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Abstract— When transport in networks follows the shortest
paths, the union of all shortest path trees G∪spt can be regarded
as the “transport overlay network”. Overlay networks such
as peer-to-peer networks or virtual private networks can be
considered as a subgraph of G∪spt. We construct two types
of G∪spt: (a) G∪spt(α) where α is the extreme value index
of polynomial link weights and (b) G∪spt(ρ) where ρ is the
correlation coefficient of the 2-dimensional correlated uniformly
distributed link weights in QoS routing.

By tuning the extreme value index α of polynomial link
weights, a phase transition occurs around a critical extreme value
index αc of the link weight distribution. If α > αc, transport
in the network traverses many links whereas for α < αc, all
transport flows over a critical backbone: the Minimum Spanning
Tree (MST). In QoS routing with 2-dimensional link weights, as
we decrease the correlation coefficient ρ from 1 to −1, the overlay
G∪spt becomes denser, and is equal to the substrate when ρ = −1.
With the Erdös-Rényi random graph as the underlying topology,
we show that the overlay G∪spt(ρ) is also close to an Erdös-Rényi
random graph Gp (N), an observation with potential for mobile
and wireless ad-hoc networks. The existence of such a controllable
transition in the overlay structure may allow network operators
to steer and balance flows in their network.

I. INTRODUCTION

Routing in communication networks is based on shortest
paths(or the best approximation due to e.g. the distracting
influence of BGP) between any two nodes of the network.
The resources of a network are most efficiently used when
traffic follows shortest path [16]. Even for the Internet, it is a
reasonable assumption, since roughly 80% of the routes seems
to correspond to shortest paths.

In this paper, we study the overlay G∪spt formed by the
union of all shortest path trees SPT in a graph G (N,L)
with N nodes and L links, where a SPT is the union of
the shortest paths from one node to all the other nodes. The
relation between the overlay G∪spt and the underlying graph
or substrate G (N,L) is shown in Figure 1. The overlay G∪spt
can be regarded as the “transport overlay network” on top of
the network topology or substrate. In the Internet, for example,
traffic is carried along the overlay G∪spt, composed of a
fraction of the links in the underlying network, which is just
the maximal part of the Internet that we can actually observe
by traceroute measurements.

The importance of overlay networks is believed to grow
in the future. One example of an overlay network is peer-
to-peer networks [21] with n distributed systems sharing
resources such as content, CPU cycles and storage, where
n is smaller than the number of nodes N in the underlying
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Fig. 1. The relation between the overlay network and the underlying topology.

network. The peer-to-peer overlay network can be regarded
as a union of paths connecting these n nodes. Another type
of overlay network is a virtual private network (VPN), a
private network that uses a public network (usually the Internet
or the telephony network) to connect remote sites or users
together. The physical networks traversed by both the peer-to-
peer and the VPN overlay networks are a subgraph of G∪spt.
The robustness in such overlay networks, the persistence of
epidemics [2] and the vulnerability to node failures and attacks
[10] are depending on structural properties of G∪spt that are
studied in this paper.

The overlay G∪spt, not the substrate, determines the net-
work’s performance: any link removed in G∪spt will definitely
impact at least those flows of traffic that pass over that link.
Here we show that, instead of changing the infrastructure of a
network [22], the overlay network G∪spt can be controlled by
varying the link weight structure. Current best-effort routing
simply computes appropriate paths based on a single, relatively
static measure (e.g. the delay, the monetary cost, etc.). Several
quality-of-service (QoS) based networking frameworks (e.g.,
IntServ, DiffServ, MPLS) have been extensively investigated.
QoS routing takes into account multiple measures including
both the applications requirements’ and the availability of
network resources. We present two ways of constructing the
overlay G∪spt: (a) one by changing the single link weight per
link as in best-effort routing and (b) another by changing the
link weight vector assigned to each link as in QoS routing
[13].

The paper is outlined as follows. First, in Section II,



we explain the modeling of the underlying topology, two
schemes of tuning link weight structure and the algorithms
for calculating the overlay G∪spt. The structure of the G∪spt
with uniformly distributed link weights is analyzed in Section
III. The effect of these two link weight tuning schemes on the
structure of the constructed overlay G∪spt are presented in
Section IV and Section V. Finally, our results are summarized
in Section VI.

II. MODELING OF TOPOLOGY, LINK WEIGHT TUNING AND
ROUTING ALGORITHMS

In this paper, we consider the class of dense underlying
topologies: the Erdös-Rényi random graph Gp(N). Tradition-
ally, complex networks have been modeled as Erdös-Rényi
random graphs. Beside that, the Erdös-Rényi random graphs
are reasonably accurate models for peer-to-peer networks [12]
and ad-hoc networks [18]. The classes of lattice and power-law
graphs will not be discussed and will only be mentioned when
we demonstrate the uniform phase transition of the overlay
network in Section IV. The main reason to omit these sparse
graphs as substrates is that the overlay network is very close
to the underlying topology. Besides, the so claimed power-law
graph such as the Internet, the WWW, protein interaction and
metabolic networks contains, in fact, more redundent links due
to the limitation of its detection method [1], [3], [5], which is
consistent with our dense underlying topology assumption.

We confine ourselves to additive and strict positive link
weight measures (e.g. the delay, the monetary cost, etc.)
such that the path weight equals the sum of the weights of
links that constitute that path. Multiplicative measures (e.g.
packet loss) can be transformed into additive weights by
using the logarithm. In large networks, the weights or weight
vectors of links are hardly correlated and can be considered as
independent to a good approximation. Two ways of link weight
tuning are investigated and two corresponding algorithms to
find the shortest path or the optimal path are used:

(a) Each link is specified by a single weight measure.
The overlay G∪spt is found by calculating the shortest paths
between all node pairs with the Dijkstra algorithm [6]. Since
the shortest path (SP) is mainly sensitive to the smaller, non-
negative link weights, the simplest distribution of the link
weight w with a distinct different behavior for small values is
the polynomial distribution,

Fw(x) = xα1x∈[0,1) + 1x∈[1,∞), α > 0, (1)

where the indicator function 1x is one if x is true else it is zero.
The corresponding density is fw(x) = αxα−1, 0 < x < 1.
The exponent

α = lim
x↓0

logFw (x)

log x

is called the extreme value index of the probability distribution.
The link weight structure can be controlled by the extreme
value index α.

(b) Each link is specified by a 2-dimensional link weight
vector −→w (u → v) = [w1(u → v), w2(u → v)], where
the component wi is a QoS measure such as delay, jitter,

cost, etc. We use SAMCRA [13], a Self-Adapting Multiple
Constraints Routing Algorithm to find a shortest or optimal
path that satisfies the constraint1 [L1, L2] such that wi(P) =X
(u→v)∈P

wi(u → v) ≤ Li and minimizes the path length

function l(P) = max
1≤i≤2

h
wi(P)
Li

i
. Apart from being attractive

in a theoretical analysis, the uniform distribution on [0, 1]
is the underlying distribution to generate an arbitrary other
distribution and is especially interesting for computer simu-
lations [15, Chap. 4]. Furthermore, specific dependencies or
correlations exist between QoS measures due to e.g. Weighted
Fair Queueing scheduling. Hence, we investigate the link
weight structure where the two vector components are cor-
related uniformly distributed random variables ∈ [0, 1] with
correlation coefficient ρ [7]. We tune the correlation coefficient
ρ to change the structure of the overlay G∪spt.

All simulations in the following Sections consisted of gen-
erating 104 different underlying topologies with link weight
structure (a) or (b). In each graph, the overlay G∪spt is built
up as the union of shortest paths or optimal paths calculated by
Dijkstra’s algorithm or SAMCRA. Statistic properties of the
overlay G∪spt such as the degree distribution or the spectrum,
the eigenvalues of the adjacency matrix are derived.

III. UNIFORMLY DISTRIBUTED LINK WEIGHTS

When α = 1, the polynomial distribution (1) becomes the
uniform distribution, which is equivalent to the link weight
tuning scheme (b) with ρ = 1. In this section, we analyze
the structure of the overlay G∪spt when the link weights in
underlying topology are i.i.d. uniformly distributed.

Theorem 1: For large N , the degree distribution in the
overlay G∪spt on top of the Erdös-Rényi random graph Gp(N)
with link density p above the disconnectivity threshold pc and
equipped with i.i.d. uniformly distributed link weights is

Pr[DG∪spt = k] =
(−1)N−1−kS(k)N−1

(N − 1)! (2)

where S
(k)
N is the Stirling number of the first kind [11].

Proof: See [9] ¤
Conjecture 2: For large N , the overlay G∪spt on top of

the Erdös-Rényi random graph Gp(N) with link density p
above the disconnectivity threshold pc and equipped with i.i.d.
uniform link weights is a connected Erdös-Rényi random
graph Gpc(N).

Proof: Partially proved in [9] ¤.
The simulation result of the degree distribution of G∪spt in

KN with i.i.d. uniform link weights is shown in Figure 2 (a)
and it is nicely matched with the result calculated by Theorem
1. For large N and p > logN

N , in [15, Section 16.3.1], it is
shown that also (2) tends to a Poisson distribution

Pr[DG∪spt = k] =
(−1)N−1−kS(k)N−1

(N − 1)! ∼ (logN)
k

Nk!

1Actually, we choose loose constraints such that an optimal path can always
be found via SAMCRA.
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Fig. 2. Degree distribution and spectrum of the overlay G∪spt on top of
K100 with i.i.d. uniformly distributed link weights.

The binomial degree distribution of the Erdös-Rényi random
graph Gp(N) also tends to a same Poisson distribution with
mean logN . Hence, for large N ,

Pr

∙
DG logN

N

= k

¸
=

µ
N − 1
k

¶
pk (1− p)

N−1−k
¯̄̄̄
p= logN

N

∼ (logN)
k

Nk!

The spectrum, the eigenvalues of the adjacency matrix, of
G∪spt(α) in K100 illustrated in Figure 2 (b), is close to
the spectrum of a random graph according to the Wigner’s
Semicircle Law [15, Appendix B]. This correspondence is an
additional support for Conjecture 2.

If Conjecture 2 is correct, the role of the simple Erdös-
Rényi random graph Gp(N) may seem to be more important
in overlay networks, such as e.g. peer-to-peer networks than
in substrate topologies, where only a few complex networks
belong to the class of Erdös-Rényi random graphs. Finally, the
asymptotic results in this section motivate why a confinement
to the complete graph (in later sections) is much less restrictive
than it appears at first glance.

IV. ONE DIMENSIONAL LINK WEIGHT TUNING

In this section, we investigate how the structure of the
overlay G∪spt(α) varies as we change the extreme value index
α of the polynomial distributed link weights. If α → ∞, it
follows from (1) that w = 1 almost surely for all links. Hence,
the overlay G∪spt is the same as the underlying topology, since
the link weight structure does not differentiate between links.
Hence, the α → ∞ regime is not further considered. When
α = 1, the polynomial distribution (1) becomes the uniform
distribution, which has been studied in Section III. In the α→
0 regime, all flows are transported over the minimum possible
fraction of links in the network: the minimum spanning tree
(MST)2 [17]. Any failure in a node or link disconnects the
MST into two parts and may result in obstruction of transport
in the network. The α → 0 regime may constitute a weak
regime although it is highly efficient: only N − 1 links are
used which means that a minimum number of links need to

2It has been proved that a MST belongs to G∪spt [9] and G∪spt is always
connected. Hence, the event { G∪spt contains N − 1 links } is equal to the
event {G∪spt =MST}.

be controlled and/or secured. From a traffic engineering point
of view, choosing larger α will lead to the use of more paths
and, hence, a more balanced overall network load.

