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Abstract— Transport in large networks follows near to shortest
paths. A shortest path depends on the topology as well as on the
link weight structure. While much effort has been devoted to
understand the properties of the topology of large networks,
the influence of link weights on the shortest path received
considerably less attention. The scaling of all link weights in
a graph by a positive number does not change the shortest
path and most of the link weight distributions can be generated
as a function of the uniform distribution. Hence, we compute
analytically and by simulation the effect of shifting the uniform
distribution for the link weights from [0, 1] to (a, 1] where
1 > a > 0. The properties of the shortest path (hopcount and
weight) vary for different a as well as the topology. Furthermore,
when a is large, the traffic is more likely to follow the minimum
hopcount shortest path, which leads to more balanced traffic
traversing the network.

I. INTRODUCTION

Routing in communication networks is based on shortest
paths (or the best approximation) to obtain high efficiency of
resources usage. We confine ourselves to additive and strict
positive link weights (e.g. the delay, monetary cost, etc.) such
that the shortest path is the minimizer of the sum of the link
weights of any path between those two nodes. In this article,
we concentrate on properties of shortest paths, in particular,
the influence of the link weights on the shortest path.

Although link weights are obviously needed to compute a
shortest path in a graph, in practice, little is known about
the link weights. In fixed networks, link weights are usually
chosen as part of an optimization process which is also termed
as traffic engineering [1]. Here, we will not select the set of
link weights to achieve the maximal traffic capacity and we
will not infer link weights from the shortest path measurements
[2]. Instead, we are interested in the combined modeling of
the topology of the network and the link weights. We will
first investigate how the link weight structure affects resulting
routes.

Partial studies of effects of link weights on the shortest
path in complex networks are found in [3] which characterize
many biological, social and communication systems [4]. We
investigated the influence of shifting the uniform distribution
of link weights, because other link weight distributions can
be generated as a function of the uniform distribution. The
selection of the link weight structure is one of the key issues
for network simulations, to which our work contributes.

In this paper, we will briefly review theory of the shortest
path in Section II. The motivation to investigate the shifted
uniform distribution in different classes of graphs is also ex-
plained. The shifted uniform distribution is defined in Section

III. In the next Section IV and V, we show by simulation and
by analytic computation how the characteristics of the shortest
path change when the link weight distribution is shifted away
from zero in random graph and square lattice. The results are
summarized in Section VI.

II. THE SHORTEST PATH

In large networks, the link weights are hardly correlated and
can be considered as independent to a good approximation.
With uniformly distributed link weights, all links contribute
to the sum, the weight of the shortest path and this case
corresponds to weak disorder. Earlier in [12], it was shown
that the Shortest Path Tree (SPT) in the complete graph with
uniform (or exponential) link weights is precisely a Uniform
Recursive Tree (URT). A URT is asymptotically the shortest
path tree in the Erdös-Rényi random graph Gp(N) (see e.g.
[6]) with i.i.d. regular link weights and link density p above
the disconnectivity threshold pc ∼ lnN

N . The interest of the
URT is that analytic modeling is possible (see e.g. [11, Part
III]) and that it serves as a reasonable first order model to
explain measurements in the Internet.

Since the shortest path is mainly sensitive to the smaller,
non-negative link weights, the probability distribution of the
link weights around zero will dominantly influence the proper-
ties of the resulting shortest path. Hence, if we add a constant
to all link weights, the changes of the shortest path can be
expected. Indeed, suppose that the shortest path contains many
hops and the second shortest path only a few. In that case, there
always exists a positive constant that, after added to all link
weights, dethrones the initial shortest path.

Apart from being attractive in a theoretical analysis, the
uniform distribution on [0, 1] is the underlying distribution
to generate an arbitrary other distribution and is especially
interesting for computer simulations. Hence, this distribution
appears most often in network simulations and deserves – for
this reason alone perhaps – to be studied.

The understanding of the shortest path with independent,
shifted uniformly distributed link weights will also give more
insights into the stability of paths [18]. For instance, the
changes in the shortest path due to the adding of constant
noise to all link weights. The interest in understanding the
stability of paths lies in the fact that it could direct efficient
triggers for network updates.

