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Abstract Serious epidemics, both in cyber space as well as in our real world, are
expected to occur with high probability, which justifies investigations in virus spread
models in (contact) networks. The N -intertwined virus spread model of the SIS-type
is introduced as a promising and analytically tractable model of which the steady-state
behavior is fairly completely determined. Compared to the exact SIS Markov model,
the N -intertwined model makes only one approximation of a mean-field kind that
results in upper bounding the exact model for finite network size N and improves in
accuracy with N . We review many properties theoretically, thereby showing, besides
the flexibility to extend the model into an entire heterogeneous setting, that much
insight can be gained that is hidden in the exact Markov model.
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1 Introduction

We investigate the influence of the network topology on the spread of viruses, whose
dynamics is modeled by a susceptible-infected-susceptible (SIS) type of process. The
SIS disease model [1,3,10] can be regarded as one of the simplest virus infection
models, in which persons or nodes in a network are either in two states: “healthy, but
susceptible to infection” or “infected by the disease or virus and, thus, infectious to
neighbors”. In this article, the word “virus” is understood in the most general wording
possible as an “item” transferred from the surroundings towards a node in the network.
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At a node, the “item” can be destroyed, but can also be propagated to neighbors of
that node. For example, digital viruses (of all kind, and generally called malware)
are living in cyberspace and use mainly the Internet as the transport media, while
biological viruses contaminate other living beings and use “contacts” among their
victims as their propagation network. A digital “virus” here can also mean a rumor,
news or any kind of information that spreads over a data communications or social
network. Recently, Hill et al. [17] have considered happiness of persons as a form
of social infection and have modeled the spread of emotions over the social contact
network as a SIS-type of epidemic.

Our SIS, continuous-time model for the spreading of a virus in a network, called the
N -intertwined virus spread model [36], is reviewed in Sect. 2. It was earlier consid-
ered by Ganesh et al. [13] and by Wang et al. [40] in discrete-time, whose paper was
later improved in [7] after which their discrete-time model also appeared in the physics
community [15]. An infected node can infect its neighbors with an infection rate β (per
link), but it is cured with curing rate δ (per node). However, once cured and healthy, the
node is again prone to the virus. Both infection and curing processes are independent.
There exists a wealth of variants or refinements of the SIS model (see e.g. [2,10,14,
21,41]): there can be an incubation period, an infection rate that depends on the num-
ber of neighbors or that has a constant component (as in [17]), a curing process that
takes a certain amount of time, and many other sophistications that we do not consider
here. Whereas most of the recent contributions to epidemics in networks were made by
physicists, Durrett [12] doubts about the mathematical rigor of many of their analyses.

A remarkable property of the SIS model is the appearance of a phase-transition
[4,6] when the effective infection rate τ = β

δ approaches the epidemic threshold
τc = 1

λ1
, where λ1 is the largest eigenvalue of the adjacency matrix A, also called the

spectral radius. Below the epidemic threshold, τ < τc, the network is virus-free in the
steady-state, while for τ > τc, there is always a fraction of nodes that remains infected.
For the companion infection model, SIR, where R stands for recovered or removed,
Kermack and McKendrick [19] have shown that no epidemic can occur if the popu-
lation density is below a critical threshold. Recently, Youssef and Scoglio [43] have
extended the N -intertwined SIS model to SIR epidemics and they have shown that the
SIR-epidemic threshold also equals τc;SIR = 1

λ1
. We point here to another dynamic

process on a network, that bears resemblance to virus spread. The synchronization of
coupled oscillators in a network features a surprisingly similar phase transition: the
onset of oscillator coupling occurs [28] at a critical coupling strength gc = g0

λ1
and the

behavior of the phase transition around gc is mathematically similar [31]. Synchroni-
zation [29] plays a role in sensor networks, human body (heart beat, brain, epilepsy),
light emission of fire-flies, etc.

