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a b s t r a c t

This paper presents a rigorous analytic study of gossip-based message dissemination schemes that can be
employed for content/service dissemination or discovery in unstructured and distributed networks.
When using random gossiping, communication with multiple peers in one gossiping round is allowed.
The algorithms studied in this paper are considered under different network conditions, depending on
the knowledge of the state of the neighboring nodes in the network. Different node behaviors, with
respect to their degree of cooperation and compliance with the gossiping process, are also incorporated.
From the exact analysis, several important performance metrics and design parameters are analytically
determined. Based on the proposed metrics and parameters, the performance of the gossip-based dissem-
ination or search schemes, as well as the impact of the design parameters, are evaluated.

! 2010 Elsevier B.V. All rights reserved.

1. Introduction

The problem of disseminating and searching for content1 in dis-
tributed and unstructured networks – such as typical peer-to-peer
(P2P) and ad hoc networks – is challenging. Content dissemination
can be realized in two ways: either the content itself is disseminated
or, instead, an advertisement message indicating its availability and
location is spread. Searching for content is typically achieved
through the dissemination of a query looking for the content itself
or for the information about its location. In both cases, a message
needs to be disseminated. For content dissemination, this message
contains either the content itself, or the advertisement information
about the content. During content searching, the message to be dis-
seminated is a search query looking for the content. Consequently, a
scheme that effectively disseminates the message, would be applica-
ble to all the aforementioned problems and such a scheme is the
focus of this paper.

We consider gossip-based (or commonly referred to as
epidemic-based) message dissemination schemes that emerge as
an approach to maintain simple, scalable, and fast content dissem-
ination and searching in today’s distributed networks. In this
paper, two major contributions are achieved.

First of all, distributed systems nowadays are large-scale and
highlydynamic. Therefore, peersmayonly communicatewith a sub-
set of peers in the network, and they have to update their views of
the network periodically with others to ensure reliability2 during
information dissemination. However, performing an exact analysis
of the gossip-based information dissemination process with dynamic
peer partial views is extremely difficult. As we will show in Appendix
A.1, the major challenge of analyzing the aforementioned problem is
to define the dissemination process rigorously. The total number of
states that it requires to describe the entire system exactly is
2ðNþ1Þ2þNþ1. Hence, an exact analysis of such a scenario requires a very
large state space, which is computationally not feasible.

Secondly, to guarantee the reliability of gossip-based informa-
tion dissemination, it is preferred to achieve uniformity3 during
neighbor selection, as underlined in [6]. Consequently, we are
motivated to perform an exact analytic modeling of gossip-based
message dissemination schemes under the assumption of uniform
selection of multiple neighbors over the entire distributed network.
The self-concerned nature and social dimensions of the peers is also
captured, by incorporating the notion of cooperation. Important
performance metrics, that can reflect the performance of the
gossip-based algorithms, are also determined analytically: e.g. the
distribution of the gossiping rounds to achieve a certain network
coverage, or to discover content located in one or more locations.
In addition, the impact of key factors such as (a) the number of
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neighbors to forward the message to, (b) the level of cooperation of
the nodes, and (c) the number of content replicas available when
searching for it, etc., are evaluated. Our modeling, as well as the eval-
uated metrics, provide insights in selecting proper design parame-
ters so as to achieve a targeted performance.

The rest of the paper is organized as follows. In Section 2, we re-
view two major assumptions when employing gossip-based con-
tent dissemination schemes, and previous work performed with
respect to the two assumptions. Section 3 presents preliminary
definitions and the description of the gossip-based message dis-
semination algorithms under study. Section 4 describes the
analytic models developed for the study of the algorithms, along
with the metrics to be employed to assess the effectiveness of
the considered schemes. Related work on spreading a rumor, that
appears in [18], is also discussed in this section. In Section 5, we
present the analytic results and a discussion about the impact of
the key design parameters. In Section 6, we conclude the paper.

2. Gossip-based information dissemination models:
background and related works

In recent years, gossip-based algorithms, which mimic the
spread of disease or rumor, have been considered as efficient and
robust means for database maintenance and replication [4],
information dissemination [6], topology construction [11], peer
membership management [16], data aggregation [12] and failure
detection [22]. It has also been implemented in many real-world
applications: e.g. in Tribler [19], gossip-based algorithms are used
to update and maintain peer information; in CoolStreaming [23],
video content delivery is scheduled by using the gossip-based
algorithm; in wireless ad hoc networks [10], routing information
is updated between neighbors in an epidemic manner.

It is commonly assumed that, a random node i in the distributed
network (with N + 1 nodes) maintains a list ofm peers (1 6m 6 N),
which is referred to as a peerlist Li, to communicate with. The
dimension, li = dim(Li), of the vector Li is defined as the size of peer-
list Li. Usually, a node i is not allowed to appear in its own peerlist
Li, meaning that i R Li. If the peerlist contains all the other peers in
the network, i.e. li = N, we say that the peer has a complete view of
the network. If a peer i only knows a subset of peers in the network,
meaning that 1 6 li < N, the peer is then said to have a partial view
of the network. In the following, we review some previous work
that studied the performance of gossip-based algorithms associ-
ated with the aforementioned two assumptions: complete and par-
tial view of the network.

2.1. Peer complete view

In the early study of gossip-based information dissemination
algorithms, it is assumed that every peer knows all the other peers:
that is, each peer has a complete view of the network (li = N). This
assumption applies in a distributed network with moderate net-
work size, e.g. hundreds of nodes; andhas been studied inmany the-
oretical papers, e.g. Demers et al. [4] for database maintenance,
Birman et al. [2] for reliable multicasting, Karp et al. [14] in the case
of information dissemination, Kempe et al. [15] and Jelasity et al.
[12] regarding gossip-based information aggregation. A complete
view of peers, however, is not a realistic assumption in large-scale
distribution networks. Because distribution systems such as P2P
networks and ad hoc networks are featuredwith frequent peer join-
ings and departures. Thus, it is difficult to update the complete node
membership in a highly dynamic system. Moreover, maintaining a
complete view of peers at every node in the network incurs extra
overload as a result of frequent exchanges of peer information as
well as increased database maintenance functionalities.

2.2. Dynamic peer partial view

To design a scalable gossip-based information dissemination
algorithm in large-scale distributed networks, the partial view of
peers is taken into account. In this case, a randompeer i only dissem-
inates the information to a subset of peers in the system, i.e.
1 6 li < N. In order to guarantee the reliability of gossip-based infor-
mationdissemination, and to copewith peer dynamics, the viewof a
peer needs to beperiodicallyupdated, according to somepeerlist ex-
change schemes. By periodically exchanging peerlists, the freshness
(in terms of the age and availability) of peers can be updated. A de-
tailed description of different peerlist exchange schemes can be
found in [13]. There are many papers that have studied the perfor-
mance of gossip-based algorithms from different aspects. For in-
stance, Eugster et al. [5] and Ganesh et al. [9] evaluated the
performance of gossip-based algorithms with dynamic peer partial
views during information dissemination. Kermarrec et al. [16] re-
lated the reliability of information dissemination to several system
parameters, e.g. system size, failure rates, and number of gossip tar-
gets. The influence of different network topologies in disseminating
information can be found in [8]. In [21], an exact as well as a mean-
field approximate analyticmodel of spreading virus in a general and
fixed network topology is proposed. Themodel in [21] considers the
virus spread in an undirected graph characterized by a symmetric
adjacency matrix A. The epidemic threshold, which is associated
with the largest eigenvalue of thematrixA is also rigorously defined.

2.3. Uniformity during neighbor selection

As mentioned in [6], the assumption of uniform peer selection
guarantees the reliability (which is the focus of this paper) of infor-
mation dissemination. Uniform neighbor selection can be easily
satisfied when peers have a complete view of the network. In the
case where peers only have partial views, we assume that the uni-
formity can be achieved, by properly initializing the peerlists, and
by employing appropriate peerlist exchange schemes. For instance,
in [5], a lightweight probabilistic broadcast algorithm is proposed,
so that uniformly distributed individual views can be maintained,
regardless of the peerlist size li of a random peer i. However, the
design of such peerlist exchange schemes, and of peer selection
methodologies with partial views is out of the scope of this paper.

3. Preliminary definitions and algorithm description

We focus on the gossip-based information dissemination prob-
lem under the fundamental assumption of uniform neighbor selec-
tion over the entire network. The exact analysis of modeling
gossip-based information disseminationwhen peers have dynamic,
partial views is not feasible, as illustrated in Appendix A.1. The
assumption of complete uniformity during neighbor selection
allows exact modeling and performance analysis, as discussed by
Pittel [18] and Karp et al. [14] in the case of information dissemina-
tion, and by Kempe et al. [15] regarding gossip-based information
aggregation. The above papers studied parallel communication in
which each peer selects a single neighbor in the network to commu-
nicatewith at every step,which can be inefficient if there are several
neighbors available. Therefore, we aremotivated to analyze the net-
work performance under the circumstance that random communi-
cation with multiple peers is allowed. The level of cooperation by
the peers is also considered.

We consider gossip-based information dissemination and
searching over a distributed network with N + 1 peers, where a
unique identification number (ID) i, 1 6 i 6 N + 1, is assigned to each
peer. The information to be propagated can be a file, a music, a vi-
deo, a search query or a control message. In a gossip-based scheme,
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communication between neighbors takes place periodically, which
is commonly defined as gossiping rounds. To achieve uniformity, we
assume that uniform selection of multiple neighbors in one gossip-
ing round is performed, and neighbor communication is delivered
over a connecting physical or virtual link. The node that initiates
the message dissemination process is referred to as the initiator,
which is assumed to be the only informed node at the beginning
of the process. Any node that receives the message will become
an informed one, and will remain informed thereafter. In the first
round (r = 1) the initiator selects randomly k neighbors4 or gossip-
ing targets, 1 6 k 6 N, to forward the message to. In each round, all
the informed nodes select k gossiping targets randomly and inde-
pendently to forward the message to. The number of informed
nodes, in round r, denoted by Xr, is non-decreasing with r. Similarly,
the process of the number of uninformed nodes, denoted by
Ur = N + 1 $ Xr, which refers to the nodes that have not received
the message by round r, is non-increasing.

A node in the network, participating in the gossiping process as
expected, is classified as cooperative. Such nodes always accept
messages forwarded to them, become informed and forward the
message to others according to the rules. If a node is not coopera-
tive, it is referred to as non-cooperative. The non-cooperative nodes
are presented in social and P2P networks as a consequence of re-
source-preservation concern or simply selfish attitude of the peers.
In this paper, the level of cooperation in the network will be cap-
tured by the cooperation probability b, 0 < b 6 1, associated with
each node. Nodes with cooperation probability b = 1 are always
cooperative. Nodes with b = 0 are in essence not part of the net-
work and this degenerate case is not considered. The following
assumptions are made regarding b to facilitate the analysis: (1) b
is time-invariant and common to all nodes; (2) Once a node deci-
des to be cooperative (or non-cooperative), it is cooperative (or
non-cooperative) to all nodes that select it in the same round;
(3) In each round, a node decides to be cooperative or non-cooper-
ative independently of its choices in previous rounds and of the
choices of others. Once a node decides to be cooperative, it partic-
ipates in the dissemination until the end of the gossiping process.
The degree of cooperation is similar as the gossiping probability
implemented in gossip-based routing protocols, see [10]. However,
we allow (cooperative) nodes to forward the same content again,
because they may choose different neighbors to gossip with in
the next round. The overall objective of employing gossip-based
algorithm is to disseminate the message as fast as possible, so that
every node in the network is aware about the message.

Many variants of gossip-based algorithms exist based on vari-
ous criteria and levels of information availability. In this paper,
we study two fundamental cases which are distinguished by the
policy of choosing gossiping targets, namely, the blind and smart
gossiping-target selection schemes (in short, the blind and smart
selection schemes). We describe the two schemes in more details
in the sequel. Practical issue such as the maintenance of gossiping
history is not the focal point of this paper.

3.1. The blind gossiping-target selection scheme

Under this scheme, no information about the status (informed
or not informed) of the neighbors is available. The k gossiping tar-
gets are selected randomly from the N neighbors. This scheme is

thus referred to as blind gossiping-target selection, and is illus-
trated in Fig. 1. In round r = 1, all k = 2 gossiping targets cooperate.
In round r = 2, all the three informed nodes (1, 2 and 3) select each
other as gossiping targets. Thus, the number of informed nodes re-
mains the same (X2 = X3 = 3). In round r = 3, all the three informed
nodes select different gossiping targets, in which nodes 4, 5, 6, 7
are uninformed nodes, and node 2, 3 are informed ones. Since
nodes 5 and 6 decide to be non-cooperative in this round (1 $ b la-
belled in the corresponding link), the number of informed nodes in
round r = 4 is X4 = 5. The blind gossiping-target selection scheme
models a network with anonymous peers, or the case in which
nodes do not keep log files with all the neighbors that they have
contacted. We consider the blind gossiping-target selection
scheme as the worst case because repetitious selection of gossiping
targets may slow down the speed of information dissemination.

3.2. The smart gossiping-target selection scheme

In the smart gossiping-target selection scheme, it is assumed
that the nodes know the identity of their neighbors, and have the
complete information about their status, in terms of being or not
being informed about the message under dissemination. Such
information is piggybacked on the periodically exchanged control
packets, as part of the standard neighborhood discovery process.
In this way, the knowledge about node status are provided to the
neighboring nodes, so that a node can avoid sending the samemes-
sage to the nodes that already knew it. The smart selection leads to
a faster message dissemination compared to the blind one, as al-
ready informed nodes are avoided, as shown in Fig. 2. The smart
selection serves as the optimal case for information dissemination.
If N + 1 $ Xr < k, every node will be informed, meaning Xr+1 = N + 1
in the next round, because it is sufficient that an informed node
chooses less than k targets.

4. Analysis of the gossip-based message dissemination

In this section, a rigorous and exact analysis of the proposed
gossip-based message dissemination schemes is presented. An
early study of the information dissemination problem is found in
[18]. In each round, every informed person passes on the informa-
tion to k = 1 neighbors, selected randomly and independently of all
its previous choices and of all the choices of the other N people. A
person may choose itself as gossiping target. Pittel [18] has derived
the exact expression for the transition probabilities of the process
{Xr,rP1} with k = 1 as follows

Pr½Xrþ1 ¼ jjXr ¼ i' ¼

Nþ1$i
j$i

! "

ðNþ1Þi
Pj$i

t¼0
ð$1Þt

j$ i
t

# $
ðj$ tÞi if j$ i P 0

0 if j$ i < 0

8
><

>:

ð1Þ

where i is the number of informed nodes in round r, and j is the
number of informed nodes in round r + 1.

Although the asymptotic behavior when each informed person
passes the rumor to k neighbors at every round is discussed in
[18], the exact model is not given. In this paper, we extend the ex-
act analysis to the general case with kP 1 in Appendix A.4, by
applying the framework developed in this section.

Under the assumption of random neighbor selection over the
complete N + 1 nodes in the network, the process of the number
of the informed nodes at the beginning of round r, {Xr,rP 1} can
be modeled as a discrete Markov chain (MC) with state space
S = {1,2, . . . ,N + 1}. Let P denote the (N + 1) ( (N + 1) transition
probability matrix. Each entry in P, Pij = Pr[Xr+1 = jjXr = i], denotes
the probability that the MC moves from state i to state j in one

4 In P2P networks, every peer is provided a list of peers to communicate with. In
some applications, such as BitTorrent [3], the maximum number of peers that a node
can connect with is limited to certain threshold, depending on the specific
configuration. Our assumption of selecting k neighbors aims to incorporate such
implementation in real-world distributed networks. In practice, we have k) N.
However, we do not make such constraint during the analytic study, so that 1 6 k 6 N
is possible.
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round. We denote theprobability state vector s[r] in round r by
s[r] = [s1[r],s2[r], . . . ,sN+1[r]], where si[r] = Pr[Xr = i]. Clearly, the ini-
tial probability state vector is s[0] = [1,0,0,0, . . . ,0].

