[
w̃TI Qw̃I

])
(13)

The last term is never larger than 1
N . If the frac-

tion of infected nodes Z̃I and the sum over all
links with precisely one end infected, w̃TI Qw̃I =∑
l∈L

(
1{Xl+=I} − 1{Xl−=I}

)2
, were independent, then

the maximum variance Var
[
Z̃I

]∣∣∣
ex
< 1

N would be minimal.

However, (8) shows that Z̃I and w̃TI Qw̃I are dependent,
implying that Var

[
Z̃I

]∣∣∣
ex
< 1 can be significant. For regular

graphs,

Var
[
Z̃I

]∣∣∣
ex

=
E
[
Z̃Iw̃

T
I Aw̃I

]
− ỹIE

[
w̃TI Aw̃I

]
N
(
r − 1

τ

)
+

1

2N

(
τ
NE

[
w̃TI Aw̃I

]
− ỹI (1 + τr)

τr − 1

)
shows that the maximum variance occurs for τ around the
epidemic threshold τc ≥ 1

r . The fact that the fraction of
infected nodes in SIS epidemics is found to vary most around
the epidemic threshold, where the process exhibits a phase
transition (for large N ), agrees with the general physical
theory of phase transitions [29].

V. SUMMARY

Based on the exact continuous-time, Markovian equations
for SIS and SIR epidemics, expressed in terms of Bernoulli
random variables, we have proposed a new method to deduce
the differential equations for any joint probability. Besides
revisiting the known facts that the infection probability in
SIS epidemics always upper bounds that in SIR epidemics
and that for both models, the epidemic threshold is lower
bounded by the inverse of the spectral radius, we present
a first order differential equation of the average SIS preva-
lence over time containing the Laplacian of the graph, that
elegantly expresses the maximum average prevalence yImax
in regular graphs in terms of the spectral radius (or degree).
From this new expression (8), the SIS epidemic threshold in
any graph is upper bounded by (12), which complements the
result in [24]. Finally, using our framework with Bernoulli
random variables, the variance of the SIS prevalence is
computed and found to be maximal around the epidemic
threshold.

Acknowledgment: We are grateful to Eric Cator for the
stimulating discussions concerning Theorem 2.
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APPENDIX

A. Proof of Theorem 1
Summing (1) over all nodes j yields

d

dt
E

N∑
j=1

1{Yj=I}

=E
β N∑

k=1

1{Yk=I}

N∑
j=1

akj1{Yj=S}−δ
N∑

j=1

1{Yj=I}


Using 1{Yj=S} = 1 − 1{Yj=I} − 1{Yj=R}, the first sum S

becomes{

S =
∑N

k=1
1{Yk=I}

∑N

j=1
akj1{Yj=S}

=

N∑
k=1

1{Yk=I}


N∑

j=1

akj −
N∑

j=1

akj1{Yj=I} −
N∑

j=1

akj1{Yj=R}


=
∑N

k=1
dk1{Yk=I} −

∑N

k=1

∑N

j=1
akj1{Yj=I}1{Yk=I}

−
∑N

k=1

∑N

j=1
akj1{Yk=I}1{Yj=R}

= DTwI − wT
I AwI − wT

I AwR

Further, denote by ZI = 1
N

∑N
j=1 1{Yj=I} the fraction of

infected nodes in the SIR process and by yI = E [ZI ], then

N
dyI
dt

= −NδyI + βE
[
DTwI − wTI AwI − wTI AwR

]
or, in terms of the effective infection rate τ = β

δ in units of
t∗ = δt,

dyI
dt∗

= −yI +
τ

N
E
[
DTwI − wTI AwI − wTI AwR

]
(14)

Using D = ∆u, where ∆ = diag(d1, d2, . . . , dN ) and u =
(1, 1, . . . , 1) is the all-one vector, we can rewrite

DTwI − wTI AwI = uT∆wI + wTI ∆wI − wTI ∆wI − wTI AwI
= (u− wI)T ∆wI + wTI (∆−A)wI

Since 1{Yj=I}1{Yj=I} = 1{Yj=I},

(u− wI)T ∆wI =
∑N

j=1

(
1− 1{Yj=I}

)
dj1{Yj=I}

=
N∑
j=1

(
1{Yj=I} − 1{Yj=I}1{Yj=I}

)
dj = 0

Finally, introducing the Laplacian matrix Q = ∆ − A, we
arrive3 at (7). The SIS variant (8) is similarly proved. �

B. Proof of Theorem 2

From (8) at dỹI
dt∗ = 0, we find that

τ−1 =
E
[
w̃TI Qw̃I

]
NỹI

=
E
[
w̃TI Qw̃I

]
E
[
w̃TI u

]
Introducing the basic Laplacian property w̃TI Qw̃I =∑
l∈L

(
1{Xl+=I} − 1{Xl−=I}

)2
, where the link l points

3Alternative expressions can be obtained using u = wI +wS +wR and
Qu = 0.

from node l+ = i → l− = j and L is the set of links
of G, yields

E
[
w̃TI Qw̃I

]
=
∑
l∈L

E

[(
1{Xl+=I} − 1{Xl−=I}

)2]
= 2

∑
l∈L

E
[
1{Xl+=I} − 1{Xl+=I}1{Xl−=I}

]
= 2

∑
l∈L

E
[
1{Xl+=I}

(
1− 1{Xl−=I}

)]
= 2

∑
l∈L

E
[
1{Xl+=I}1{Xl−=S}

]
= 2

∑
l∈L

Pr [Xl+ = I,Xl− = S]

Further, we can write

E
[
w̃TI Qw̃I

]
=
∑N

i=1

∑N

j=1
aij Pr [Xi = I,Xj = S]

=
N∑
i=1

Pr [Xi = I]
N∑
j=1

aij Pr [Xj = S|Xi = I]

to obtain

τ−1 =

∑N
i=1 Pr [Xi = I]

∑N
j=1 aij Pr [Xj = S|Xi = I]∑N

i=1 Pr [Xi = I]

The inequality [30]

min
1≤k≤n

ak
qk
≤ a1 + a2 + · · ·+ an
q1 + q2 + · · ·+ qn

≤ max
1≤k≤n

ak
qk

where q1, q2, . . . , qn are positive real numbers and
a1, a2, . . . , an are real numbers leads to{

τ−1 ≥ min1≤i≤N
∑N
j=1 aij Pr [Xj = S|Xi = I]

τ−1 ≤ max1≤i≤N
∑N
j=1 aij Pr [Xj = S|Xi = I] ≤ dmax

Using the degree di =
∑N
j=1 aij , we proceed with the lower

bound,

τ−1 ≥ min
1≤i≤N

∑N

j=1
aij Pr [Xj = S|Xi = I]

≥ min
1≤i≤N

(
min

(k,l)∈L
Pr [Xk = S|Xl = I] di

)
= min

(k,l)∈L
Pr [Xk = S|Xl = I] dmin

We define the epidemic threshold τc as that value of
τ when the prevalence (or order parameter) ỹI =
1
N

∑N
i=1 Pr [Xi = I] approaches zero from above, denoted

as ỹI ↓ 0, so that

τ−1c = lim
ỹI↓0

E
[
w̃TI Qw̃I

]
NỹI

(15)

and

τ−1c ≥ dmin lim
ỹI↓0

min
(k,l)∈L

Pr [Xk = S|Xl = I]

The definition (15) of the epidemic threshold be-
comes increasingly precise for large N . Finally, since
Pr [Xk = S|Xl = I] = 1 − Pr [Xk = I|Xl = I], we arrive
at (11). �


