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Abstract

A number of routing algorithms based on the ant-colony metaphor have been proposed for communication networks.
However, there has been little work on the performance analysis of ant-routing algorithms. In this paper, we compare the
performance of AntNet, an ant-routing algorithm, with Dijkstra’s shortest path algorithm. Our simulations show that the
performance of AntNet is comparable to Dijkstra’s shortest path algorithm. Moreover, under varying traffic loads, AntNet
adapts to the changing traffic and performs better than shortest path routing.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A wide variety of routing protocols and algo-
rithms exist for communication networks. In the
traditional approach to routing, the routing tables
are updated by exchanging routing information
between the routers. Various routing protocols dif-
fer in their approaches to exchange the routing
information. For example, in Open Shortest Path
First (OSPF) the routers exchange link-state1 infor-
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1 Link refers to an interface on the router and each link has a
cost associated with it. The state of the link is a description of the
interface and the relationship of the interface to the neighboring
routers. In link-state protocols, each router is assumed to be
capable of finding the state of the link to its neighbors (up or
down) and the cost of each link.
mation by flooding. A relatively new approach to
routing is the use of mobile agents for updating
and maintaining the routing tables. Recently, a
number of routing algorithms inspired by the ant-
colony metaphor and using mobile agents have been
proposed for both wired and wireless networks. In
this paper, we collectively refer to these algorithms
as ant routing algorithms (ANTRALs).

An ANTRAL is a hop-by-hop routing algorithm
based on the principle of stigmergy observed in real-
life ant colonies. Stigmergy is a form of indirect
communication mediated by modifications of the
environment [26]. It has been shown that real ants
are able to find the shortest path by following the
trail of a chemical substance called pheromone
deposited by other ants [18,19,23]. The idea behind
ANTRALs is to use a form of stigmergy to coordi-
nate societies of artificial agents. The artificial
.
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agents (mobile agents) or ants move on the network
and are used to update the routing tables.
The mobile agents update the routing tables in an
asynchronous manner and independently of other
mobile agents. Thus, in ANTRALs, the routers
(nodes) do not need to directly exchange routing
information for updating the routing tables. The
principles of ant colony and stigmergy have been
applied to numerous other optimization problems
besides routing and have been referred to as ant col-
ony optimization in the literature [6,20,27].

There are two critical components that determine
the performance of an ANTRAL. First, the perfor-
mance depends on how the mobile agents search for
the shortest path, which is referred to as exploration

[16]. The mobile agents could either use heuristics
based on the routing tables or the routing table
values without any modifications to move to the
next node. Second, the mobile agents have to update
the routing tables based on the paths that have been
searched. In general, exploration and routing table
update in ANTRALs are coupled since the mobile
agents use the same routing table values for explora-
tion which they also update. However, Bean and
Costa [2,5] have demonstrated that it is possible to
de-couple exploration from routing table updates
in ANTRALs by restricting exploration to the first
hop, and letting mobile agents follow the data rout-
ing policy for all subsequent hops to the destination.

In all the ANTRALs proposed so far, the
algorithm parameters have been chosen heuristi-
cally. There has been little work on studying the
robustness of ANTRALs to the variations in differ-
ent parameters. In [2,5], Bean and Costa have exam-
ined the equilibrium load-balancing properties of
ANTRALs with respect to system and user optimi-
zation criteria. However, the effect of parameter
changes on the performance of ANTRALs is not
examined and the analysis has been limited to a
few network topologies. In this paper, we analyze
the performance of AntNet, an ANTRAL proposed
by Di Caro and Dorigo [4]. We compare the perfor-
mance of AntNet with Dijkstra’s shortest path algo-
rithm for constant delays (non-varying traffic). We
also study the effect of different parameters used
for exploration and routing table updates on the
performance of AntNet algorithm.

Our simulations indicate that the performance of
the AntNet algorithm is comparable to the Dijk-
stra’s shortest path algorithm under non-varying
traffic. However, the performance of the AntNet
algorithm is dependant on the network size and
topology. One of the key insights is that the
AntNet algorithm performs well for sparse random
graphs. Furthermore, the variations in different
parameters have a limited impact on the perfor-
mance of the AntNet algorithm indicating the
robustness of AntNet algorithm.

The rest of this paper is organized as follows.
Section 2 discusses the related work. Section 3 pre-
sents the network model and Section 4 presents
the AntNet algorithm. In Section 5, we present the
simulation results. Finally, Section 6 presents the
conclusions.

2. Overview of ANTRAL implementations

This section describes some of the prominent
ANTRALs proposed for routing in communication
networks.

AntNet [4] is a routing algorithm proposed for
wired datagram networks based on the principle
of ant colony optimization. In AntNet, each node
maintains a routing table and an additional table
containing statistics about the traffic distribution
over the network. The routing table maintains for
each destination and for each next hop a measure
of the goodness of using the next hop to forward
data packets to the destination. These goodness
measures, called pheromone variables, are normal-
ized to one in order to be used by a stochastic rout-
ing policy. AntNet uses two sets of homogeneous
mobile agents called forward ants and backward
ants to update the routing tables. The forward ants
use heuristics based on the routing table to move
between a given pair of nodes and are used to collect
information about the traffic distribution over the
network. The backward ants retrace the paths of
forward ants in the opposite direction. At each
node, the backward ants update the routing table
and the additional table containing statistics about
the traffic distribution over the network. AntNet
[4] has been shown to perform better than Bell-
man-Ford, OSPF etc. routing protocols under
varying and near saturation traffic loads.

Ant-Based Control (ABC) is an algorithm pro-
posed by Schoonderwoerd et al. [12,25] for load bal-
ancing in circuit-switched networks. In ABC, the
calls are routed using probabilistic routing tables
that consist of next hop probabilities for each desti-
nation. The link costs are assumed to be symmetric
and hence, only one-directional mobile agents are
used for updating and maintaining the routing
tables. The mobile agents use heuristics based on
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the routing tables to move across the network
between arbitrary pairs of nodes. At each node
along the path, the mobile agents update the routing
tables based on their distance from the source node
and the current state of the routing table.

Another ANTRAL for wired networks has been
proposed by Kuntz et al. [22]. The proposed algo-
rithm differs from AntNet in terms of different loop
detection behavior, simpler backward ant and dif-
ferent routing table update procedure. The authors
also propose another routing protocol called
Co-operative Asymmetric Forward (CAF) routing.
CAF is similar to ABC but it works for asymmetric
networks where the link costs are not identical in
opposite directions. CAF has been shown to per-
form as well as AntNet and is able to cope with
changing bandwidth and network topology [22].

AntHocNet is a hybrid routing protocol pro-
posed by Ducatelle et al. [21] for mobile ad hoc net-
works. AntHocNet consists of both the reactive and
proactive components. In AntHocNet, nodes do not
maintain routes to all possible destinations at all the
times, rather the nodes generate mobile agents only
at the beginning of a data session. The mobile
agents search for multiple paths to the destination
and these paths are set up in the form of pheromone
tables indicating their respective quality. During the
course of the data session, the paths are continu-
ously monitored and improved in a proactive man-
ner. AntHocNet has been shown to outperform
AODV in terms of end-to-end delay and delivery
ratio [21].

Ad hoc Networking with Swarm Intelligence
(ANSI) is a reactive routing protocol proposed by
Rajagopalan and Shen [24] for mobile ad hoc net-
works. ANSI protocol uses two sets of mobile
agents called forward reactive ants and backward
reactive ants. The routing tables in ANSI contain
an entry for each reachable node and next best
hop while the ant decision tables store the phero-
mone values. In ANSI, the forward reactive ants
are generated only when a node needs to transmit
data to another node. The forward reactive ants
are broadcast while the backward reactive ants
retrace the path of forward reactive ants and update
the pheromone values at the nodes. The data pack-
ets choose the next hop deterministically i.e., the
hop which contains the largest pheromone value is
chosen as the next hop. ANSI has been shown to
perform either better or comparable with AODV
with respect to packet delivery, end-to-end delay
and delay jitter [24].
A number of routing protocols in which the
mobile agents do not update the routing tables
directly have also been proposed (e.g. Termite [10],
Global Positioning System/Ant-Like Routing
Algorithm (GPSAL) [3]). In Termite [10], the routing
table entries contain pheromone values for choosing
a neighbor as the next hop for each destination.
The pheromone values decay exponentially with time
and the corresponding entries are removed from the
routing tables, if all the pheromone for a particular
destination decays. Thus, the routing tables in
Termite maintain entries for only the destinations
from which packets have been received during recent
times. Termite does not use mobile agents for updat-
ing the routing tables instead route discovery and
maintenance are performed by a set of four control
packets: route request packets, route reply packets,
hello packets and seed packets. Both data packets
and control packets (except route request packets)
are used for updating the routing tables.

Ant-Colony-Based Routing Algorithm (ARA) is
a routing protocol proposed by Günes� and Spaniol
[7] for mobile ad hoc networks. The routing table
entries in ARA contain pheromone values for
choosing a neighbor as the next hop for each desti-
nation. The pheromone values in the routing tables
decay with time and the nodes enter a sleep mode if
the pheromone in the routing table has reached a
lower threshold. Route discovery in ARA is per-
formed by a set of two mobile agents – forward ants
and backward ants. During route discovery, the
forward and backward ant packets having unique
sequence numbers, to prevent duplicate packets,
are flooded through the network by the source
and destination nodes, respectively. The forward
and backward ants update the pheromone tables
at the nodes along the path for the source and
destination nodes respectively. Once the route dis-
covery for a particular destination has been per-
formed, the source node does not generate new
mobile agents for the destination instead the route
maintenance is performed by the data packets.

Uniform ant routing algorithms are a class of
ANTRALs in which the mobile agents choose the
next node uniformly among the neighbors of the
node [13]. Thus, in uniform ANTRALs, the mobile
agents move independently of the routing tables
and perform a random walk (with memory) on the
network graph while searching for the destination.
This feature of uniform ANTRALs reduces the com-
plexity of the ant routing algorithm and leads to
exploration of all the paths with equal probabilities.
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3. Network model

We model the network as a graph G(N,L)
consisting of N nodes and L links. All the links
in the network are considered bidirectional and
specified by a transmission capacity and a trans-
mission delay. Each node is considered a commu-
nication end-point (host) and a forwarding unit
(router).

As illustrated in Fig. 1, every node in the network
maintains an input buffer composed of a single
queue and an output buffer composed of a high pri-
ority queue and a low priority queue for each neigh-
bor or outgoing link. The high priority queue is
served before the low priority queue. All the packets
within the network can be divided into two different
classes:

• Data packets: represent the information that the
end-users exchange with each other. In ant-rout-
ing, data packets do not maintain any routing
information but use the information stored at
routing tables for travelling from the source to
the destination node.

• Mobile agents (forward ants and backward ants):
are used to update the routing tables and distrib-
ute information about the traffic load in the
network.
Incoming links

H

Output Buffer

Input Buffer

Service process

Fig. 1. Buffers at a node. The input buffer consists of a single queue a
priority queue for each outgoing link.
Backward ant packets have a higher priority
than the data and forward ant packets and are
thus stored in the high priority queue, while data
and forward ant packets are stored in the low pri-
ority queue. We assume that all the packets in the
low priority queue and the high priority queue in
the output buffer are served in a FIFO order. Fur-
ther, the maximum number of packets stored in
the input buffer or output buffer is limited by
the size of the buffer. We have assumed that the
buffer size is sufficiently large to neglect buffer
overflow.

When a node receives a packet from a neighbor,
the packet is first stored in the input buffer. The
packet in the input buffer is served in a FIFO order
or according to a different scheduling rule. After the
packet has been served, the packet is sent to the
output buffer. Within the output buffer, the packet
goes to a particular queue for a particular outgoing
link based on the type of the packet and the next
node.

3.1. Data structures at nodes

Mobile agents communicate in an indirect way,
through the information they concurrently read
and write in two data structures stored at each net-
work node k:
Outgoing

links

igh priority queue

Low priority queue

nd the output buffer consists of a low priority queue and a high
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1. A routing table Tk, organized as a matrix with
probabilistic entries as shown in Fig. 2. Each
row in the routing table corresponds to one des-
tination in the network and each column corre-
sponds to a neighbor of the current node. The
routing table Tk defines the probabilistic routing
policy currently adopted at node k: for each pos-
sible destination d and for each neighbor node n,
Tk stores a probability value pnd expressing the
probability of choosing n as the next node when
the destination is d such that:

X
n2Nk

pnd ¼ 1;

where d 2 [1,N] and Nk = {neighbors(k)}.
2. A table Mkðld ; r

2
d ;W dÞ containing statistics about

the network topology and the traffic distribution
over the network as seen by the local node k. For
each destination d in the network, the table Mk

contains a moving observation window Wd, an
estimated mean ld and an estimated variance
r2

d . The moving observation window Wd, of size
Wmax, represents an array containing the trip
times of last Wmax forward ants that travel from
the node k to the destination d. The moving
observation window Wd is used to compute the
best trip time tbestd i.e., the best trip time experi-
enced by a forward ant travelling from the node
k to the destination d among the last Wmax for-
Routing table

Local Traffic  

Statistics

Network
node

1;1;

x

y

z

Tk =

Mk  = μ

Fig. 2. The data structures for a node with neighbors x, y and z and a n
ward ants that travel from the node k to the des-
tination d. The mean ld and variance r2

d represent
the mean and variance of the trip times experi-
enced by the forward ants to move from the node
k to the destination node d and are calculated
using the exponential model:

ld  ld þ gðtk!d � ldÞ; ð1Þ
r2

d  r2
d þ gððtk!d � ldÞ

2 � r2
dÞ: ð2Þ

In (1) and (2), tk!d represents the newly ob-
served forward ant’s trip time to travel from
the node k to the destination node d and
g 2 (0,1] is a factor that weighs the number of re-
cent samples that will affect the mean ld and the
variance r2

d . Di Caro and Dorigo [4] relate g to
the maximum size of the observation window
Wmax by

W max ¼
5c
g

where c < 1: ð3Þ

Di Caro and Dorigo [4] calculated that 5
g samples

affect the mean so (3) has been used to ensure
that the mean and the best trip time are calcu-
lated over the same moving observation window.
We choose the maximum size of the moving
observation window Wmax to be sufficiently large
i.e., W max >

5
g but independently of the parameter

g.
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4. AntNet algorithm

4.1. Description of the AntNet algorithm

The AntNet algorithm [4] can be described as
follows:

1. At regular intervals, from every network node s,
a forward ant Fs!d is launched with a randomly
selected destination node d. Destinations are cho-
sen to match the current traffic patterns i.e., if fsd

is a measure (in bits or in the number of packets)
of the data flow s! d, then the probability yd of
creating at node s a forward ant with node d as
destination is:

yd ¼
fsdPN

d 0¼1fsd 0
: ð4Þ

2. While travelling towards their destination nodes,
the forward ants store their paths and the traffic
conditions. The identifier of every visited node k

and the time elapsed since the launching time of
the forward ant to arrive at this kth node are
pushed onto a memory stack Ss!d stored in the
data field of the forward ant. Forward ants share
the same queues as data packets, so they experi-
ence the same traffic delays as data packets.

3. At each node k, each forward ant chooses the
next node as follows:
• If all the neighboring nodes have not been vis-

ited, then the next neighbor is chosen among
the nodes that have not been visited as:
p0nd ¼
pnd þ aln

1þ aðjN kj � 1Þ : ð5Þ

In (5), Nk represents the set of neighbors of the
current node k and jNkj the cardinality of that
set, i.e., the number of neighbors while the
heuristic correction ln is a normalized value
[0,1] such that 1 � ln is proportional to the
length qn of the queue of the link connecting
the node k with its neighbor n:

ln ¼ 1� qnPjNk j
n0¼1qn0

: ð6Þ

The value of a in (5) weighs the importance of
the instantaneous state of the node’s queue
with respect to the probability values stored
in the routing table.
• If all the neighboring nodes have been visited
previously, then the next node is chosen uni-
formly among all the neighbors. In this case,
since all the neighbors have been visited previ-
ously the forward ant is forced to return to a
previously visited node. Thus, irrespective of
which neighbor is chosen as the next node,
the forward ant is in a loop (cycle).

• With a small probability e, the next node
may be chosen uniformly among all the neigh-
boring nodes. The parameter e is deliberately
incorporated in the ANTRAL to overcome
the problem where one of the entries in the
routing table is almost unity, while the other
are vanishingly small. In such a situation, the
forward ants always choose the same link
and thus stop exploring the network for other
routes. The parameter e ensures that the net-
work is being constantly explored, though it
introduces an element of inefficiency in the
algorithm. The use of parameter e to intro-
duce randomness in the algorithm is referred
to as e -greedy policy in reinforcement learning
literature [14]. Thus, due to the e-greedy policy
there are no restrictions on the routing table
values and some of the routing table entries
may be zero. In AntNet implementation
[4,11], the value of parameter e is chosen as
zero. In the special case, when e = 1, the
AntNet algorithm is a uniform ANTRAL
(unfNet).
4. If a cycle is detected, that is, if the ant is forced to
return to an already visited node, the cycle’s nodes
are popped from the ant’s stack and all memory
about the cycle is destroyed. If the cycle lasted
longer than the lifetime of the forward ant before
entering the cycle, the ant is destroyed (Fig. 3).
The lifetime of a forward ant is defined as the total
time since the forward ant was generated.

5. When the destination node d is reached, the for-
ward ant Fs!d generates a backward ant Bd!s.
The forward ant transfers all the memory con-
tained in the stack Ss!d to the backward ant,
and dies.

6. The backward ant takes the same path as the
corresponding forward ant, but in the opposite
direction. At each node k, the backward ant
pops the stack Ss!d to move to the next node.
Backward ants do not share the same queues as
data packets and forward ants; they use high pri-
ority queues to quickly propagate to the routing
tables the information collected by the forward
ants.

7. Arriving at a node k coming from a neighbor
node h, the backward ant updates the two main
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data structures of the node, the local model of the
traffic Mk and the routing table Tk, for all the
entries corresponding to the destination node d.
The update of routing tables at each node along
the path as the backward ant travels from the
destination to the source node is known as sub-
path update method.2

• The mean ld and variance r2
d entries in the local

model of traffic Mk are modified using (1) and
(2). The best value tbestd of the forward ants trip
time from node k to the destination d stored in
the moving observation window Wd is also
updated by the backward ant. If the newly
observed forward ant’s trip time tk!d from
the node k to the destination d is less then
tbestd , then tbestd is replaced by tk!d.

• The routing table Tk is changed by increment-
ing the probability phd 0 (i.e., the probability of
choosing neighbor h when destination is d

0
)

and decrementing, by normalization, the other
probabilities pnd 0 . The probability phd 0 is
increased by the reinforcement value r as:
2 If
then th
sub-pa
from t
phd 0  phd 0 þ rð1� phd 0 Þ: ð7Þ
the cycles are not removed from the forward ant’s path,
e sub-path update will lead to statistical bias [5]. Thus, the
th update should be used only if the cycles are removed
he forward ant’s path.

3 C
param
P[l(X
value
the in
and 1
The probabilities pnd 0 of the other neighboring
nodes n for destination d

0
are decreased by

the negative reinforcement as:
pnd 0  pnd 0 � rpnd 0 ; 8n 6¼ h; n 2 N k: ð8Þ
Thus, in AntNet, every path found by the for-
ward ants receives a positive reinforcement.
• The reinforcement value r used in (7) and (8) is
a dimensionless constant (0,1] and is calculated
as:
o

)

r¼ c1
tbestd

tk!d
þc2

tsup� tbestd

ðtsup� tbestd Þþðtk!d� tbestd Þ
: ð9Þ

In (9), tk!d is the newly observed forward
ant’s trip time from node k to the destination
d and tbestd is the best trip time experienced by
the forward ants traveling towards the desti-
nation d over the observation window Wd.
The value of tsup is calculated as:
tsup ¼ ld þ
rdffiffiffiffiffiffiffiffiffiffiffi

1� c
p ffiffiffiffiffiffiffiffiffiffiffiffi

jW max

p
j
; ð10Þ

where c is the confidence level.3 Eq. (10) repre-
sents the upper limit of the confidence interval
nsider a sample of observations X = (X1, . . . .,Xn). For any
eter d defined for X, find an interval [l(X),u(X)] such that
6 d 6 u(X)] = 1 � / i.e., the interval contains the true
of the parameter d with probability 1 � /. In such a case
terval [l(X),u(X)] is a (1 � /) · 100% confidence interval
� / is the confidence level [17].
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for the mean ld, assuming that the mean ld

and the variance r2
d are estimated over Wmax

samples [17]. There is some level of arbitrari-
ness in choosing the confidence interval in
(10) since the confidence interval is asymmet-
ric and the mean ld and the variance rd are
not arithmetic estimates [4]. The first term in
(9) evaluates the ratio between the current trip
time and the best trip time observed over the
moving observation window. The second term
is a correction factor and indicates how far the
value of tk!d is from tbestd in relation to the
extension of the confidence interval [4].
The values of c1 and c2 indicate the relative
importance of each term. It is logical to as-
sume that the first term in (9) is more impor-
tant than the second term. Hence, the value
of c1 should be chosen larger than the value
of c2. The value r calculated in (9) is finally
transformed by means of a squash function
s(x) defined by:
4 Low values of r indicate sub-optimal paths.
sðxÞ ¼ 1

1þ exp a
xjNk j

� � ; where x 2 ð0; 1�;

a 2 Rþ; ð11Þ

r sðrÞ
sð1Þ : ð12Þ

The squash function s(x) is introduced in the
AntNet algorithm so that small values of r

would have negligible effect in updating the
routing tables [4]. Due to the squash function
s(x), the low values of r are reduced further,
and therefore do not contribute in the update
of routing tables.4 The coefficient a

Nk
deter-

mines the dependence of squash function s(x)
on the number of neighbors Nk of the node
k. Fig. 4 shows the effect of coefficient a

Nk
on

the squash function s(x). Fig. 4 shows that if
the value of coefficient a

Nk
is less than 1, then

even low values of r get incremented due to
the squash function s(x). Thus, the value of
parameter a should be chosen such that the
coefficient a

Nk
is greater than 1.
Data packets use different routing tables than the
forward ants for travelling from the source node to
the destination node. The routing table values for
data packets are obtained by re-mapping the rout-
ing table entries used by forward ants by means of
a power function g(v) and re-normalizing these
entries.

gðvÞ ¼ vb; b > 1: ð13Þ

The power function g(v) emphasizes the high
probability values and reduces lower ones, and thus
prevents the data packets from choosing links
with very low probability. The data packets have a
fixed time to live (TTL); if the data packets do not
arrive at the destination within the TTL, they are
dropped.
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4.2. Complexity analysis of the AntNet algorithm

We first calculate the complexity, defined as num-
ber of elementary operations, of a single forward
ant to travel between a given source node and a
given destination node in the AntNet algorithm.
At every node along the path between a given
source and destination node, the forward ant needs
to search through the stack it maintains in the mem-
ory to find whether to use (5) for choosing the next
node or to choose the next node uniformly among
the neighbors. The worst-case complexity of search-
ing through the stack is O(1), if the stack is imple-
mented as a combination of linked list and an
additional array or an hash table. Further, the com-
plexity of (5) is O(Nk) since the probability values
have to be calculated for each of the Nk neighbors.
In unfNet, the forward ants choose the next node
uniformly among the neighbors of the node, and
therefore the above operations are not required.
There are other computations that a forward ant
performs at each node: the forward ant needs to
push the identifier of the current node and the time
at which it arrived into the stack which is O(1), the
forward ant goes to the queue for one of the outgo-
ing links which is O(1). Let the maximum hopcount
of the forward ant be M. In the worst case, the for-
ward ant has to do all the computations at each of
the M nodes. Thus, the worst-case complexity for
a single forward ant to travel between a given source
node and a destination node in AntNet is O(MNk),
while in unfNet it is O(M).

The worst-case complexity for a single backward
ant to travel between a given source node and a des-
tination node is also O(MNk). This can be calcu-
lated as follows. The backward ant performs three
operations at each node along the path it travels
between a given source node and a given destination
node. First, the backward ant needs to pop the stack
to find out the next node to travel. The pop opera-
tion in the stack is O(1). Second, the backward ant
goes to the queue for one of the outgoing links
which is O(1). The backward ant updates the rout-
ing table for each of the neighbors Nk for the desti-
nation d which is O(Nk). Furthermore, in the worst
case the backward ant has to do all the computa-
tions at each of the M nodes.

We calculate the worst-case complexity of
AntNet when the total number of forward or back-
ward ants generated is given by q > 1. Since the
worst-case complexity of a single forward or back-
ward ant to travel between a given pair of nodes is
O(MNk), the worst-case complexity of AntNet when
q forward or backward ants are generated is
O(qMNk). Furthermore, we know that the worst-
case complexity for Dijkstra’s shortest path algo-
rithm using a Fibonacci heap is O(N logN + L).
This analysis shows that the complexity of Ant-
Net algorithm is comparable to Dijkstra’s’ shortest
path algorithm when M and Nk are small as com-
pared to N.

We now calculate the worst-case complexity of
AntNet for finding the shortest path. Let us assume
that one forward ant searches for one distinct path
and one forward/backward ant pair updates only
the routing tables at the source node for the given
destination node. In the worst case, at any given
node there is an equal probability of creating a for-
ward ant with any one of the N � 1 nodes as the
destination. Thus, only one out of N � 1 forward
ants is used to search for the shortest path between
a given source and destination. Let us denote the
number of paths between a source and a destination
in G(N,L) by m. Adding the contributions yields a
worst-case complexity to search for the shortest
path in AntNet (CAntNet) with m = mmax of

CAntNet ¼ OðmMN kNÞ; ð14Þ

where mmax is the upper bound on the maximum
number of paths between a source and destination
node in G(N,L). The upper bound mmax on the total
number of paths between a source and destination
node in G(N,L) is [9]

mmax ¼ ½eðN � 2Þ!�: ð15Þ

In case of a random graph Gp(N), with a fixed
link density p and N nodes, the following upper-
bound for the average number of paths applies [15],

mmax ¼ pN�1e
1
pðN � 2Þ!

h i
; ð16Þ

Eq. (16) shows that the number of paths between a
given pair of nodes decreases as the link density p in
the random graph Gp(N) is decreased.
4.3. AntNet implementation

The time Ti!j for a data packet or ant packet
(forward ant or backward ant) to travel from a node
i to a node j is calculated as:

T i!j ¼
qj þ sizePacket

Ci!j
þ Di!j: ð17Þ
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where qj is the length of the low priority queue at
node i for the link i! j, sizePacket is the size of the
packet, Ci!j is the available capacity of the link be-
tween node i and node j and Di!j is the propagation
delay of the link i! j. The term sizePacket

Ci!j
represents

the transmission delay for the packet and the term
qj

Ci!j
represents the queuing delay experienced by

the packet while waiting at node i for the link
i! j. The term propagation delay and link weight
have been used interchangeably in the text.

We have simplified the model shown in Fig. 1 for
our implementation of the AntNet algorithm. We
assume that the packets go directly to the outgoing
buffer and the outgoing buffer consists of a low pri-
ority and a high priority queue for all the outgoing
links. But the queuing delay in (17) and parameter ln
in (5) are still calculated using the number of pack-
ets waiting in the low priority queue for a particular
link.5 Further, we assume that each node is able to
remove one packet from its high priority queue
and low priority queue in the output buffer (for
any outgoing link) at a rate of 0.01 milliseconds
(ms). This assumption makes the queueing delays
negligible in most of our simulations.

We implement the AntNet algorithm under static
and dynamic conditions. In the static implementa-
tion of AntNet, we assume that the forward ants
use only the propagation delays for network explo-
ration and routing table updates. Thus, no queueing
or transmission delays that depend on the packet
size and capacity of the links are taken into account
during the static implementation of AntNet. In this
case, the Eq. (5) reduces to p0nd ¼ pnd and Eq. (17)
for forward ant packets reduces to Ti!j = Di!j. In
the dynamic implementation of AntNet, both the
queueing and transmission delays as well as the
propagation delays are used for choosing the next
node and updating the routing tables.

We compare the results of AntNet with Dijk-
stra’s shortest path algorithm. However, under
dynamic implementation, there is an important dis-
tinction for comparison of AntNet to Dijkstra’s
shortest path algorithm. In Dijkstra’s shortest path
algorithm, the cost of the shortest path is the sum of
individual link weights (propagation delays) along
the path. However in AntNet, the cost of the short-
est path used for updating the routing tables is
assumed to be the sum of link weights along the
5 The packets in the high priority queue and low priority queue
are served in FIFO order.
path and the transmission and queuing delays.
The delay in the queues is included in the Ant-
Net algorithm to account for the traffic conditions
in the network. Thus, there is no static shortest path
in the AntNet algorithm. However, for the compar-
ison of AntNet to Dijkstra’s shortest path algo-
rithm, we plot the weight of the paths in the
AntNet algorithm excluding the transmission and
queuing delays.

To validate our simulations, in addition to plot-
ting the pdf of the hopcount for the shortest path
and the paths in the AntNet algorithm, we also plot
the values for pdf of hopcount of the shortest path
obtained by using theory. It has been demonstrated
by van der Hofstad et al. [8] that for a fixed link
density p and sufficiently large N, the shortest path
tree in a random graph Gp(N) with uniformly dis-
tributed link weights is an uniform recursive tree
(URT). The probability density function of the hop-
count in the URT with N nodes is:

Pr½HN ¼ k� ¼ ð�1ÞN�ðkþ1ÞSðkþ1Þ
N

ðN � 1ÞðN � 1Þ! ; ð18Þ

where SðkÞN is the Stirling number of the first kind [1].
5. Results

5.1. Simulation parameters

The simulations are performed on random
graphs of the class Gp(N) consisting of N nodes
and independently chosen links with probability p.
The link weights reflecting the propagation delays
are uniformly distributed in (0,1] ms and the capac-
ity of each link is 8.192 Mbit/s for all our simula-
tions. For each random graph of the type Gp(N),
we used Dijkstra’s algorithm to compute the short-
est path between the source node and the destina-
tion node based on the link weights. On the other
hand, in AntNet, the data packets travel between
a given pair of nodes using the probabilistic routing
tables. Indeed, there could be a number of paths
that the data packets choose which might be the
shortest path, the second shortest path etc. For Ant-
Net, we find the average link weight (or end-to-end
delay) and the average hopcount of the paths that
the data packets use to travel between the source
and the destination node over the entire simulation
period. Furthermore, each simulation consists of
large number (105 or 104) of random graphs of the
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type Gp(N). The source (node 1) and destination
(node N) are chosen to be fixed in our simulations.

In our implementation of the AntNet algorithm,
the simulation period (SP) consists of the training
period (TP) and the test period (TEP). During TP,
only ant packets are generated while during TEP,
both the data and ant packets are generated. We
have chosen the simulation period (SP) to be
104 ms. The training period (TP) has been chosen
to be 103 ms. Each node generates data packets
according to a Poisson process with mean interarri-
val time of 12.5 ms. The destination for data packets
is chosen randomly. The size of data packets gener-
ated follows a negative exponential distribution
with mean of 4096 bits. The size of forward ant
packet is assumed to be 192 bits at the time the for-
ward ant packet is generated and the size increases
by 64 bits for each hop the forward ant travels.
The size of backward ant is assumed to be 500 bits.
The average number of neighbors of a node in a
random graph Gp(N) is p(N � 1), the default value
of parameter a is chosen as p*N in our simulations.
The maximum size of the output buffer, which is
assumed to be the sum of the sizes of all low priority
queues in the output buffer, is 109 bits. Table 1 lists
the various parameters and their default values that
we have chosen for our simulations. The values of
parameters a, c1, c2, a, confidence interval (c) and
the size of forward ant packet have been replicated
Table 1
Various parameters and their default values used in the
simulations

Name, symbol Value

Link capacity Ci!j 8.192 Mbit/s
Link weight (propagation delay) Uniformly distributed (0,1]

ms
Simulation period (SP) 104 ms
Test period (TEP) 9.103 ms
Training period (TP) 103 ms
Backward ant size 500 bits
Initial forward ant size 192 bits
a used in (5) 0.2
e 0.1
c1 used in (9) 0.7
c2 used in (9) 0.3
a used in (11) p*N

b used in (13) 3
Confidence interval (c) used in (10) 0.95
Output buffer size 109 bits
Mean interarrival time for data

packets
12.5 ms

Data packets TTL 10 ms
Mean data packet size 4096 bits
from [4]. The values of the parameter g, the maxi-
mum size of the observation window Wmax and
the ant generation rate have been varied extensively
and therefore are not listed in Table 1.
5.2. Static implementation of the AntNet algorithm

In this Section, we study the AntNet algorithm
under static conditions i.e., the forward ants use
only the propagation delays for network explora-
tion and routing table updates. Under these condi-
tions, a direct comparison between the static
shortest path calculated by using Dijkstra’s algo-
rithm and the AntNet algorithm paths can be made.
The ant generation interval is 4 ms during TP and
40 ms during TEP. The TTL of data packets is
assumed to be 20.0 ms. The value of parameters
g = 0.1 and Wmax = 50. Fig. 5 shows the simulation
results comparing the pdf of the hopcount and the
weight for the shortest path and the AntNet algo-
rithm paths6 for N = 25, 50 and p = 0.2 (The default
value of parameter e is chosen as 0.).

Fig. 5 shows that the AntNet algorithm con-
verges to a good solution. Furthermore, the perfor-
mance of AntNet improves when the value of
parameter e is chosen greater than 0. Since no queu-
ing delays are considered, the network exploration
in AntNet is restricted by the routing tables and
many paths are not explored (The value of p0nd in
Eq. (5) is equal to pnd). With e = 0.1, the probability
of exploring different paths increases leading to an
improvement in the performance of AntNet. Indeed
for static implementation, unfNet performs better
than AntNet using e < 1 since all the paths are
explored with equal probabilities in unfNet.
5.3. Dynamic implementation of the

AntNet algorithm

In this section, the AntNet algorithm implemen-
tation is dynamic but we compare the results with
Dijkstra’s shortest path algorithm. We also study
the effect of different parameters, such as ant gener-
6 The probability density function (pdf) of the hopcount and
the weight for the AntNet algorithm paths and the shortest path
are computed over (104) random graphs of the type Gp(N). In
AntNet, for each random graph of the type Gp(N), the path
weight and hopcount represent the ’’average path weight’’ and
‘‘average hopcount’’ for all the packets to travel between the
source and destination node during the entire simulation period.
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Fig. 5. The pdf of the (a) weight and the (b) hopcount of the Dijkstra’s shortest path, unfNet algorithm paths and the AntNet algorithm
paths for N = 25 and N = 50 for p = 0.2. The ant generation interval during the TP is 4 ms. Each simulation consists of 104 iterations
(g = 0.1, Wmax = 50).
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ation rate, squash function s(x), parameter b etc., on
the performance of AntNet. The performance com-
parison between AntNet and Dijkstra’s algorithm
and the optimization of various parameters for Ant-
Net is still valid since the transmission delays are
very small for forward ant packets. Furthermore,
the queueing delays are also small since packets
are removed from nodes at a very fast rate as com-
pared to the rate at which packets are generated.
Thus, the total delay experienced by forward ant
packets is still dominated by the propagation delays.
The TTL of data packets is assumed to be 10.0 ms
and the value of parameter e is 0.1 in all the simula-
tions in this section.7
5.3.1. The effect of the ant-generation rate and the
link density p

We first compare the performance of AntNet
with Dijkstra’s shortest path algorithm for different
ant-generation rates and different values of the link
density p for a 25 node network.

The values of TP and TEP are assumed to be
constant in our simulations as shown in Table 1.
To study the effect of ant generation rate on the
AntNet algorithm, we assume a fixed ant generation
rate during the TEP only varying the ant generation
rates during the TP. We consider three different
cases of the ant generation during the TP, namely
40, 4, 0.4 ms.8 The corresponding results for the
pdf of the hopcount and the weight for N = 25
7 In dynamic implementation of AntNet, there is negligible
difference between the performance of AntNet for e = 0 and
e = 0.1.