The number of informed nodes after every round never de-
creases, and thus Xr+1 P Xr, such that the transition probability ma-
trix P is an upper triangular matrix, with all zeros in the lower
triangular part of P. The (N + 1)-state MC has an absorbing state5 be-
cause the network never leaves state N + 1 when all the nodes are in-
formed. The steady state vector is just the absorbing state of
p = [0 0 0 . . . 1]. In this triangular matrix P, the diagonal entries are
the corresponding eigenvalues of P. The diagonal element on the last
row is PN+1,N+1 = 1, which is the absorbing state.

In the sequel, the state transition probabilities are derived by
employing a combinatorial approach. This approach is inspired by
the occupancy problem in the balls and bins model introduced in
the Appendix, when the informed nodes are balls, and the gossiping
targets are bins. Finally, performance metrics are proposed for the
two schemes accordingly.

4.1. The transition probabilities Pij

4.1.1. The blind gossiping-target selection scheme
Under this scheme, a node chooses its gossiping-target ran-

domly from the N neighbors in the network (excluding itself).
The transition probabilities can be calculated by applying the balls
and bins model as introduced in Appendix A.3.

4.1.1.1. Cooperative nodes with b = 1. In order for the MC to move
from state i to state j, z = j $ i new nodes will need to be selected
by the i informed ones, after the current round. Under the blind
selection algorithm, each of the i informed nodes selects k different
neighbors from the set of j $ 1 nodes (a node is not allowed to

choose itself as target) blindly. The z new nodes should be selected
at least once, by the i informed nodes. Otherwise the Markov pro-
cess cannot arrive at state j.

Determining Pij is analogous to finding the probability of ran-
domly placing r groups of k balls to n $ 1 bins (colored in red
and white), with at least m = z red bins being occupied, as de-
scribed in Appendix A.3. The operation of the i informed nodes,
selecting k different neighbors from the set of j $ 1 nodes, is equiv-
alent to placing the r groups of k balls to the n $ 1 bins, excluding
the white bin that has the same numbering as the group of balls.
Selecting the z new nodes is analogous to the placement of balls
to the m red bins. Gossiping-target selection from the set of i in-
formed ones is analogous to placing the balls to the n $m white
bins. Finally, the z new nodes are selected at least once, which is
equivalent to requiring that at least the m red bins are occupied.
The transition probabilities of Pij are derived by substituting
m = z, n = j, r = i in (26)

where N þ 1$ i
z

# $
is the number of ways to choose z new nodes

among the set of N + 1 $ i uninformed nodes at state i, and N
k

# $i

is

the total number of ways that i nodes can choose k different
neighbors.

The non-zero elements in P are discussed by treating the relation
of i $ 1 and k properly. The first confinement of i $ 1P k or i $ 1 < k
specifies a similar conditioning as n $ 1 $mP k or n $ 1 $m < k in
(26). The second confinement of i 6 j 6min{N + 1, i(k + 1)} or
k + 1 6 j 6min{N + 1, i(k + 1)} defines the minimum and maximum
number of informed nodes that appears in state j.

* When i $ 1P k, it is possible that each informed node selects its
k targets from the set of i nodes that are already informed. The
Markov process remains in state i, indicating the minimum
boundary of j = i. If the i nodes select their neighbors differently

Fig. 1. Illustration of the blind gossiping-target selection scheme with k = 2 and 0 < b 6 1. The shaded circle indicates an informed node. A dotted line between two nodes
indicates communication between them in the previous round.

Pij ¼

Nþ1$i
z

% &

N
k

% &i

Pz

t¼0
ð$1Þt

z
t

# $
j$ 1$ t
k

# $i

if i$ 1 P k and i 6 j 6 minfN þ 1; iðkþ 1Þg

Nþ1$i
z

% &

N
k

% &i

Pj$1$k

t¼0
ð$1Þt

z
t

# $
j$ 1$ t
k

# $i

if i$ 1 < k and kþ 1 6 j 6 minfN þ 1; iðkþ 1Þg

0 otherwise

8
>>>>>>><

>>>>>>>:

ð2Þ

5 An absorbing state i is a recurrent state with the probability of returning to state i as
Pii = 1.
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from the set of N + 1 $ i uninformed ones, there will be maxi-
mally i(k + 1) informed ones in the next round. Notice that
i(k + 1) can never be larger than the total number of nodes in
thenetwork, j = min{N + 1, i(k + 1)} serves as theupper boundary.

* In case of i $ 1 < k, k $ (i $ 1) uninformed nodes have to be
selected so that an informed node can choose k different neigh-
bors successfully. The minimum value of j is thus, bounded by
k + 1. The upper boundary of j 6min{N + 1, i(k + 1)} holds as
described above.

Under the blind selection algorithm, it is assumed that neighbor
selection is performed from the rest of the N neighbors in the net-
work. A variation of the blind selection scheme is to select k differ-
ent neighbors out of the N + 1 nodes, which is also considered as a
general setting of the rumor spreading problem in [18]. This
assumption models an extreme case where a node has no knowl-
edge about the identity of its neighbors, even about itself. In this
paper, we only present the mathematical analysis for the case of
selecting k neighbors from the N + 1 nodes in Appendix A.4. Since
it is a variation of the blind selection algorithm, we do not evaluate
its performance.

4.1.1.2. Non-cooperative nodes with 0 < b < 1. Under this case, not all
selected new nodes may decide to cooperate. Consequently, if out
of the assumed z = s $ i new selected nodes, exactly j $ i of them
decide to cooperate, a state transition from i to j will occur. Let
B(z, j $ i,b) denotes the probability that there are exactly j $ i coop-
erative nodes out of the z new ones, given by

Bðz; j$ i; bÞ ¼
z
j$ i

# $
bj$ið1$ bÞz$ðj$iÞ ð3Þ

with 0 6 j $ i 6 z.
By properly invoking (2) and (3), Pij is derived for the general

case of 0 < b < 1 as

where d = min{N + 1, i(k + 1)}.

4.1.2. Smart gossiping-target selection scheme
Given i informed nodes in the network, and that each of them

selects k different neighbors from the remaining N + 1 $ i unin-
formed ones, the problem is analogous to the balls and bins model
described in Appendix A.2, with the balls being the i informed
nodes and the bins being the N + 1 $ i uninformed nodes.

4.1.2.1. Cooperative nodes with b = 1. Under this scheme, the transi-
tion probabilities can be derived by applying (23), substituting r = i,
n = N + 1 $ i,m = N + 1 $ j, and n $m = z, where z denotes the num-
ber of new nodes selected by the i informed ones. Thus, we have

Pij ¼
pNþ1$jði;Nþ1$ i;kÞ if Nþ1$ iP k and iþk6 j6minfNþ1; iðkþ1Þg
1 if Nþ1$ i< k and j¼Nþ1
0 otherwise

8
><

>:

ð5Þ

where j = i + z and

pNþ1$jði;N þ 1$ i; kÞ ¼
Nþ1$i
Nþ1$j

! "

Nþ1$i
k

% &i
Xz$k

t¼0

ð$1Þt
z
t

# $
z$ t
k

# $i

ð6Þ

Notice that (6) is valid only for N + 1 $ iP k. When N + 1 $ i < k,
the entire network is informed with probability 1. The conditioning
of i + k 6 j 6 i(k + 1) defines the minimum and maximum number
of informed nodes that appears in state j. If all the i informed nodes
choose the same k neighbors, there are minimally, i + k informed
nodes at the next state. In case that all the informed nodes choose
their neighbors differently, the number of informed nodes at state j
is bounded by min{N + 1, i(k + 1)}.

4.1.2.2. Non-cooperative nodes with 0 < b < 1. If s denotes the num-
ber of informed nodes at the next round, Pis is computed from
(5). Out of the z newly chosen nodes, there should be j $ i cooper-

ative nodes so that the process arrives at state j. The probability
that j $ i out of the z nodes are cooperative is computed from (3)

Fig. 2. Smart gossiping-target selection with k = 2 and 0 < b 6 1. The gossiping targets are randomly selected among the set of uninformed neighbors.