The major goal of this article is to provide a consistent, theoretical overview of
the steady-state in the N -intertwined virus spread model, that we consider as almost
completely solved since the recent solution [31] of the behavior around the epidemic
threshold. Section 2 explains the N -intertwined SIS virus spread model and the mean-
field approximation. From Sect. 3 on, we confine to the steady-state of the N -inter-
twined SIS model and present general equations for the fraction y∞ of steady-state
infected nodes, from which the continued fraction expansion is derived. In addition,
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two series for y∞ are given, whose coefficients obey recursion relations, specified
in Lemmas 1 and 3. Section 3.2 specifies the condition for the epidemic threshold
τc = 1

λ1
and the behavior of y∞ (τ ) around τc, with references to many approaches

in networks to enlarge the epidemic threshold. After arguing that the transform s = 1
τ

is more natural, bounds on y∞ (s) around s = 2
E[D] are presented in Sect. 4 inspired

by simulations in [42] indicating that y∞ (s) is close to 1
2 for s = 2

E[D] . Section 5
discusses the viral conductance ψ of a virus spreading process in a graph, that was
first proposed in [20]. We end our review by extending the N -intertwined model to a
heterogeneous setting in Sect. 6: the governing equation and the continued fraction are
readily found, while the convexity Theorem 5 has interesting applications in network
protection strategies [16,26]. Section 7 concludes with an outlook on open problems.

2 The N-intertwined SIS model

A network is represented by an undirected graph G (N , L) with N nodes and L links.
The network topology is described by a symmetric adjacency matrix A, in which the
element ai j = a ji = 1 if there is a link between nodes i and j , otherwise ai j = 0. In
the sequel, we confine ourselves and make the following simplifying assumptions. The
state of a node i is specified by a Bernoulli random variable Xi ∈ {0, 1}: Xi = 0 for a
healthy node and Xi = 1 for an infected node. A node i at time t can be in one of the two
states: infected, with probability vi (t) = Pr[Xi (t) = 1] or healthy, with probability
1−vi (t). We assume that the curing process per node i is a Poisson process with rate δ,
and that the infection rate per link is a Poisson process with rate β. All involved Poisson
processes are independent. The effective infection rate is defined as τ = β

δ . We assume
that the initial infection state vi (0) in each node i is known. This is the general descrip-
tion of the simplest type of a SIS virus spread model in a network and the challenge is to
determine the virus infection probability vi (t) for each node i in the graph G at time t .

This SIS model can be expressed exactly in terms of a continuous-time Markov
model with 2N states as shown in [36]. Unfortunately, the exponentially increasing
state space with N prevents the determination of the set of {vi (t)}1≤i≤N in realistic
networks, which has triggered a spur of research to find good approximate solutions.
For an overview of SIS heuristics and numerous extensions, we refer to [4,21,42].

In contrast to all published SIS-type of models, the N -intertwined model, proposed
and investigated in depth in [36], only makes one (mean-field) approximation in the
exact SIS model and is applicable to all graphs.

2.1 The mean-field approximation

By separately observing each node, every node i at time t in the network has two
states: infected with probability vi (t) = Pr[Xi (t) = 1] and healthy with probability
Pr[Xi (t) = 0] = 1−vi (t). If we apply Markov theory straight away, the infinitesimal
generator Qi (t) of this two-state continuous Markov chain is,

Qi (t) =
[−q1;i q1;i

q2;i −q2;i

]
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Fig. 1 The mean-field approximation (arrow) transforms the random variable q1; j into the average
E

[
q1; j

]
. Instead of being infected at time t by the precise number of infected neighbors, the node i is

now infected by the average number of infected neighbors

with q2;i = δ is the curing rate and

q1;i = β

N∑

j=1

ai j 1{X j (t)=1}

where the indicator function 1x = 1 if the event x is true else it is zero. The rate q1;i
equals the sum over all infection rates of infected neighbors of node i and this rate q1;i
couples or “intertwines” node i to the rest of the network through the appearance of
the events

{
X j (t) = 1

}
. As mentioned in [36], the total infection rate q1;i is a random

variable, whereas ordinary Markov theory requires that q1; j is a real number. The
random nature of q1;i is removed by an additional conditioning to all possible com-
binations of rates, which is equivalent to conditioning to all possible combinations of
the states X j (t) = 1 (and their complements X j (t) = 0) of the neighbors of node i .
Hence, the number of basic states in the Markov process dramatically increases from
two states per node to all possible combinations of states for N nodes. Eventually,
after conditioning each node in such a way, we end up with the exact 2N -state Markov
chain, specified in [36].