We study the following complex network models: the Erdös-
Rényi random graph Gp(N), the square lattice and the scale-
free graph. Traditionally, the complex networks have been
modeled as Erdös-Rényi random graphs. Besides that, the



Erdös-Rényi random graphs are reasonably accurate models
for peer-to-peer networks [13] and ad-hoc networks [7]. The
square lattice, in which each node has four neighbors, is the
basic model of a transport network as well as in percolation
theory [10]. It is also frequently used to study the network
traffic [15]. The scale-free graph [16] is proposed as model for
complex networks that have a power-law degree distribution
[5], such as the World Wide Web and the Internet.

III. SHIFTED UNIFORMLY DISTRIBUTED LINK WEIGHTS

Any shifted uniformly distributed link weights w can be
specified by

fw(x) =
1a0<x≤b
b− a0

(1)

The shifted link weight probability density function (1) can be
considered as a result from adding a constant a0 to a uniform
link weight in [0, 1] when b = 1 + a0.

The scaling of all link weights in the graph by a positive
number does not change the shortest path. If (capital) W
denotes the weight of the shortest path, the scaling of the link
weights w by 1

b , results in a weight W
b of the shortest path

with probability density function (pdf )

fW
b
(x) =

d

dx
Pr

∙
W

b
≤ x

¸
=

d

dy
Pr[W ≤ y] · dy

dx

¯̄̄̄
y=bx

= bfW (bx)

After scaling by 1
b , the only specifier of the link weight is the

parameter a = a0/b and (1) reduces to

fw(x) =
1a<x≤1
1− a

, 0 ≤ a < 1 (2)

IV. THE SHORTEST PATH IN Gp(N) WITH SHIFTED
UNIFORMLY DISTRIBUTED LINK WEIGHTS

This Section is devoted to explain the curious behavior of
the pdf of the weight and hopcount of the shortest path in the
Erdös-Rényi random graphs Gp (N) with shifted uniform link
weights specified by (2). The main interest here lies in a > 0
because the case a = 0 is known in detail as mentioned in
Section II.

A. The complete graph (p = 1)
Let us first confine to the complete graph KN of which any

other graph is a subgraph.
1) The case 1

2 ≤ a < 1: We use w(Ph=i) to denote the
weight of a path with i hops. In the complete graph with link
weights specified by (2) with 1

2 ≤ a < 1, the shortest path
must be the direct link, because the weight w(Ph>1) of any
path with h > 1 hops and the weight w(Ph=1) of the direct
link between the source and destination nodes obey

w(Ph>1) =
hX

j=1

w(nj → nj+1) ≥
2X

j=1

w(nj → nj+1)

> 1 ≥ w(Ph=1)

Hence, the weight of the shortest path is uniformly distributed
within (a, 1].

The same idea can be applied to explain why all the pdfs
of the weight of the shortest paths have certain uniformly
distributed part when 0 < a < 1

2 . The direct link w is always
the shortest path with w(Ph=1) = w provided w ∈ (a, 2a].
Thus, the probability density of the uniform part is fW (x) =
1

1−a , x ∈ (a, 2a]. There are two extreme cases. When a = 0,
the uniformly distributed area becomes a point with value 1,
which corresponds to the point fW (0) = 1. When a ≥ 1

2 ,
the pdf is uniformly distributed for x ∈ (a, 1]. Second, since
the weight of the direct link w(Ph=1) is bounded by 1, the
maximum possible number of hops in the shortest path P ∗

follows from minw(Ph>1) ≤ 1 as h <
£
1
a

¤
where [x] denotes

the integer part of the real number x. Hence, if 1
k+1 ≤ a < 1

k
for any integer k ≥ 1, the shortest path has at most k hops.