Pij ¼

Pd

s¼j

Nþ1$i
z

% &

N
k

% &i sumz
t¼0ð$1Þt

z
t

# $
s$ 1$ t
k

# $i

Bðz; j$ i;bÞ if i$ 1 P k and i 6 j 6 minfN þ 1; iðkþ 1Þg

Pd

s¼kþ1

Nþ1$i
z

% &

N
k

% &i

Ps$1$k

t¼0
ð$1Þt

z
t

# $
s$ 1$ t
k

# $i

Bðz; j$ i;bÞ if i$ 1 < k and i 6 j 6 minfN þ 1; iðkþ 1Þg

0 otherwise

8
>>>>>>><

>>>>>>>:

ð4Þ
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with 0 6 j $ i 6 z. Consequently, the transition probabilities of Pij
are given by

in which s = i + z.

4.2. Performance evaluation

The probability state vector s[r] can be calculated in terms of
the initial probability state vector s[0] and the matrix P from

s½r' ¼ s½0'Pr ð8Þ

Given a diagonalizable matrix P, the r-step transition probability
matrix Pr obeys relation (32), as described in Appendix A.5. The time
dependence of the probability state vector s[r] is thus given by

s½r' ’ s½0' upþ kr2x2y
T
2 þ O kr3

% &% &
ð9Þ

where we order the N + 1 eigenvalues6 as k1 = 1P jk2jP + + +P
jkN+1jP 0. kk is the k-th largest diagonal element of matrix P, and
xk and yk are the right and left-eigenvectors associated with kk,
respectively. The tendency of the network towards the steady-state
is thus, determined by the second largest eigenvalue k2 of P. How-
ever, the matrix P is not always diagonalizable, as discussed in
Appendix A.5. In such cases, the probability state vector s[r] is calcu-
lated using (8). The mean number of informed nodes in each round r
is consequently computed by

E½Xr' ¼
XNþ1

i¼1

i( si½r' ð10Þ

As indicated earlier in the paper, the proposed message dissem-
ination schemes can be used for content dissemination or discov-
ery. In the sequel, metrics measuring the performance of the
proposed gossiping-based scheme, that are used for content dis-
semination or discovery, are derived.

4.2.1. Content dissemination metrics
The effectiveness of the content dissemination process can be

assessed in terms of the minimum number of rounds required to
inform m random nodes (apart from the initiator). Let AN+1(m) de-
note such a random variable. Let em(r) denote the event of having
m nodes informed in round r, and let ecmðrÞ be its complement. The
following equivalence of the events can be established as

fANþ1ðmÞ ¼ rg ¼ emðrÞ \ \r$1
j¼1 e

c
mðjÞ

n o

with em(1) # em(2) # . . . # em(r). Thus, we will have

Pr½ANþ1ðmÞ ¼ r' ¼ Pr emðrÞ \ ecmðr $ 1Þ \ . . . \ ecmð1Þ
' (

¼ Pr½emðrÞ n emðr $ 1Þ' ¼ Pr½emðrÞ' $ Pr½emðr $ 1Þ' ð11Þ

where we can show that

Pr½emðrÞ' ¼
1
N
m

% &
XNþ1

i¼1

i$ 1
m

# $
si r½ ' ð12Þ

Since the number of informed nodes never decreases as r grows, we
have limr?1Pr[AN+1(m) = r] = 0 while limr?1Pr[em(r)] = 1.

The mean minimum number of rounds required to inform m
random nodes is given by

ANþ1ðmÞ ¼
Xrmax

r¼1

rPr½ANþ1ðmÞ ¼ r' ð13Þ

For numerical calculations, we take the upper bound of r as

rmax ¼ minfr : 1$ Pr½emðrÞ' < ng

where n is a very small positive number.

4.2.2. Search metrics
The effectiveness of a content search process is assessed in

terms of the minimum number of search rounds required to reach
a node that possesses the content, for the first time. To generalize
the study here, we assume that l copies of the content are ran-
domly distributed over the network of N nodes, excluding the ini-
tiator node. Let BN+1(l) denote the aforementioned random variable
of the minimum number of rounds. Let fl(r) denote the event that
at least one copy of the content has been discovered by round r.
It is not difficult to show that

Pr½flðrÞ' ¼
XNþ1

i¼1
1$

Nþ1$i
l

% &

N
l

% &
" #

( si½r' ð14Þ

where 1$
Nþ1$i

l

% &

N
l

% & is the probability that there is at least one copy of

the content in state i, with i searched (informed) nodes.
By following a similar approach as in Section 4.2.1, the follow-

ing expression is derived

Pr½BNþ1ðlÞ ¼ r' ¼ Pr½flðrÞ' $ Pr½flðr $ 1Þ' ð15Þ

Consequently, the mean minimum number of rounds to find a con-
tent, denoted by BNþ1ðlÞ, can be calculated by

BNþ1ðlÞ¼rmax
r¼1

X
rPr½BNþ1ðlÞ ¼ r' ð16Þ

in which the upper bound of r during numerical calculation is taken
as

rmax ¼ minfr : 1$ Pr½flðrÞ' < ng

where n is a very small positive number.
We define another metric to evaluate the overhead caused by

the search process: the mean number of nodes that has been
searched (informed) by the round that the content is discovered
for the first time. This quantity, YNþ1ðlÞ, is derived from

YNþ1ðlÞ ¼
Xrmax

r¼1

Pr½BNþ1ðlÞ ¼ r'E½bXr ' ð17Þ

where E½bXr' is the mean number of searched nodes in round r, in
which the content is found for the first time.

The expectation, E bXr

h i
, is computed as

E bXr

h i
¼

XNþ1

j¼1

j( Pr bXr ¼ j
h i

ð18Þ

Pij ¼

PminfNþ1;iðkþ1Þg

s¼iþk
pNþ1$sði;N þ 1$ i; kÞBðz; j$ i;bÞ if N þ 1$ i P k and i 6 j 6 minfN þ 1; iðkþ 1Þg

BðN þ 1$ i; j$ i; bÞ if N þ 1$ i < k
0 otherwise

8
>>><

>>>:
ð7Þ

6 The Frobenius’ Theorem [20, A.4.2] specifies that there is only one largest
eigenvalue that equals to 1.
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in which Pr bXr ¼ j
h i

is the probability that there are j search nodes,

and that the content is found for the first time in round r. The com-

putation of Pr bXr ¼ j
h i

depends on Pr[Xr$1 = i], the probability of

having i searched nodes in round r $ 1, which can be derived from
(8). Given that there are i(1 6 i 6 N + 1) searched nodes in round
r $ 1, and that the content is not found yet, the condition of Xr > Xr$1

has to be satisfied in order to assure that the content can be found

for the first time in round r. Therefore, the probability of Pr bXr ¼ j
h i

is given by

Pr bXr ¼ j
h i

¼
XNþ1

i¼1

Pr½Xr$1 ¼ i' ( Pij

1$ Pii
ð19Þ

With (19) and (18), we can derive the mean number of searched
nodes, YNþ1ðlÞ, by the round that the content is discovered for the
first time.

5. Results and discussions

In this section, we developed a simulation program to simulate
message dissemination/search through gossiping by using C lan-
guage. The results of the analysis are compared with the results de-
rived from the simulated program. In [20, pp. 515], it is shown that
the average error over the non-zero values returned from the sim-

ulations decreases as O 1ffiffi
n

p
! "

, where n is the number of times that a

simulation is performed. In this paper, 104 iterations are carried
out for each simulated result. For both of the information dissem-
ination and search process, random selection of k neighbors is per-
formed. The initiator is also randomly chosen in each of the
simulation instances. In the search process, l copies of the content
are randomly placed at different nodes. The information dissemi-
nation process stops when there are m informed nodes in the net-
work, and the search process terminates when at least one copy of
the content is discovered. For each iteration, we collect the number
of gossiping rounds until the program finishes, from which, the
probability density function (pdf) and the mean are computed.
For the search process, the number of searched nodes until the
end of the program is captured. The mean number of searched
nodes are calculated consequently. The major focus is to examine
the performance of the metrics that are proposed in Section 4.2,

as well as the impact of important parameters under both the blind
and smart selection schemes.