Instead of conditioning, the mean-field approximation consists of replacing q1;i by
its average E

[
q1;i

]
, which is a real number and allows immediate application of con-

tinuous-time Markov theory [30]. Figure 1 illustrates the mean-field approximation.
Using E [1x ] = Pr [x], we replace q1;i by

E
[
q1;i

]
= β

N∑

j=1

ai j Pr[X j (t) = 1] = β

N∑

j=1

ai jv j (t)

which results in an effective infinitesimal generator,

Qi (t) =
[−E

[
q1;i

]
E

[
q1;i

]

δ −δ

]

Due to the dependence of E
[
q1;i

]
on v j (t), the Markov differential equation [30,

(10.11) on p. 182] for state Xi (t) = 1 turns out to be non-linear,
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dvi (t)
dt

= β(1 − vi (t))
N∑

j=1

ai jv j (t) − δvi (t) (1)

The governing differential equation (1) in the N -intertwined model for a node i has
the following physical interpretation: the time-derivative of the infection probability
of a node i consists of two competing processes: (1) while healthy with probability

(1 − vi (t)), all infected neighbors, an event with probability
N∑

j=1
ai jv j (t), try to infect

the node i with rate β and (2) while infected with probability vi (t), the node i is cured
at rate δ. This rather intuitive explanation has been directly used in former models
such as the Kephart and White model [18] to derive the differential equation, thereby
implicitly making a mean-field approximation.

Defining the vector V (t) =
[
v1 (t) v2 (t) · · · vN (t)

]T , the matrix representation
based on (1) becomes

dV (t)
dt

= (β A − δ I ) V (t) − βdiag (vi (t)) AV (t) (2)

where diag (vi (t)) is the diagonal matrix with elements v1 (t) , v2 (t) , . . . , vN (t). We
define the (average) fraction of infected nodes in the network at time t as

y (t) = 1
N

E




N∑

j=1

1{X j (t)=1}



 = 1
N

N∑

j=1

v j (t) (3)

In [25,36], we show that the mean-field approximation implies that (a) the N -inter-
twined model upperbounds the exact probability vi (t) of infection, (b) the deviations
between the N -intertwined and the exact model are largest for intermediate values
of τ around τc and (c) the random variables X j and Xi are implicitly assumed to
be independent. Since the latter basic assumption is increasingly good for large N ,
we expect that the deductions from the N -intertwined model are asymptotically (for
N → ∞) almost exact for real-world networks.

Figure 2 shows 500 sample paths of the exact SIS process, together with the steady-
state fraction y∞ (τ ) of infected nodes. Although the steady-state fraction is constant,
the SIS infection process continues for ever, which means that an arbitrary node i
moves between the healthy and infected state for 1−vi∞ and vi∞ percent of the time,
respectively.

3 The steady-state fraction y∞ of infected nodes

In this section, we focus on the steady-state of the N -intertwined model, where
vi∞ = limt→∞ vi (t) and limt→∞ dvi (t)

dt = 0. The corresponding steady-state vector
is denoted by V∞. In the exact SIS model, the steady-state is the healthy state, which
is the only absorbing state in the Markov process. However, in networks of realistic
size N , this steady-state is only reached after an unrealistically long time [13]. The
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Fig. 2 A time-dependent simulation of the exact SIS number of infected nodes N y (t; τ) in the complete
bipartite graph K10,990 for τ = 0.15. The steady-state fraction (8) of infected nodes in the N -intertwined
model gives y∞ (0.15) = 0.6, which is the mean value of the 500 realizations of the spreading process

steady-state in the N -intertwined virus spread model thus refers to the “metastable
state”, which is reached exponentially fast and which reflects real epidemics more
closely. In fact, the mean-field approximation, which transforms the linear set of 2N

differential equations of the exact Markov chain into a set of N non-linear differential
equations in (2), has induced the existence of the “metastable state” as well as the
phase transition and the corresponding epidemic threshold, discussed in Sect. 3.2.

From (1), we obtain with dvi (t)
dt = 0 and vi∞ = limt→∞ vi (t),

vi∞ =
β

∑N
j=1 ai jv j∞

β
∑N

j=1 ai jv j∞ + δ
= 1 − 1

1 + τ
∑N

j=1 ai jv j∞
(4)

Beside the trivial solution vi∞ = 0, (4) illustrates that there is another positive solu-
tion reflecting the metastable state in which we are interested here. For regular graphs,
where each node has degree d, symmetry in the steady-state implies that vi∞ = v∞
for all nodes i and it follows from (4) with the definition of the degree di = ∑N

j=1 ai j
that

v∞;regular = y∞; regular (τ ) = 1 − 1
τd

(5)

where y∞ = 1
N

∑N
i=1 vi∞ is the fraction of infected nodes in the steady-state as

deduced from the definition (3). Besides the regular graph, [36] gives an exact

123



The N -intertwined SIS epidemic network model 153

solution of the steady-state infection behavior in the complete bipartite graph Km,n ,
where there are two partitions Nm with m nodes and Nn with n nodes [32] so that
N = m + n and L = mn,

vi∞ =
mn − 1

τ 2( 1
τ + m

)
n

i ∈ Nn (6)

and

v j∞ =
mn − 1

τ 2( 1
τ + n

)
m

j ∈ Nm (7)

Thus, since y∞ = nvi∞+mv j∞
n+m , we obtain

y∞ (τ ) =
(
mn − τ−2)

N

{
1

τ−1 + m
+ 1

τ−1 + n

}
(8)

The complete bipartite graph, of which the star K1,n is a special case, often appears
as our benchmark model (see e.g. [22,23,33]).