2) The case 1
3 ≤ a < 1

2 : When the direct link weight lies
in (a, 2a], the weight of shortest path is uniformly distributed
as explained above. When the direct link weight lies in (2a, 1],
the one hop path and the N − 2 two hops paths compete to
become the shortest path P ∗. Hence,

fW (x) = fW |w(Ph=1)≤2a(x) Pr [w(Ph=1) ≤ 2a]
+ fW |w(Ph=1)>2a(x)Pr [w(Ph=1) > 2a]

=
1a<x≤2a
1− a

+
1− 2a
1− a

· fW |w(Ph=1)>2a(x) · 12a<x≤1

Paths between a node pair with one or two hops are inde-
pendent, because they do not have links in common and link
weights are assumed to be independent. Then we arrive at

Theorem 1: In the complete graph KN equipped with link
weights uniformly distributed within (a, 1] and 1

3 ≤ a < 1
2 ,

the pdf of the weight of the shortest path is

fW (x) =
1a<x≤2a
1− a

+
12a<x≤1
1− a

Ã
1− 1

2

µ
x− 2a
1− a

¶2!N−2

+
(N − 2)(1− x)(x− 2a)

(1− a)3

×
Ã
1− 1

2

µ
x− 2a
1− a

¶2!N−3

· 12a<x≤1 (3)

Proof: See [14]. ¤
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Fig. 1. The pdf of the weight of the shortest path in KN with link weights
specified by (2) with a = 0.4 both computed by (3) and simulated.



This analytic result (3) is verified by the simulation in Figure
1 for a = 0.4. We carry out 104 iterations, and find the shortest
path between an arbitrary node pair in each generated Gp (N)
with the given link weight distribution.

3) The case a < 1
3 : When a < 1

3 , the same reasoning as
above shows that the shortest path can have three or more hops.
In general, paths with three or more hops can be overlapping,
which prevent simple analytic derivations and necessitates a
combinatorial approach as shown in [9].

B. The random graph (p < 1)
We will extend the previous analysis to the broader class of

Erdös-Rényi random graphs Gp (N).
1) The Case 1

2 ≤ a < 1: The pdf of the weight of the
shortest path consists of two parts: the uniform part when
the direct link exists and the more complicated part when
the direct link does not exist. For the second part, the pdf
starts from 2a, since ah < w(Ph) ≤ h. By the law of total
probability, we have

fW (x) = fW |Ph=1(x) Pr [Ph=1 exists]
+ fW |Ph>1(x) Pr [Ph=1 does not exist]

=
p

1− a
· 1a<x≤1 + (1− p)fW |Ph>1(x) (4)

The probability Pr[w(P ∗h=2) ≤ 3a] that the shortest path with
two hops is smaller than 3a, the lower bound of the weight
of a 3 hops path, can be derived as

Pr[w(P ∗h=2) ≤ 3a] =

⎧⎪⎪⎨⎪⎪⎩
1− (p

2

2 (3−
1

1−a)
2 + 1− p2)N−2

for 1
2 < a ≤ 2

3
1− (1− p2)N−2

for 2
3 < a ≤ 1

≥ 1− (1− 1
2
p2)N−2

which increases as a and tends to 1 for N sufficiently large
and p ≤ 1. This justifies the approximation

fW |Ph>1(x) ≈ fw(P∗h=2)(x) (5)

where the possibility that the shortest path has more than 2
hops is neglected. The pdf of the weight of the shortest path
in this case can be calculated [14] as

fW (x) ≈
p

1− a
· 1a<x≤1 + p2(1− p)(N − 2) · 12a<x≤1+a

(6)

× x− 2a
(1− a)2

Ã
1− 0.5p2

µ
x− 2a
1− a

¶2!N−3

+ p2(1− p)(N − 2) 2− x

(1− a)2
· 11+a<x≤2

×
Ã
0.5p2

µ
2− x

1− a

¶2
+ 1− p2

!N−3

The third part is very small when p and N are large enough
and can be approximated by 0. The approximation in (5) is

more precise for larger a. Therefore, we examine the worst
case a = 0.5. When a = 0.5, (6) becomes

fW (x) ' 2p · 10.5<x≤1 + 4p2(1− p)(N − 2)(x− 1) (7)
× (1− 2p2(x− 1)2)N−3 · 11<x≤1.5

Simulation in Figure 2 confirms the precision of (6).
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Fig. 2. The pdf of the weight of the shortest path with a = 0.5, p = 0.8
and N = 25 computed by (7) and by simulations.

2) The case a < 1
2 : Similar to the corresponding case a <

1
3 for the complete graph, no simple analysis is expected for
this case due to the dependence of paths that compete to be
the shortest. Simulation results are shown in Figure 3.
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Fig. 3. The pdf of the weight of the shortest path in G0.8 (25) with a ≤ 0.5
(in steps of ∆a = 0.05).