Van Mieghem and Magdalena [14] have found that, by
tuning the extreme value index α, a phase transition occurs
around a critical extreme value index αc. The critical extreme
value index αc is defined as FT (αc) =

1
2 where FT (α) =

Pr
£
G∪spt(α) =MST

¤
. When α > αc, the overlay G∪spt(α)

contains more than N−1 links whereas for α < αc, all trans-
port traverses a critical backbone consisting of N − 1 links,
which is the MST . Here, we include, besides the complete
graphs KN and 2-lattices, but also 3-lattices and Havel-Hakimi
[8] power law graphs as underlying topologies.As shown in
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Fig. 3. The probability distribution FT (α) as a function of the normalized
α/αc.

Figure 3, normalized by αc, the same phase transition curve
is observed for all these underlying topologies. As α increase,
the transport is more likely to traverse over more links and
the overlay G∪spt(α) is less probably to become a tree. These
additional simulations over those reported in [14] strengthen
the belief that the curve FT (α) ≈ 2−(

α
αc
)2 is universal for all

graphs that are not trees.
Figure 4 demonstrates how the degree in G∪spt(α) changes

as we tune the extreme value index α of the polynomial
distributed link weights. When α is small α ≤ 0.2, the
overlay follows almost the same degree distribution, which
decreases even faster than an exponential distribution, the
degree distribution of URT [15]. For a tree structure, the
average degree is a constant, 2(N−1)

N . If the variance of its
degree distribution is small, the tree tends to span over longer
distance, which can be characterized by the average hopcount
of a shortest path. For example, a star has the minimum
average hopcount 2 while its degree is either N−1 or 1. Hence,
when the overlay G∪spt(α) is as sparse as a tree, it is expected
to possess less higher degree nodes compared to a URT and
it spans a longer distance. As α increases, more links appear
in the overlay, and the nodes tend to have a higher degree. The
number of links in the overlay G∪spt varies between N − 1
when α → 0 and N(N−1)

2 when α → ∞, the overlay G∪spt
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Fig. 4. Degree distribution of the overlay G∪spt on top of K100 with i.i.d.
polynomial link weights.

is equal to the underlying topology.
Simulation results with substrate KN are shown in this

section. In fact, when the underlying topology is the Erdös-
Rényi random graph Gp(N) with p < 1, the overlay G∪spt
structure changes similarly. The overlay G∪spt on top of the
Erdös-Rényi random graph Gp(N) follows the same phase
transition as in Figure 3. For large α, the link density of the
overlay G∪spt is limited by the link density of the underlying
Erdös-Rényi random graph.

V. TWO DIMENSIONAL LINK WEIGHT TUNING

We assign two uniformly distributed link weights with
correlation ρ to each link in the underlying graph and the
correlation coefficient ρ can be varied within [−1, 1]. When
ρ = 1, the two link weights of each link are the same, which
reduces to the one dimensional uniformly distributed link
weight analyzed in Section III. When ρ = −1, −→w (u→ v) =
[w1(u→ v), w2(u→ v)] = [w1(u→ v), 1−w1(u→ v)]. We
recall the definition [13] of the path length function l(P) =
max
1≤i≤2

h
wi(P)
Li

i
. Since we assume the same constraint for these

two link weight measures L1 = L2, which are large such that
the shortest path always satisfies the constraints. Hence, the
path length function to find the optimal path can be reduced
to l(P) = max

¡w1(P)
w2(P)

¢
, where wi(P) =

X
(u→v)∈P

wi(u→ v).

The path length of a h ≥ 2 hop path is

lh(P) = max
µ
w1(P)
w2(P)

¶
= max

µ
w1(P)

h− w1(P)

¶
≥ h

2
≥ 1

while the path length of a one hop path

l1(P = u→ v) = max

µ
w1(u→ v)

1− w1(u→ v)

¶
< 1 ≤ lh(P)

Hence, when ρ = −1, the link between the source and
destination, if exists, is always the shortest path. All links in
the underlying graph will appear in the overlay G∪spt. In other
words, the overlay G∪spt(ρ=−1) is the same as the substrate,
which corresponds to G∪spt(α→∞) in Section IV.
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Fig. 5. Degree distribution and spectrum of the overlay G∪spt in K100

with 2-dimensional correlated uniformly distributed link weights.