The nodal infection steady-state equation (4) can be solved, as proved in [36] and
alternatively in [33]:

Theorem 1 For any effective spreading rate τ = β
δ ≥ 0, the non-zero steady-state

infection probability of any node i in the N-intertwined model can be expressed as a
continued fraction

vi∞ = 1 − 1

1 + τdi − τ
∑N

j=1
ai j

1+τd j −τ
∑N

k=1
a jk

1+τdk−τ
∑N

q=1
akq

1+τdq −
...

(9)

where di = ∑N
j=1 ai j is the degree of node i . Consequently, the exact steady-state

infection probability of any node i is bounded by

0 ≤ vi∞ ≤ 1 − 1
1 + τdi

(10)

The interesting feature of the continued fraction (9) is that each convergent is an
upper bound for vi∞. Another, equally useful, representation for vi∞ is the Laurent
series, proved in [33]:

Lemma 1 The Laurent series of the steady-state infection probability

vi∞ (τ ) = 1 +
∞∑

m=1

ηm (i) τ−m (11)
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possesses the coefficients

η1 (i) = − 1
di

(12)

and

η2 (i) = 1
di



 1
di

+
N∑

j=1

ai j

d j



 (13)

and for m ≥ 2, the coefficients obey the recursion

ηm+1 (i) = − 1
di




ηm (i)




1 −
N∑

j=1

ai j

d j




 +
m∑

k=2

ηm+1−k (i)
N∑

j=1

ai jηk ( j)




 (14)

Consequently, the Laurent series for the steady-state fraction of infected nodes
equals

y∞ (τ ) = 1 + 1
N

∞∑

m=1

{
N∑

i=1

ηm (i)

}

τ−m (15)

3.1 General relations for y∞

Summing (1) over all i is equivalent to right multiplication of V (t) by the all one
vector uT because

∑N
i=1 vi (t) = uT V (t). Then, we find from (2) that

duT V (t)
dt

= uT (diag (1 − vi (t)) β A − δ I ) V (t)

= β (u − V (t))T AV (t) − δuT V (t)

Hence, we obtain a relation for y∞ ∈ [0, 1] in terms of the vector V∞:

N y∞ = uT V∞ = τ (u − V∞)T AV∞ (16)

Since uT A = DT because A = AT , we can write (16) as

y∞ (τ ) = τ

N

(
DT V∞ − V T

∞ AV∞
)

(17)

We write the degree vector D as D = 'u, where ' = diag(d1, d2, . . . , dN ), so that

N y∞ = τ
(

uT 'V∞ + V T
∞'V∞ − V T

∞'V∞ − V T
∞ AV∞

)

= τ
(
(u − V∞)T 'V∞ + V T

∞ (' − A) V∞
)
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Introducing the Laplacian Q = ' − A of the graph G, the steady-state fraction of
infected nodes y∞ is expressed as a quadratic form in terms of the Laplacian,

y∞ = τ

N

(
(u − V∞)T 'V∞ + V T

∞QV∞
)

(18)

After left-multiplication of the steady state version of (2) by the vector

V T
∞diag

(
vk−1

i∞
)

=
[
vk

1∞ vk
2∞ · · · vk

N∞
]T

which we denote by
(
V k

∞
)T , we obtain the scalar

(
V k

∞
)T

V∞ =
N∑

j=1

vk+1
j∞ = τ

((
V k

∞
)T

AV∞ −
(

V k+1
∞

)T
AV∞

)
(19)

For k = 0 in (19), and introducing the all one vector u = limk→0 V k
∞, we obtain (16)

again. For k = 1 in (19), the norm ‖V∞‖2
2 = V T

∞V∞ = ∑N
j=1 v2

j∞ obeys

V T
∞V∞ = τ

(
V T

∞ AV∞ − V T
∞diag (vi∞) AV∞

)
(20)