8 g = 0.1, Wmax = 50 for all the simulations in this sub-section.
and different values of the link density p are shown
in Figs. 6–8.

Figs. 6–8 show that the AntNet algorithm gives a
near optimal solution for a 25 node network at low
values of the link density p (p = 0.2 and p = 0.1).
The performance of AntNet algorithm decreases
as the value of the link density p in the random
graph Gp(N) is increased. Additional simulations
for N = 50 show similar trends as the link density
p is varied. Moreover, the comparison of AntNet
for N = 25 and N = 50 shows that the performance
of AntNet degrades as the network size N is
increased. Fig. 7 shows the validity of our compar-
ison between AntNet and the Dijkstra’s algorithm
since the results for AntNet are similar to the results
of AntNet under static implementation (Fig. 5).

Comparison of Fig. 6 with Figs. 7 and 8 show
that the AntNet algorithm converges to a good
solution even at low ant generation rates. In
Fig. 6, the ant generation interval is 40 ms during
both the TP and the TEP. Thus, only 25 forward
ants are generated by each node during the TP to
search for the shortest paths to all other nodes in
the network. The number of forward ants searching
for the shortest path increases as the ant generation
interval is decreased from 40 ms to 4 ms during the
TP. This leads to an improvement in the perfor-
mance of AntNet. As the ant generation interval is
decreased from 4 ms to 0.4 ms, the performance of
AntNet remains same. This can be attributed to
the fact that the variations in the ant generation rate
are related to the size of the moving observation
window Wmax and the parameter g. The size of
the moving observation window Wmax in above sim-
ulations is large enough to distinguish between ant
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Fig. 6. (a) The pdf of the weight of the Dijkstra’s shortest path and the AntNet algorithm paths (i) p = 0.8 and p = 0.6 (ii) p = 0.2 and
p = 0.1. (b) The pdf of the hopcount of the Dijsktra’s shortest path, AntNet algorithm paths and obtained by theory (i) p = 0.8 and p = 0.6
(ii) p = 0.2 and p = 0.1. The ant generation interval during TP is 40 ms. (Each simulation consists of 105 iterations.)

9 All paths searched by the forward ants lead to positive
reinforcement.
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generation intervals of 40 ms and 4 ms during TP.
But since the size of the moving observation window
is small, it can store only the times of last 50
forward ants generated from a given source to a
given destination. This indicates that even if the
ant generation rate is increased with a small window
size, the performance of AntNet remains same or
may even go down. Additional simulations show
that the AntNet algorithm performs better at
g = 0.02 and Wmax = 200 than at g = 0.1 and
Wmax = 50 for different ant generation rates and dif-
ferent values of the link density p.

We also performed simulations for the unf-
Net algorithm under identical conditions, as above.
Table 2 lists the simulation results for the unf-
Net algorithm for N = 25 and different values of
the link density p (p = 0.2 and 0.8). The results show
that unfNet performs worse than AntNet for low
ant generation rates (or large values of the ant gen-
eration interval). In unfNet, all the paths are contin-
uously searched independently of the routing tables.
While in AntNet, the probability that future for-
ward ants choose paths with large delays is
decreased by each forward ant. Therefore, in Ant-
Net, mainly low delay paths contribute to routing
table updates and the AntNet algorithm performs
well even with a low ant generation rate.9 When
the ant generation rate is high, the performance of
unfNet is comparable to the AntNet algorithm. This
can be attributed to the fact that the data traffic is
small and the variations in delays along different
paths is negligible.
5.3.2. Lattice topologies

In this Section, we investigate the performance of
AntNet for lattice topologies. We compare the per-
formance of AntNet with Dijkstra’s shortest path
algorithm for the lattice topology shown in Fig. 9.
The source and destination nodes D1 and D2 are
assumed to be fixed. The ant generation interval is
4 ms during TP and 40 ms during TEP (g = 0.1,
Wmax = 50. The value of parameter a is chosen as
5.) Fig. 10 shows the simulation results comparing
the pdf of the hopcount and the weight for the
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Fig. 7. (a) The pdf of the weight of the Dijkstra’s shortest path and the AntNet algorithm paths (i) p = 0.8 and p = 0.6 (ii) p = 0.2 and
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shortest path and the AntNet algorithm paths.
Fig. 10 shows that the AntNet algorithm performs
well for lattice topologies. Also, the performance
of AntNet degrades as the number of nodes in the
network is increased.

5.3.3. The effect of the moving observation window

size Wmax and the parameter g
In AntNet, the moving observation window is

used to store the cost of the shortest path from a
given source node to a given destination node. Fur-
thermore, the moving observation window is also
used to improve the accuracy of mean ld as shown
in (10). The optimal size of the moving observation
window is hard to determine because it is linked to
the ant generation rate and the parameter g. For
determining the optimal value of Wmax it is not
sufficient to calculate the number of forward/back-
ward ants alone. This is due to two reasons. First,
each forward ant does not search for a distinct path.
Second, the backward ants update the routing tables
at each of the nodes along the path for the given
destination as they travel from the destination node
to the source node. Under ideal conditions, if each
ant searches for one distinct path, the size of the
moving observation window should be equal to or
greater than the number of paths between any pair
of nodes in the network. Thus, at any instant of time
the moving observation window would contain the
shortest path. Indeed, the size of the moving obser-
vation window can be effectively chosen in small
networks where the number of paths between a pair
of nodes in the network is small. Our simulations
show that increasing the value of Wmax without
changing other parameters such as the ant genera-
tion rate and g leads to a small improvement in
the performance of AntNet.

The parameter g is used to estimate the mean ld

and the variance r2
d by using the exponential model

as shown in (1) and (2). The parameter g represents
how many of the previous forward ant’s trip times
effect the mean or average value. In the exponential
model, the weight of the current forward ant’s trip
time to a destination tz after m forward ants for
the particular destination have been received is
g(1 � g)m�z. The smaller values of g indicate that
the mean value is calculated over a large number
of forward ant trip time samples. Our simulations
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Fig. 8. (a) The pdf of the weight of the Dijkstra’s shortest path and the AntNet algorithm paths (i) p = 0.8 and p = 0.6 (ii) p = 0.2 and
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(ii) p = 0.2 and p = 0.1. Same scenario as in Fig. 5 but with an ant generation interval of 0.40 ms during the TP.

Table 2
The mean hopcount and weight for the unfNet algorithm for
N = 25

Link
density
p

Ant generation interval
during TP (ms)

E [path
weight] (ms)

E

[Hopcount]

0.8 40 0.75 1.82
0.8 4 0.63 1.62
0.8 0.4 0.59 1.55
0.2 40 1.38 2.96
0.2 4 1.2 2.67
0.2 0.4 1.16 2.61

p = 0.2 and 0.8. g = 0.1 and Wmax = 50.
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Fig. 9. The 49-node lattice topology used for our simulations.
The source node and the destination nodes D1 and D2 are
assumed to be fixed as indicated.
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show that changing g from 0.1 to 0.02 does not
effect the performance of AntNet significantly. This
indicates that at light traffic loads, the paths
between pair of nodes in the AntNet algorithm
quickly converge to the mean value for that path
making the second term in (1) redundant. The vari-
ations in parameter g might effect the performance
of AntNet, if the traffic conditions or topology of
the network varies. Under such conditions, the path
between a pair of nodes will deviate significantly
from the mean value. Thus, for a static topology
with low traffic loads, the AntNet algorithm is very
robust to changes in the parameter g.