5.1. Content dissemination results

In Fig. 3, we present the results on the probability that all N
nodes are informed by round r, obtained from (12) for m = N. No-
tice that Pr[em(r)] is eventually the cumulative distribution func-
tion (cdf) of AN+1(m) = r, calculated from (11). As we can see from
Fig. 3, the simulation results for Pr[em(r)] match those from the ex-
act analysis in (11) very well. As expected, the larger the network,
the more rounds it takes to inform all nodes. We notice that there
exists a threshold until all nodes are informed. For instance, under
the blind selection scheme, it is only possible to inform all nodes
after four rounds in a small network with N = 10, as shown in
Fig. 3(a). While for larger network with N = 100, it is only possible
to inform all nodes after 8 gossiping rounds.

In Fig. 4 we study the tail behavior (on log-scale) of
Pr[AN+1(m) > r] < e, where e is a pre-defined probability. The tail
probability of Pr[AN+1 (m) > r], computed from (11), is the probabil-
ity that the minimum number of rounds required to inform the en-
tire network exceeds r. For instance, under the blind selection
scheme and for N = 10, the probability that all nodes are informed
after round 10 is less than 10$2, as shown in Fig. 4(a). In other
words, in 99.99% of the cases, all network nodes can be informed
by round 10. With the same stringency of e = 10$2, informing all
network nodes under the smart selection scheme is achieved in
only five rounds (Fig. 4(b)). The above observation confirms the
higher efficiency of the smart scheme. Notice that for larger net-
work (e.g. N = 100), the smart scheme informs the entire network
in about half the rounds required under the blind scheme, for the
same chance of 10$2. It is obvious that the smart selection scheme
outperforms the blind selection scheme. With the exact analysis,
we can compare the performance of the two extreme case
quantitatively.

Moreover, with the exact analysis, we are able to evaluate the
performance of Pr[AN+1(m) > r] given a higher level of stringency
(e.g. e = 10$6), which is normally, very difficult to achieve with sim-
ulations.7 For instance, in Fig. 4(a), we can find that, in 99.999999%
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Fig. 3. The probability that all nodes (m = N) are informed by round r under the blind selection scheme (a), and the smart selection scheme (b). (k = 1 and b = 1.0).

7 As described at the beginning of this section, in order to achieve an accuracy of
10$6 from the simulated results, the simulation needs to be performed 1012 times,
which takes very long time.
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of the cases, the entire network of N = 100 can be informed by
round 26. The results shown in Fig. 4 ensures that the entire net-
work coverage can be guaranteed with a high probability of
1 $ e. The tail probability of Pr[AN+1(m) > r] < e can be utilized to
determine the number of dissemination rounds to be implemented
by the service provider (or required for by the end user) in order to
meet the aforementioned quality of service (QoS) requirement.
This is also known as the maximum gossiping rounds problem.

By plotting the mean number of rounds to inform the entire
network in Fig. 5, we notice that ANþ1ðmÞ grows almost proportion-
ally to log(N). This is because, asymptotically (for large N and small
k), the expected number of rounds of any dissemination process in
a general graph scales in the order of log(N), as shown in [20, pp.
342], which indicates the efficiency of the investigated algorithms.
In [18,14], Pittel and Karp et al. also gave the same log(N) upper
bound of gossiping-based algorithms with k = 1. Consequently,
we can approximate the mean minimum number of rounds to in-
form the entire network as ANþ1ðmÞ , ck logðNÞ þ ak, where ck and
ak are variables depending on k. The speed of disseminating con-

tent under the smart selection scheme is less affected by increasing
the network size, since the slope ck under this scheme is always
smaller than that under the blind scheme for the same k.

In Fig. 6, ANþ1ðmÞ is plotted as a function of b for different net-
work sizes. As the cooperation probability b increases, ANþ1ðmÞ de-
creases logarithmically with the same slope for different network
sizes, and for both the blind and the smart selection scheme. This
phenomenon indicates that the mean number of rounds to inform
the entire network decreases at the same speed as a function of b,
regardless of the network size. Therefore, it could be convenient to
extrapolate the curve for larger network sizes N. Furthermore, by
decreasing the cooperation probability b, the performance of dis-
seminating content degrades for both the blind and the smart algo-
rithm. For example, the mean number of rounds to inform the
entire network with b = 0.2 is approximately 5.3 times of that with
b = 1.0 for the blind selection and 5.8 times for the smart selection.
The performance of the smart selection scheme is, as expected,
better than the blind selection scheme. For instance, for N = 100,
with b = 1.0, it takes on average, 3.9 more rounds to inform all
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nodes for the blind selection than for the smart selection; and the
blind selection scheme needs 18.1 more rounds to inform the en-
tire network with b = 0.2, compared with the smart selection.

5.2. Content search results

To improve the efficiency of the search process, we can either
increase the number of nodes (or gossiping-targets) k searched in
each round or distribute more copies l of the content. The associ-
ated overhead YNþ1ðlÞ, the mean number of nodes that have been
searched by the round that the content is found, is also evaluated.
We examine the impact of k and l on the performance of the search
process, by taking the blind selection scheme as an example.

Fig. 7(a) confirms that, by searching more nodes (or gossiping-
targets) in each round, the mean minimum number of rounds re-
quired to discover the content is reduced. While the associated
overhead, YNþ1ðlÞ, grows by increasing k (Fig. 7(b)). In Fig. 8, we
present the effect of increasing the number of copies of the content
distributed in the network (l = 1,2,5), with fixed k = 1. As seen from

this figure, both the speed of discovering content BNþ1ðlÞ, and the
caused overhead YNþ1ðlÞ are improved, since less gossiping rounds
are needed to find a content (Fig. 8(a)), and the mean minimum
number of searched nodes until the content is found (Fig. 8(b)) also
decreases, as l increases. Therefore, in order to have an efficient
content discovery process (with fast searching speed BNþ1ðlÞ and
low overhead YNþ1ðlÞ), we should opt for placing more copies of
the content within the network, instead of increasing the number
of searched nodes k in each round in the gossip-based search
process. Notice that in both Figs. 7 and 8, the mean number of
rounds to discover the content increases proportionally to log(N),
and the mean number of searched nodes grows linearly as a func-
tion of N.

Next, we show the impact of different values of b on the perfor-
mance of the search process in Fig. 9. By increasing the cooperation
probability b (from 0.2 to 1.0), YNþ1ðlÞ increases slightly, while
BNþ1ðlÞ decreases dramatically for the same network size. For
instance, to find the content in a network withN = 100 nodes, about
fivemore nodes are searchedwhen b increases from0.2 to 1.0 under
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the blind selection scheme (Fig. 9(b)).Whereas, themean number of
rounds to find the content for the first time with b = 0.2 is approxi-
mately 4.4 times of thatwith b = 1.0, as shown in Fig. 9(a). Therefore,
we conclude that the lower cooperation probability does not incur
extra overhead in the network, but compromises severely the effec-

tiveness of the searching algorithm. We also observe that to find a
content with l = 1 in larger network, i.e. N = 100, the smart selection
algorithm is more effective than the blind scheme regarding the
searchperformancewhenpeers have smaller probability tobe coop-
erative. Let us once again take the network ofN = 100 as an example.
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When peers are less cooperative, e.g. b = 0.2, the smart selection
scheme only searches approximately one more node compared to
the blind selection algorithm (Fig. 9(d)). While BNþ1ðlÞ, on the other
hand, is four rounds less that the blind selection scheme (Fig. 9(c)).
With b = 1.0, it takes one less round to find the content with the
smart selection algorithm, while searching four more nodes com-
pared to the blind selection scheme.