C. Summary
In the complete graph, we have shown that the case a ≥ 1

3
is analytically tractable. Earlier [8], the case for a = 0 has
been computed analytically, which leaves the case a ∈

¡
0, 13

¢
open as a problem that still requires an analytic solution.

In random graphs, if a is not too small, almost all shortest
paths are shown to consist of a few hops which seems to
agree with practice in multi-hop wireless networks. In these
networks where the link weight represents the delay, the value
of a is indeed bounded from below by (a) the propagation
delay and (b) the minimum processor time to transmit an IP
packet. On the other hand, interpretations of simulations that
target e.g. to compare routing algorithms or protocols should
take the quite small hopcount into account when a shifted



uniform link weight distribution as (1) is used in small world
networks.

V. THE SHORTEST PATH IN A SQUARE LATTICE WITH
SHIFTED UNIFORMLY DISTRIBUTED LINK WEIGHTS

The Erdös-Rényi random graphs Gp (N) belong to the class
of "small-world" graphs [17], where the average hopcount of
the shortest path is usually small, with average on the order
O(logN). In a lattice with N nodes, the hopcount of the
shortest path is much larger, on average of the order O(

√
N).

In this Section, we investigate the weight and the hopcount
of the shortest path in a two-dimensional square lattice with
shifted uniformly distributed link weight specified by (2). Two
cases are studied: (a) the source and destination are positioned
at the diagonal points and (b) they are randomly chosen among
the N nodes in the lattice.

A. The source and destination are fixed at diagonal points
For the class of square lattices with N nodes, the minimum

hopcount between the diagonal points is hmin = 2
√
N − 2

and the number of paths with such minimum hopcount is¡
2x
x

¢
, where 2x = hmin. Figure 4 shows the pdf fW (x) of the

Fig. 4. The pdf of the weight of the shortest path in square lattice with
0 ≤ a < 1 (in steps of ∆a = 0.1) and N = 1024.

weight of the shortest path for different values of 0 ≤ a < 1
in a square lattice with N = 1024 nodes. Each pdf with a
specified a resembles a Gaussian which is characterized by its
mean and standard deviation. This is in contrast to the random
graph, where the pdf changes dramatically as a increases as
shown previously in Section IV.As shown in Figure 5, both the
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Fig. 5. The average and standard deviation of the weight of the shortest path
in a square lattice with 1024 nodes and 0 ≤ a < 1 (in steps of ∆a = 0.1).

average and standard deviation of the weight of the shortest
path seem to be linear with a. When a is large, and exactly

a = 1, the shortest path must have hmin = 2
√
N − 2 = 62

hops. In this case, the average weight of the shortest path must
be linear with a.

Assume that we have three graphs G1, G2 and G3, which
have the same topology, a square lattice. The links in G1
are uniformly distributed within (0, 1]. The graph G2 with
uniform links distributed within (b, 1+b] is obtained by adding
a constant b to all links of G1. After scaling all links in G2 by
1
1+b , we obtain G3 which has the shifted uniformly distributed
link weights specified by (2) with a = b

1+b . The shortest paths
in G2 and G3 are the same, because the shortest path will not
change when all the links are scaled. When a is large, the
shortest path in G2 and G3 has hopcount hmin. Moreover, it
is equal to P ∗hmin , the shortest path among paths with hmin
hops in G1. Hence, in G3, which corresponds to the graph we
simulated, the average weight of the shortest path obeys

E[W3(P
∗)] =

E[W1(P
∗
hmin

)] + b ∗ hmin
1 + b

(8)

= (hmin −E[W1(P
∗
hmin)]) ∗ a+E[W1(P

∗
hmin)]

where E[W1(P
∗
hmin

)] is the average weight of P ∗hmin in G1.
Our simulation results show that when a ≥ 0.5, the shortest
path always has hmin hops, which indicate that (8) only holds
for a ≥ 0.5. For any 0 ≤ a < 1,

E[W3(P
∗)] ≥ E[W1(P

∗)] + b ∗ hmin
1 + b

where the shortest path in G3 with weight W3(P
∗) may be

different from the shortest path in the corresponding G1 with
weight W1(P

∗). The reasons, why in Figure 5, the average
weight seems always linear with a, are:
• In G1 where a = 0, the average weight of the shortest

path E[W1(P
∗)] is very close to E[W1(P

∗
hmin

)]. Curve
fitting of the E[W3(P

∗)] with a ≥ 0.5 indicates that
E[W1(P

∗
hmin

)] = 15.93 while simulation results show
that E[W1(P

∗)] = 15.77.
• The hopcount of the shortest path in G1 E[H1(P

∗)] =
64.2 is very close to hmin = 62.