Finally, to study the combined effect of the
parameters g, Wmax and the ant generation rates
on the performance of AntNet, we set the ant gener-
ation to a very high value i.e., the ant generation
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interval is 0.4 ms during the TP and 4 ms during the
TEP. We also choose a very large size of the moving
observation window i.e., Wmax = 16,000. The value
of Wmax is sufficient to store the trip times of all for-
ward ants generated by the given node as well as the
trip times of forward ants received due to the sub-
update method. Furthermore, the value of parame-
ter g is chosen as very small i.e., g = 0.001 so that
large number of sample trip times of forward ants
are used to calculate the mean and variance in (1)
and (2). Fig. 11 presents the simulation results com-
paring the pdf of the hopcount and the weight for
the shortest path, and the unfNet and AntNet algo-
rithm paths for different values of Wmax for N = 25
and p = 0.8.

Fig. 11 shows that the performance of AntNet
can be improved by varying the parameters g, Wmax

and the ant generation rates in conjunction with
each other. Thus, the inherent coupling between
ant generation rate and the parameters g and Wmax

contributes to the complexity and robustness of the
AntNet algorithm. Fig. 11 also shows that the per-
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Fig. 11. The pdf of the (a) weight and the (b) hopcount of the Dijkstra’s
paths for N = 25 and p = 0.8 (g = 0.001, Wmax = 16,000). Each simula
formance of unfNet is worse than AntNet, even
though the data traffic is small. In unfNet, the for-
ward ants move independently of the routing tables
and all the paths are searched with equal probabili-
ties. In AntNet, if the path is found to incur a large
delay, the probability of choosing the particular
path by the future forward ants becomes less. But
since every path found receives a positive reinforce-
ment (in both unfNet and AntNet), the number of
non-optimal paths updating the routing tables in
unfNet is more.
5.3.4. The effect of the confidence interval, squash

function s(x) and the parameter b
We first study the effect of confidence interval on

the performance of AntNet. The second term in (10)
i.e., rdffiffiffiffiffiffi

1�c
p ffiffiffiffiffiffiffiffiffi

jW max

p
j

is used to improve the accuracy in

estimation of the mean ld but introduces additional
complexity in the AntNet algorithm. Fig. 12 shows
the simulation results comparing the pdf of the hop-
count and the weight for the Dijkstra’s shortest path
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shortest path, unfNet algorithm paths and the AntNet algorithm
tion consists of 104 iterations.



1.0

0.8

0.6

0.4

0.2

0.0

f W
N
(x

)

3.53.02.52.01.51.00.50.0

path weight x (ms)

 Ant-Net E[Ant-Net]=0.968, var[Ant-Net]=0.246
 Dijkstra E[Dijkstra]=0.75, var[Dijkstra]=0.155

tsup=µd

 Ant-Net E[Ant-Net]=0.963 ,var[Ant-Net]=0.24
 Dijkstra E[Dijkstra]=0.75 ,var[Dijkstra]=0.15

N=25
p=0.2

0.4

0.3

0.2

0.1

0.0

P
r 

[H
=

k]

108642

hop k

 Ant-Net E[Ant-Net]=2.58, var[Ant-Net]=1.044
 Dijkstra E[Dijkstra]=2.945, var[Dijkstra]=1.93

tsup = µd

 Ant-Net E[Ant-Net]=2.578, var[Ant-Net]=1.04
 Dijkstra E[Dijkstra]=2.95 ,var[Dijkstra]=1.92

N=25
p=0.2

Fig. 12. The pdf of the (a) weight and the (b) hopcount of the Dijkstra’s shortest path and the AntNet algorithm paths for N = 25 and
p = 0.2 for tsup = ld and tsup calculated using (11) (g = 0.1, Wmax = 50, a = 20). The ant generation interval is 40 ms during the TP and
TEP. Each simulation consists of 105 iterations.

11

2120 S.S. Dhillon, P. Van Mieghem / Computer Networks 51 (2007) 2104–2125
and the AntNet algorithm paths, when the term
rdffiffiffiffiffiffi

1�c
p ffiffiffiffiffiffiffiffiffi

jW max

p
j
is not used in the estimation of tsup. This

case is shown as tsup = ld in Fig. 12. The simulations
are performed for N = 25 and p = 0.2. Also, the
value of parameter a is chosen as 20 such that the
average value of the coefficient a

Nk
is 4. (The ant gen-

eration interval is 40 ms during TP and TEP. The
value of parameters g = 0.1 and Wmax = 50.)

Comparison of Figs. 12 and 6 shows that choos-
ing a large value of parameter a improves the
performance of AntNet. Furthermore, under the
simulation parameters considered, the removal of
the term rdffiffiffiffiffiffi

1�c
p ffiffiffiffiffiffiffiffiffi

jW max

p
j

does not change the perfor-

mance of AntNet. Thus, Eq. (10) could be simplified
to reduce the complexity of AntNet.

The parameter b determines whether single or
multi-path routing is followed by the data packets.
The value of parameter b needs to be greater than
1 to prevent the data packets from choosing links
with very low probabilities. A large value of b
(b� 1) indicates that the data packets follow only
single-path routing. On the other hand b = 1 indi-
cates that the data packets follow the routing tables
and may even choose links with very low probabil-
ities. Thus, b = 1 corresponds to multi-path routing.
We compare the performance of AntNet algorithm
for b = 1 and b = 100. When b = 100, the data
packets are effectively following a single-path rout-
ing. Fig. 13 shows the simulation results comparing
the pdf of the hopcount and the weight for the
shortest path and the AntNet algorithm paths for
p = 0.1 for b = 1 and b = 100 for a 25 node
network.10
10 The ant generation interval is 40 ms during the TP and the
TEP. The value of parameter g = 0.1 and Wmax = 50.
Fig. 13 shows that the performance of AntNet
improves as b is increased for p = 0.1. This shows
that there is a greater probability that the shortest
path has been correctly identified in the Ant-
Net algorithm at lower values of p. Thus, making
b = 1 prevents the data packets from choosing the
path with the highest probability and leads to data
packets following sub-optimal paths. On the other
hand, b = 100 improves the performance of AntNet
since the data packets follow only a single-path
routing which has a greater probability of being
the shortest path also.

5.4. Traffic measurements

In this Section, we compare the end-to-end delays
for AntNet and Dijkstra’s shortest path algorithm. A
set of randomly chosen nodes are congested during
each iteration and have an additional queueing delay
of 10 ms for every packet. To make a fair comparison
between the algorithms, we assume that the size of all
data packets is same i.e., 4096 bits and the TTL for
data packets is set to infinity. In addition to the nor-
mal data, we send a small number of data packets
along the shortest path from the source to the desti-
nation node11 (source routing or src_rt). Fig. 14
shows the simulation results comparing the pdf of
the hopcount and the end-to-end delay (weight) for
the Dijkstra’s shortest path and the AntNet algorithm
paths for N = 50 and p = 0.1. (The ant generation
interval is 4 ms during TP and 40 ms during TEP.
The value of parameter g = 0.1 and Wmax = 50.)
Node 1 is the source node and node 25 is the destination node.
In AntNet, the data packets are generated at a uniform interval
of 5 ms, while in src_rt, the data packets are generated at a
uniform interval of 100 ms.
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Fig. 14 shows that the AntNet algorithm per-
forms better than single shortest path routing in
terms of end-to-end delay. In src_rt, since Dijkstra’s
algorithm is used to compute the shortest path from
the source to the destination, the queueing delays
are not considered. During the iterations when there
are no congested nodes along the shortest path, the
end-to-end delays for the data packets using src_rt
and AntNet are comparable. However, when there
are one or more congested nodes along the shortest
path, the data packets using src_rt incur queueing
delays along the congested nodes. On the other
hand, the AntNet algorithm performs load balanc-
ing and reduces the probability of data packets
choosing the paths with congested nodes.