When the underlying topology is the complete graph, the
degree distribution of the overlay G∪spt displayed in Figure
5(a) is close to the binomial distribution, the degree dis-
tribution of an Erdös-Rényi random graph. The dotted line
is the degree distribution of the Erdös-Rényi random graph
Pr[D = k] =

¡
N−1
k

¢
pk(1 − p)N−1−k where p is set as

the link density3 of the corresponding overlay G∪spt(ρ). As
shown in Figure 5(b), the spectrum of the overlay G∪spt(ρ)
with different correlation coefficient ρ is close to the spectrum
of an Erdös-Rényi random graph according to the Wigner’s
Semicircle Law [15, Appendix B]. Both the degree distribution
and the spectrum indicate that the overlay G∪spt(ρ) on top
of K100 with 2-dimension correlated uniform link weights is
close to an Erdös-Rényi random graph. The same behavior has
been observed when the substrate is not the complete graph
but the Erdös-Rényi random graph: the overlay G∪spt(ρ) is
also always close to an Erdös-Rényi random graph.
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Fig. 6. Link density of the overlay G∪spt on K100 and G0.6(100) with
2-dimensional correlated uniformly distributed link weights.

The link density of the overlay G∪spt, the number of links
Lo in the overlay G∪spt divided by the maximum number
of links in a graph N(N−1)

2 , is plotted in Figure 6. When

3It is the average link density E[ 2Lo
N(N−1) ] of the 104 generated overlay

G∪spt in each simulation, where Lo is the number of links in the overlay
G∪spt.



ρ = −1, the overlay G∪spt(ρ=−1) is equal to the substrate
Gps(N), where ps is the link density of the underlying Erdös-
Rényi random graph. The link density of the overlay is then
determined by the link density of the underlying topology.
According to conjecture 2, when ρ = 1, the overlay G∪spt
is a connected Erdös-Rényi random graph Gpc(N) with link
density pc, which is independent of the link density of the
substrate. The link density of the overlay G∪spt(ρ) decreases
exponentially from ps the link density of the substrate to pc ∼
logN
N as a function of the correlation coefficient ρ.

VI. CONCLUSION

Taking into account both current best-effort routing and QoS
routing, we construct two kinds of overlay networks: G∪spt(α)
by tuning the extreme value index α of polynomial link
weights and G∪spt(ρ) by tuning the correlation coefficient ρ
of the 2-dimensional correlated uniformly distributed random
link weights. The observation of the structural transitions of
the overlay G∪spt as shown in the table below is considered
as the main contribution of this paper.

one dimensional α ∈ [0,∞) two dimensional ρ ∈ [−1, 1]
G∪spt(α<αc) =MST
G∪spt(α=1) ' Gpc(N) G∪spt(ρ=1) ' Gpc(N)
G∪spt(1<α<∞) 6= Gp(N) G∪spt(−1<ρ<1) ' Gp(N)
G∪spt(α→∞) = Gps(N) G∪spt(ρ=−1) = Gps(N)

The overlay G∪spt as defined is always connected. With one
dimensional link weights tuning, the overlay G∪spt(α) varies
from the sparsest structure (the MST ) to the densest, the
substrate Gps(N). In a two dimensional link weight tuning,
the overlay G∪spt(ρ) is always close to the Erdös-Rényi
random graph. The role of the simple Erdös-Rényi random
graph Gp(N) may seem to be more important in overlay
networks formed on dense substrates such as popular peer-
to-peer networks. The link density of G∪spt(ρ) varies within
[ logNN , ps], which is smaller than the link density range of
G∪spt(α): [ 2N , ps].

The understanding of the overlay structure with variable
link weight structure points to the possibility to control the
network structure or to steer or balance transport by tuning
the link weight structure. Here, we focus on homogeneous
link weight structures, and more studies on heterogeneous link
weight tuning can be interesting. Apart from the theoretical
investigation provided in this paper, further examination about
feasibility and scalability of link weight tuning in real large
networks is needed.
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