6. Conclusions

In this paper we have demonstrated the difficulty of performing
an exact analysis of information dissemination in dynamic, large-
scale distributed networks. Consequently, we focused on modeling
the process of gossip-based message dissemination under the
assumption of uniform neighbor selection over the entire nodes
in the network. The level of cooperation by the nodes selected as
the gossiping-targets was also incorporated in the model. The cases
of the blind gossiping-target selection and of the smart one were
both analyzed. The obtained analytic results were verified through
simulations. From the results, several practical performance met-
rics of interest and important design parameters were obtained.
For instance, the speed (in gossiping rounds) of the dissemination
process required to achieve certain percentage of network cover-
age with a minimum probability was derived and evaluated. The
smart selection algorithm is, in nature, more effective than the
blind selection scheme when disseminating content. By using the
exact analysis, we have compared the performance difference of
the above two algorithms quantitatively. For instance, to inform
the entire network with certain QoS stringency, the smart selection
scheme only needs half of the gossiping rounds compared with the
blind selection algorithm. By increasing the cooperation probabil-
ity from b = 0.2 to b = 1.0, the mean number of rounds to inform
the entire network decreases logarithmically with the same slope
for different network sizes, and for both the blind and the smart
selection algorithm. Our results about content search also suggest
that when a certain speed (number of rounds) is desirable to dis-
cover some content, it is less costly for the search process to try
to place more content replications l in the network, instead of try-
ing to hit content residing in some nodes only by increasing the
number of gossiping-targets k, contacted in each round. The effec-
tiveness of the searching algorithm is impaired by a lower cooper-
ation probability, whereas no significant amount of overhead
ðYNþ1ðlÞÞ is generated. In view of the trade-off between the over-
head and the effectiveness of the search process, the smart selec-
tion scheme is more effective with small cooperation probability.
With larger cooperation probability, the smart selection scheme
is less preferable during the search process, because it incurs more
overhead, whereas achieves comparable effectiveness with the
blind selection scheme.
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Appendix A

A.1. Modeling gossip-based information dissemination with dynamic
peer partial view

By using the peerlist Li maintained at each peer i, an adjacency
matrix A can be created correspondingly. The element aij in the
adjacency matrix is

aij ¼ 1j2Li ð20Þ

where the indicator function 1j2Li is one if j 2 Li is true and otherwise
it is zero. An adjacency matrix A characterizes a graph G(N + 1,L)
with N + 1 nodes and L links. Since a peer i does not need to be in
the peerlist of node j, if j 2 Li, the adjacency matrix A is generally
not symmetric.

A.1.1. Fixed peer partial view - related work
Van Mieghem et al. in [21], studied an exact continuous-time

model for virus spread in a static network, in which each node
has two states: susceptible and infected. Considering a discrete
stochastic process which takes place in rounds, the description of
the exact model in [21] can be rephrased in terms of content prop-
agation, in which peers have a fixed partial view of the network.
The graph constructed by the peerlists is assumed to be a con-
nected graph. At each gossiping round r, a peer i enters two states:
informed, denoted by Xi(r) = 1, or uninformed, denoted by Xi(r) = 0.
The state of the stochastic process is the set of all possible combi-
nations of the states in which the N + 1 peers can be at round r. The

number of the states with k informed nodes is N þ 1
k

# $
. Thus, the

total number of states is
PNþ1

k¼0
N þ 1
k

# $
¼ 2Nþ1. The state Y(r) of

the network at round r is thus expressed as:

YðrÞ ¼ ½Y0ðrÞY1ðrÞ . . .Y2Nþ1$1ðrÞ'
T

where

YiðrÞ ¼
1 if i ¼

PNþ1

k¼1
XkðrÞ2k$1

0 if i–
PNþ1

k¼1
XkðrÞ2k$1

8
>>><

>>>:

Thus, the state space of the MC is organized with xk 2 {0,1} as

State index i xN+1xN. . .x2x1

0 00 . . . . . .0000
1 00 . . . . . .0001
2 00 . . . . . .0010
3 00 . . . . . .0011
. . . . . . . . . . . .
2N+1 $ 1 11 . . . . . .1111

A.1.2. Dynamic peer partial view
In the following, we study the problem of modeling information

dissemination with dynamic peer partial view. We first present an
example to demonstrate the major factors to be taken into account
when defining the states of the system.

Among the many different peerlist exchange algorithms de-
scribed in [13], we assume that, when a peer i selects a target node
j to gossip with, a union of the two peerlists Li and Lj is made. The
old peerlist of Li and Lj is updated with the new one in the next
round as Li(r + 1) = {Li(r) [ Lj(r)}n{i} and Lj(r + 1) = {Li(r) [ Lj(r)}n{j},
so that i R Li, and j R Lj. In Fig. 10, we present an example of a net-
work with four nodes, by making union of two peerlists. Each
neighbor selection is performed uniformly from the peerlist. We
will show that the state of the network is not only related to the
combination of the informed nodes, but also depends on the possi-
ble combinations of the peerlists.

Assuming that during initialization,8 we assign each peer a peer-
list with two neighbors (li = 2). The peerlists for different peers at

8 The initialization is defined as the period in which peers join the network, and
receive their peerlists.
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r = 0 are L1(0) = {2,3}, L2(0) = {3,4}, L3(0) = {1,4}, and L4(0) = {1,2},
respectively. In Fig. 10, we draw a sample path, i.e. the realization
of the gossiping process in consecutive rounds, when peers start to
exchange their peerlists. At each gossiping round, a random peer i
can be either informed (which is denoted by Xi(r) = 1), or uninformed
(which is denoted by Xi(r) = 0). Initially (r = 0), all of the four nodes
are uninformed. At the first round (r = 1), peer 4 starts to disseminate
a piece of information. At the next round of r = 2, there are two pos-
sible states in the network. If peer 4 selects peer 1, the system moves
to the state with the combination of informed nodes 1001 and the
updated peerlists of L1(2) = {2,3}, L2(2) = {3,4}, L3(2) = {1,4}, and
L4(2) = {1,2,3}. If peer 4 chooses peer 2, the system transits to the
state with the combination of informed nodes 1010 with the peer-
lists of L1(2) = {2,3}, L2(2) = {1,3,4}, L3(2) = {1,4}, and L4(2) =
{1,2,3}. At the third round, we only present the possible transitions
from state 1001 (with the corresponding peerlists). As shown inside
the dotted diagram of Fig. 10, state 1001 can move to 7 states, which
are marked from 1 to 7. For instance, if peer 1 chooses peer 3, and
peer 4 chooses peer 3, the system will move from state 1001 (with
the corresponding peerlists) to state 1101, with the peerlists of
L1(3) = {2,3,4}, L2(3) = {3,4}, L3(3) = {1,2,4}, and L4(3) = {1,2,3}.
Although both states 1 and 2 in Fig. 10 (round 3) have the same com-
bination of informed nodes, namely 1101, the peerlists of the indi-
vidual peers are different, implying that the combination of
peerlists should also be taken into account when defining the states
of the system. The same observation holds for state 3, 4 and 5 (cor-
responding to 1011) and 6 and 7 (corresponding to 1111).

Hence, to describe the gossiping process exactly, the following
steps are needed.

Step 1: Describe all possible combinations of informed nodes in
the system. As we have introduced in Appendix A.1.1,
there are 2N+1 combinations of the informed nodes.