Similarly, when a is large, the variance of W1(P
∗
hmin

) in
G1 is equal to the variance of W2(P

∗) in G2. However, the
variance in G3 is V ar[W3(P

∗)] = ( 1
1+b)

2·V ar[W1(P
∗
hmin

)] =
(1− a)2 · V ar[W1(P

∗
hmin

)]. Hence, the standard deviation is

σ[W3(P
∗)] = −a ∗ σ[W1(P

∗
hmin)] + σ[W1(P

∗
hmin)]

Since the W1(P
∗
hmin

) is close to W1(P
∗) in G1, the standard

deviation σ[W3(P
∗)] of the weight of the shortest path in G3

is almost linear with a.

B. The source and destination are chosen randomly
The analysis can be extended to a more general case, where

the source and destination nodes are randomly chosen. We
show by simulation again the two points: in G1 or when a = 0,
the hopcount of the shortest path is very close to hmin and the
weight of the shortest path W (P ∗) is very close to W (P ∗hmin).

As shown in Figure 6, with 106 iterations simulation, the
hopcount of the shortest path is very close to the minimum
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Fig. 6. The average hopcount of the shortest path in a square lattice with
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hopcount H(P ∗) ≈ hmin. The shortest path subject to a given
hopcount is more complex to calculate than the unconstrained
shortest path problem. In fact, that problem is NP-complete.
We observe that, when with a large enough, all shortest paths
follow the shortest minimum hopcount path. Hence, we have
W1(P

∗
hmin

) = W3(P
∗) · (1 + b) − hmin · b ,where a = b

1+b .
The problem of calculating the shortest minimal hopcount path
can then be reduced to calculating the shortest path in the
corresponding graph G3.
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Fig. 7. The weight of the shortest path W (P∗) and of the shortest minimum
hopcount path W (P∗hmin) in a square lattice with N = 1024 and a = 0.

The pdf of weight of the shortest minimum hopcount path
W1(P

∗
hmin

) and the weight of the shortest path W1(P
∗) are

shown in Figure 7 to be close with average E[W1(P
∗
hmin

)] =
6.77 and E[W1(P

∗
h )] = 6.31.

In summary, after adding a small constant to all links in a
square lattice, as the definition of G1 and G2 in Section V-A,
the routing in the lattice is more stable than that in the random
graph. The constant link weight b added may be caused by
e.g. reserving certain resources of the network or by the delay
due to a traffic jam. The difference between the weight of
the updated shortest path and weight of the original shortest
path can be upper bounded by (H(P ∗) − hmin) ∗ b while
H(P ∗) ≈ hmin. Similarly, the traffic can be routed along the
shortest minimal hopcount path. Then the difference between
its weight and the weight of the updated shortest path is at
most W1(P

∗
h )−W1(P

∗
hmin

), which is small and decreases to
zero when b is large.

VI. CONCLUSION

We have analyzed the effect of shifting the uniform distri-
bution for the link weights from [0, 1] to (a, 1] where a > 0.
By choosing a larger value of the link weight parameter a, the
shortest path is more probable to have a smaller hopcount and
the network resources are used more efficiently with balanced
traffic traversing the network. In the Erdös-Rényi random
graph, the case that a > 0 causes the properties of the shortest
path (hopcount and weight) to be dramatically different than
for a small (a→ 0). However, the shortest paths in the square
lattice are more stable in contrast to the small-world graphs.
The intuition is that, in respective of the link weights, if hmin is
large, the i.i.d. link weights only seem a small perturbation of
the w = 1 case. As a final remark, the scale-free networks are
tree-like sparse graphs. There are few paths between the source
and destination nodes [18]. Hence, the scale-free networks are
expected to be stable when link weights are shifted.
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