Table 3 lists the simulation results for the Ant-
Net, unfNet and the src_rt algorithms for N = 50
and N = 25 (p = 0.2,0.1). We consider different
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source routing path for N = 50 and p = 0.1. The ant generation inte
Wmax = 50). Each simulation consists of 104 iterations.
number of congested nodes and ant generation
rates. Table 3 shows that unfNet generally performs
worse than AntNet under varying traffic loads. The
performance of unfNet becomes worse as compared
to the AntNet algorithm, when the ant generation
rate is low and the size of the network is increased.
In AntNet, the network exploration is restricted to
paths that incur low delays and only these paths
are used to update the routing tables. In unfNet,
the forward ants move independently of the routing
tables. Thus, even the large delay paths are used to
update the routing tables leading to a poor perfor-
mance of the unfNet algorithm. This shows that
the unfNet algorithm reduces the complexity but,
in general, leads to a decrease in the performance.

To further study the load balancing capabilities
of AntNet, we assume that during each iteration,
a set of five randomly chosen nodes are congested
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Table 3
The expected hopcount/weight for the unfNet, AntNet, and the src_rt algorithms for N = 25, 50 (p = 0.2,0.1) with different number of
congested nodes and different ant generation rates (g = 0.1 and Wmax = 50)

Routing
protocol

Network size
(N)

Link density
p

Ant generation interval (ms) Congested
nodes

E [path delay]
(ms)

E [hopcount]

TP TEP

unfNet 50 0.1 4 40 8 5.6 3.8
AntNet 50 0.1 40 40 8 5.8 4.7
unfNet 50 0.1 40 40 8 12.7 6.2
AntNet 25 0.2 4 40 4 3.4 3.2
src_rt 25 0.2 4 40 4 5.8 2.9
unfNet 25 0.2 4 40 4 3.5 2.8
AntNet 25 0.2 40 40 4 3.7 3.4
unfNet 25 0.2 40 40 4 5.5 3.3
AntNet 25 0.2 4 4 4 3.36 3.3
unfNet 25 0.2 4 4 4 3.1 2.8
AntNet 50 0.2 4 40 4 3.1 3.3
src_rt 50 0.2 4 40 4 4.3 3.5
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after 5000 ms of the SP. For each iteration, we com-
pute the packet delay and the hopcount averaged
over 250 ms moving windows. Fig. 15 shows the
simulation results for the packet delay and hop-
count for N = 50 and p = 0.1 averaged over 104

iterations (The ant generation interval is 4 ms
during TP and TEP. The value of parameters
g = 0.02 and Wmax = 200). Fig. 15 shows how Ant-
Net adapts to the introduction of congested nodes.
Before 5000 ms there is small data traffic, and the
average end-to-end delay and hopcount for the Ant-
Net algorithm are constant. After the nodes become
congested, there is a sudden increase in the end-to-
end delay. However, the AntNet algorithm adjusts
to the changing traffic leading to a decrease in the
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Fig. 15. Transient analysis of AntNet for N = 50 and p = 0.1. The path
104 iterations. The ant generation interval is 4 ms during the TP and T
end-to-to-end delay. On the other hand in src_rt, a
single shortest path is used for routing throughout
the SP. As a result when the nodes become con-
gested, the average end-to-end delay increases.

6. Conclusions

The AntNet algorithm performs well for random
graphs and lattice topologies. The AntNet algorithm
gives a near optimal solution at p = 0.2 and p = 0.1
for a 25 node network. This can be attributed to the
fact that the number of paths between any given
pair of nodes in the network at p = 0.2 and
p = 0.1 is small. Since the AntNet algorithm starts
searching for the shortest path in a random fashion,
1000080006000

weight and delay are averaged over 250 ms moving windows and
EP (g = 0.02, Wmax = 200).
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the smaller the number of paths between a pair of
nodes the greater is the probability that the algo-
rithm converges to a near optimal solution. The per-
formance of AntNet algorithm degrades as the
network size or the link density p is increased.

The AntNet algorithm is robust to changes in the
training of the network and converges to a good
solution even at low ant generation rates. Further
increasing the ant generation rates leads to an
improvement in the performance but this is related
to choice of other parameters such as Wmax and g.
Indeed, the coupling of various parameters is the
inherent cause of complexity in the AntNet algo-
rithm and changing one parameter favorably may
not lead to an improvement in performance until
the other parameters are also changed. The perfor-
mance of AntNet can be improved by using a large
value of the parameter a in the squash function s(x).
In this case, only the near optimal paths update the
routing tables. The complexity of AntNet can be
reduced by a number of methods, such as choosing
parameter b = 1 and simplifying the calculation of
parameter r, but this generally comes at the expense
of performance.

Due to inherent load balancing, AntNet per-
forms better than shortest path routing under vary-
ing traffic loads. For small networks, when the
traffic loads are small and the ant generation is suf-
ficiently high, a modified version of the AntNet algo-
rithm (unfNet) can be used. This reduces the
complexity of the AntNet algorithm. The robust-
ness and near optimal performance of the Ant-
Net algorithm makes it an attractive solution for
routing in communication networks.
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In future work, we will study the AntNet algo-
rithm for dynamic networks such as ad hoc wireless
networks. The scalability of AntNet would also be
investigated. Furthermore, other modifications for
the AntNet algorithm such as using both data and
ant packets for updating the routing tables would
also be considered. The AntNet algorithm would
be considered a truly distributed and scalable algo-
rithm, if the nodes are able to learn and adjust the
various parameters to be used in the algorithm. This
would also be investigated in future work.

Appendix

We include additional results for the AntNet
algorithm under static conditions i.e., the forward
ants use only the propagation delays for network
exploration and routing table updates. The simula-
tion parameters are assumed to be the same as
Section 5.2 but the link weights reflecting the pro-
pagation delays are assumed to be 1 ms for all the
links. Fig. 16 shows the simulation results
comparing the pdf of the hopcount and the weight
for the shortest path and the AntNet algorithm
paths for N = 25, 50 and N = 100 for p = 0.2 and
p = 0.8.

We show additional results for the AntNet algo-
rithm under dynamic conditions (Section 5.3).
Fig. 17 shows the simulation results comparing the
pdf of the hopcount and the weight for the shortest
path and the AntNet algorithm paths for N = 50
and N = 100 for p = 0.1. The ant generation inter-
val is 40 ms during TP and TEP. (The value of
parameters g = 0.02 and Wmax = 200.)
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Fig. 17. The pdf of the (a) weight and the (b) hopcount of the Dijkstra’s shortest path and the AntNet algorithm paths for N = 50, 100
and p = 0.1. The ant generation interval is 40 ms during TP and TEP (g = 0.02, Wmax = 200). Each simulation consists of 104 iterations for
N = 50 and 103 iterations for N = 100.
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