Step 2: Describe all possible combinations of the peerlists. For
simplicity, we remove the constraint of i R Li, such that a
peer i is allowed to appear in its own peerlist. We also

assume that there is no size limitation on the peerlist,
meaning that the peerlist size l ranges from 0 to N + 1
(we allow empty peerlist to simplify the calculation). Since
the number of peerlists with k (0 6 k 6 N + 1) peers is
N þ 1
k

# $
, there are in total,

PNþ1
k¼0

N þ 1
k

# $
¼ 2Nþ1 differ-

ent peerlists.9

Step 3: At each round, every peer in the network may possess one
of the peerlists out of the 2N+1 ones. Therefore, given N + 1
peers in the network (regardless of their status of being
informed or uninformed), the total number of the combi-
nations of their peerlists is ð2Nþ1ÞNþ1 ¼ 2ðNþ1Þ2 . Recall that
the state of the network is also decided by the possible
combinations of the informed node in the network. Given
2N+1 combinations of informed nodes in the system, as we
have discussed already, the total number of states used to
describe the entire system exactly is 2ðNþ1Þ2 ( 2Nþ1 ¼
2ðNþ1Þ2þNþ1. Hence, to organize and to index the enormous
number of states, we need to take both the different
informed nodes, and the different peerlists into account,
which is extremely challenging. Moreover, such a large
state space is also computationally not feasible.10

As a conclusion, the above analysis provides an upper bound on
the total number of states that are needed to describe the informa-
tion propagation process with peers’ dynamic partial views. The
exact number of states depends on the initial conditions (e.g. ini-
tialization of the peerlists) and the dynamics of the dissemination
process (e.g. the peerlist exchange scheme). Nevertheless, an exact
analysis of the problem, in which peers are constantly exchanging
peerlists, is difficult. To evaluate the performance of propagating
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Fig. 10. Demonstration of a sample path of the gossip-based information propagation process in a network with four nodes. Peerlists are updated after making the union of
two peerlists, with i R Li. The block under each peer represents its peerlist. The last row in the dashed box specifies the transitions between two states. For instance, in the
third round, 1? 3; 4? 3 means that peer 1 selects peer 3, and peer 4 selects peer 3. The operation is explained in detail in the text.

9 If an empty peerlist is not allowed, the total number of the combinations of the
peerlists is 2N+1 $ 1.
10 As shown in [21], the matrix computations (on a PC) of a 2N model are already
limited to N = 13.
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information in such a scenario, we suggest to perform simulations,
or devise proper approximations.

A.2. The occupancy problem - scenario 1

The classical occupancy problem considers random placement
of m balls into n bins in a balls and bins model [7, pp. 101]. In this
paper, we assume that there are r groups of k balls and n bins. We
randomly throw the r groups of k balls over the n bins. The k balls
in the same group are placed in such a way that no two balls go
into the same bin. Due to the random placement of balls, there
may be empty bins after the placement. A bin can be occupied by
one or more balls. Placement of balls belonging to different groups
are independent and random. We seek the probability that exactly
m bins are empty after the placement.

Following the approach in [7, pp. 101], the probability that all n
bins are occupied, denoted by p0(r,n,k), is

p0ðr;n; kÞ ¼ 1$ Pr½at least one bin is empty' ð21Þ

To place r groups of k balls to n bins, leaving i preassigned bins

empty, there are n$ i
k

# $r

ways. The total number of ways of plac-

ing r groups of k balls to n bins is n
k

# $r

. Further, there are n
i

# $

ways to choose i preassigned bins. Let Si be the event that i bins

are empty, the probability that Si occurs is
n
i

# $ n$ i
k

# $r

n
k

# $r . Invoking

the inclusion–exclusion principle [20, pp. 12], we obtain p0(r,n,k) as

p0ðr;n;kÞ¼1$
Xn$k

i¼1

ð$1Þi$1 n
i

# $
n$ i
k

# $r

n
k

# $r ¼ 1
n
k

# $r

Xn$k

i¼0

ð$1Þi
n
i

# $
n$ i
k

# $r

ð22Þ

Now consider the case in which the r groups of k balls are
placed in such a way that exactly m out of the n bins are empty.

The m bins can be chosen in n
m

# $
different ways. The number of

configurations leading to such placement is n$m
k

# $r

p0ðr;n$m; kÞ. Dividing by the total way to place the r groups of

k balls to n bins, n
k

# $r

, the probability pm(r,n,k) that exactlym bins

are empty is computed as

pmðr;n; kÞ ¼
n
m

# $ n$m
k

% &r

n
k

% &r p0ðr; n$m; kÞ ð23Þ

This argument in (23) is confined to nP k since it is not possible to
place k balls to n bins, with no two balls, in the same bin, if n < k.

With k = 1, the probability in (22) can be simplified to

p0ðr;n;1Þ ¼
1
nr

Xn

i¼0

ð$1Þi
n
i

# $
ðn$ iÞr ¼ n!

nr S
ðnÞ
r ð24Þ

Let j = n $ i, we have 1
nr
Pn

j¼0ð$1Þn$j n
j

# $
jr ¼ n!

nr S
ðnÞ
r , where SðnÞr are the

Stirling numbers of the second kind [1, section 24.1.4]. If
r < n; SðnÞr ¼ 0. Consequently, (23) is simplified to

pmðr;n;1Þ ¼
n
m

# $
n$m

n

! "r
p0ðr; n$m;1Þ ¼

n
m

# $
ðn$mÞ!

nr Sðn$mÞ
r

ð25Þ

A.3. The occupancy problem – scenario 2

Considering the same model in Appendix A.2, we modify the
problem configuration. We are placing r groups of k balls to n bins,
(1 6 r 6 n). The n bins consist of a number of red and white bins.
The position of the red and white bins are predefined, with the first
m bins colored by red, and the last n $m colored by white. The r
groups of balls are numbered from 1 to r, and the white bins are
numbered from 1 to n $m. There is no numbering of the m red
bins, see Fig. 11. Assuming the number of the groups of balls equals
the number of the white bins, the r groups of balls and the n $m
white bins eventually have the same numbering. Furthermore,
we assume that a group of balls with the number i (1 6 i 6 r) can-
not be placed to the white bin that has the same numbering. For
instance, balls from group 1 cannot be placed in bin number 1,
balls from group 2 cannot be placed in bin number 2, etc. As a re-
sult, the k balls from the same group are randomly placed to the
remaining n $ 1 bins, and no two balls go into the same bin. Place-
ment of balls belonging to different groups are independent and
random. We seek the probability that at least the m red bins are
occupied, denoted by p !mðr;n; kÞ.

Denote d the maximum number of allowed empty red bins in
this scenario. If one of the m red bins is empty, the r groups of k
balls should be placed to the remaining n $ 2 bins, excluding the
bins that have the same numbering as the groups of balls. With

the m
1

# $
ways to choose an empty bin from the m bins, there

are m
1

# $
n$ 2
k

# $r

configurations leading to such placement. In

case there are two empty bins out of the m red ones, the balls
are placed to the remaining n $ 3 bins, resulting in
m
2

# $
n$ 3
k

# $r

ways accordingly. Denote Si, the event that i out

of the m red bins are empty, the r groups of k balls can only be

placed to the rest n $ 1 $ i bins, resulting in n$ 1$ i
k

# $r

arrange-

ments. The event that at least the m red bins are occupied,
A !mðr;n; kÞ, is given by applying the inclusion–exclusion principle.

A !mðr;n;kÞ ¼
n$1
k

# $r

$ S1 þ S2 $++ + ¼
Xd

i¼0

ð$1Þi
m
i

# $
n$1$ i
k

# $r

ð26Þ

The limiting values of d depend on the relation between n $ 1 $m
and k. Assuming n $ 1 $m < k, this condition implies that the num-
ber of the balls from the same group is more than the n $m $ 1
white bins. Therefore, to place the k balls from the same group to
different bins (recall that the k balls from the same group can not
go to the same bin), k $ (n $ 1 $m) red bins have to be occupied
during the placement. Thus, the maximum number of empty red
bins is confined to d = n $ 1 $ k. On the other hand, when
n $ 1 $mP k, there are enough white bins to place the k balls from
the same group (by placing all the k balls into the n $m $ 1 white
bins.). Hence, the maximum number of empty red bins is d =m.

Taking into account the above analysis, p !mðr;n; kÞ should be dis-
cussed under two conditions

p !mðr;n; kÞ ¼

1
n$1
k

% &r

Pm

i¼0
ð$1Þi

m
i

# $
n$1$i

k

% &r

if n$ 1$m P k

1
n$ 1
k

# $r

Pn$1$k

i¼0
ð$1Þi

m
i

# $
n$ 1$ i
k

# $r

if n$ 1$m < k

8
>>>>>>>>>><

>>>>>>>>>>:

ð27Þ
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where n$ 1
k

# $r

is the total number of ways to place the r groups of

k balls to n $ 1 bins. (27) can be directly applied by the blind neigh-
bor selection algorithm.

A.4. An approximation of the blind selection scheme

In this section, we study an approximation of the blind selection
scheme, analytically. This scenario can also be seen as an extended
scenario for the rumor spreading problem in [18], with the
assumption of selecting k neighbors out of the N + 1 nodes.

A.4.1. The occupancy problem
To model the above mentioned problem exactly, we slightly

modify the scenario in Fig. 11. We remove the constraint of num-
bered groups of balls and numbered white bins. There are m red
bins and n $mwhite bins. Both red bins and white bins are treated
equally during the placement of balls. The r groups of k balls are
placed randomly to the n bins, with no two balls from the same
group going to the same bin. Balls belonging to different groups
are placed to the n bins at random and independent of the choice
of other groups. Similarly, the problem is to find the probability
that at least the m red bins are occupied, denoted by c !mðr;n; kÞ,
after the random placement of balls.

The approach follows the same steps in Appendix A.3. We
examine c !mðr;n; kÞ under two conditions. When n $mP k, the
maximum number of empty red bins is m. While with n $m < k,
the maximum number of empty red bins can only be n $ k, because
k $ (n $m) red bins have to be occupied. Otherwise, the k balls
from a same group cannot be placed to k different bins success-
fully. Therefore, when using the inclusion–exclusion principle,
the maximum number of allowed empty red bins is n $ k.

In the event that one of the m red bins is empty, the r groups of
k balls are placed to the remaining n $ 1 bins. This can be done

with n$ 1
k

# $r

ways. Similarly, in case two out of the m red bins

are empty, there are totally n$ 2
k

# $r

ways leading to such place-

ment. Assuming that i out of the m red bins are empty, denoted by

Si, there are m
i

# $
n$ i
k

# $r

arrangement leading to such event,

where m
i

# $
is the configurations to choose i bins out of the m

red ones. Hence, the probability that at least all m red bins are
occupied is computed by using the inclusion–exclusion principle:

c !mðr;n; kÞ ¼

1
n
k

% &r

Pm

i¼0
ð$1Þi

m
i

# $
n$ i
k

# $r

if n$m P k

1
n
k

% &r

Pn$k

i¼0
ð$1Þi

m
i

# $
n$ i
k

# $r

if n$m < k

8
>>>><

>>>>:

ð28Þ

where n
k

# $r

is the total number of ways to place the r groups of k

balls to n bins.

A.4.2. The transition probabilities
The MC moves from state i to state j if there are exactly z = j $ i

new nodes, selected by the i informed ones. With the modified
occupancy problem, we can solve the transition probabilities Pij
by substituting m = z, n = j, r = i in (28).

From the approach of (28), we have

Pij ¼

Nþ1$i
j$i

! "

Nþ1
k

% &i

Pj$i

t¼0
ð$1Þt

j$ i
t

# $
j$ t
k

# $i

if i P k and i 6 j 6 minfN þ 1; iðkþ 1Þg
Nþ1$i
j$i

! "

Nþ1
k

% &i

Pj$k

t¼0
ð$1Þt

j$ i
t

# $
j$ t
k

# $i

if i < k and k 6 j 6 minfN þ 1; iðkþ 1Þg
0 otherwise

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð29Þ

When k = 1, (29) reduces to (1).

A.5. Diagonalizability of matrix P

If P is diagonalizable, the r-step transition probability matrix Pr

is consequently derived as

Pr ¼ XdiagðkkÞrYT ð30Þ

in which diag(kk) is the diagonal matrix whose diagonal entries are
the corresponding eigenvalues, and X and Y consist of columns of
the right- and left-eigenvectors. An explicit form of (30) follows
from [20, pp. 183] as

Pr ¼
XNþ1

k¼1

krkxky
T
k ð31Þ

where xk and yk are the right and left-eigenvectors associated with
kk (both are column vectors with N + 1 entries). Therefore, (31) is
further decomposed as

12345

Placement of r groups with k balls

6

Group 1Group 2Group 3Group 4Group 5Group 6

k balls in each group

Probability that the m red bins are occupied The ith group of balls can not be placed in the white bin
that has the same numbering 

Fig. 11. Random and independent placement of r groups of k balls, with no group of balls being placed in the bin which have the same numbering as itself.
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Pr ¼ upþ
XNþ1

k¼2

krkxky
T
k ’ upþ kr2x2y

T
2 þ Oðkr3Þ ð32Þ

where yT1 ¼ p and x1 = u (with uT = [1 1 1 . . . 1]) are the correspond-
ing steady state eigenvectors, associated with the largest eigenvalue
k1 = 1.

Next, we discuss the diagonalizability of matrix P with respect
of the eigenvalues that it possesses. The matrix YT is the inverse
of the matrix X, which implies that X is non-singular. Hence, the
matrix X should possess a complete set of N + 1 linearly indepen-
dent (right-) eigenvectors {x1,x2, . . . ,xN+1}. In the triangular matrix
P, the eigenvalues of P are just the diagonal elements. The matrix
P is diagonalizable if and only if

geo multPðkkÞ ¼ alg multPðkkÞ ð33Þ

with 1 6 k 6 N + 1, and where geo multP(kk) is the geometric multi-
plicity11 of kk, and alg multP(kk) is the algebraic multiplicity12 of kk,
as introduced in [17, pp. 512].

If all the N + 1 eigenvalues of P are distinct, then {x1,x2, . . . ,xN+1}
is a linearly independent set. In case the matrix P does not possess
N + 1 distinct eigenvalues, it is also possible to diagonalize P. The
above statement is true if the number of linearly independent
eigenvectors, associated with kk, equals the algebraic multiplicity
of kk. To compute the eigenvector of kk, we follow

ðP $ kkIÞx ¼ 0

where I is the identity matrix. For simplicity, we denote by mk the
algebraic multiplicity of kk. If the rank of P $ kkI is N + 1 $mk, mean-
ing rank(P $ kkI) = N + 1 $mk, the matrix P $ kkI will have has mk

linearly independent eigenvectors. In case the matrix P $ kkI does
not possess mk linearly independent eigenvectors, it can be reduced
to a Jordan canonical form, as introduced in [17].

In our case, the matrix P studied in Section 4 is not always diag-
onalizable as explained in the sequel. Under the smart selection
algorithm with b = 1, all the first N diagonal elements are zeros, ex-
cept for the last row of PN+1,N+1 = 1. Thus, there are only two distinct
eigenvalues, namely k1 = 1 and k2 = k3 =. . .= kN+1 = 0. The matrix P is
diagonalizable if and only if there are N linearly independent
eigenvectors associated with the eigenvalue of k = 0, which re-
quires that

Px ¼ 0

The rank of the matrix P can never be 1. Therefore, it is not possible
to obtain N linearly independent eigenvectors associated with k = 0.
As a result, the matrix P is not diagonalizable because the matrix X
is singular.

Under the blind selection algorithm, the diagonal elements in
the first k rows are zeros when b = 1. The remaining entries on
the diagonal are non-zeros, computed from (4), leading to
N + 1 $ k distinct eigenvalues (k1,k2, . . . ,kN+1$k) of multiplicity 1
and one eigenvalue kN+k = 0 of multiplicity k. Notice that the rank
of the matrix P $ kN+kI is N + 1 $ k. Eq. (9) can be applied in this
case since P is diagonalizable.

With the general case of 0 < b < 1, under both the blind and smart
selection algorithms, the indexof thenon-zero elements in each row
vector [Pi1,Pi2, . . . ,Pi,N+1] is bounded by i 6 j 6min{i(k + 1),N + 1}.

The diagonal elements are non-zeros. However, the N + 1 eigen-
values are not always distinct, depending on the value of N, k and
b. When there are multiple eigenvalues, the matrix P is diagonaliz-
able only when the structure of P satisfies the relation (33). Discuss-
ing the particular matrix structure that leads to a diagonalizable
matrix P given multiple eigenvalues has much higher complexity,
and is out of the scope of the paper.
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