When summing (19) over all k from m ≥ 0 to infinity and taking
∣∣v j∞

∣∣ < 1 into
account, the telescoping nature of the right-hand side leads to

∞∑

k=m

(
V k

∞
)T

V∞ =
N∑

j=1

vm+1
j∞

1 − v j∞
= τ

(
V m

∞
)T AV∞ (21)

When m = 0, we have that V m
∞ = u and we obtain, with the degree vector uT A = DT ,

1
τ

N∑

j=1

v j∞
1 − v j∞

= DT V∞ =
N∑

j=1

d jv j∞ (22)

As shown earlier in [36], the characteristic structure (21) of the N -intertwined model
follows more elegantly from the governing equation (2) in the steady-state

V∞ = τdiag (1 − vi∞) AV∞ (23)

for finite τ such that vi∞ < 1. Indeed, after left-multiplying both sides by(
diag

(
1 − vi∞

))−1 = diag
( 1

1−vi∞

)
, we have

1
τ

diag
(

1
1 − vi∞

)
V∞ = AV∞
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or

1
τ

V∞
1 − V∞

= AV∞ (24)

where the vector
(

V∞
1−V∞

)T
=

[ v1∞
1−v1∞

v2∞
1−v2∞ · · · vN∞

1−vN∞

]T
. By left-multiplication of

(24) by
(
V m

∞
)T , we obtain (21) again.

3.2 Phase transition and epidemic threshold

Many authors (see e.g. [3,10,18,27]) mention the existence of an epidemic threshold
τc. If the effective spreading rate τ = β

δ > τc, the virus persists and a non-zero fraction
of the nodes are infected, whereas for τ ≤ τc, the epidemic dies out. The fact that
the epidemic threshold occurs at τ = τc = 1

λ1
has been proved in several papers, see

e.g. [7,36]. Here, we recall the fundamental lemma for the N -intertwined SIS model,
proved in [36].

Lemma 2 There exists a value τc = 1
λ1

> 0 and for τ < τc, there is only the trivial
steady-state solution V∞ = 0. Beside the V∞ = 0 solution, there is a second, non-zero
solution for all τ > τc. For τ = τc + ε, it holds that V∞ = αx1, where ε, α > 0 are
arbitrarily small constants and where x1 is the eigenvector belonging to the largest
eigenvalue λ1 of the adjacency matrix A.

Lemma 2 has important practical consequences. Given a network with adjacency
matrix A and an imminent infection rate β, a nodal curing rate δ > βλ1 can be applied
in nodes (in the form of anti-virus software or any other protection scheme) to maintain
the network virus-free. A key-point is that the security of each host depends not only
on the protection strategies it chooses to adopt but also on those chosen by other hosts
in the network. In a heterogeneous setting, explained in Sect. 6, the resulting game-
theoretic optimum has been studied in [26], while a different optimization technique
in [16] minimizes the overall infection in the network by determining the individual
curing rates of nodes. When the network can be modified, we possess a much larger
number of ways to ban epidemics such as immunization strategies [8] and several
ways to decrease the spectral radius λ1 of the network: quarantining using the mod-
ular form of the network [24], degree-preserving rewiring [34,38,39] that changes
the assortativity and modularity, and hence, the spectral radius. The optimal strategy
to remove m links from the network in order to minimize λ1 is proved in [37] to be
NP-hard. Consequently, several heuristics are proposed and evaluated in [37].

Lemma 2 shows that, for all graphs, V∞ = αx1 +ξ y, where y is a vector orthogonal
to x1, α tends to zero as τ ↓ τc, while ξ tends faster to zero in that limit than α. The
following theorem is proved in [31]:

Theorem 2 For any graph with spectral radius λ1 and corresponding eigenvector x1
normalized such that xT

1 x1 = ∑N
j=1 (x1)

2
j = 1, the steady-state fraction of infected
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nodes y∞ obeys

y∞ (τ ) = 1
λ1 N

∑N
j=1 (x1) j

∑N
j=1 (x1)

3
j

(
τ−1

c − τ−1
)

+ O
(
τ−1

c − τ−1
)2

(25)

when τ approaches the epidemic threshold τc from above.

Since the eigenvectors x1, x2, . . . , xN belonging to the eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λN of the adjacency matrix A span the N -dimensional vector space, we can
write the steady-state infection probability vector V∞ (τ ) as a linear combination of
the eigenvectors of A,

V∞ (τ ) =
N∑

k=1

γk (τ ) xk (26)

where the coefficient γk (τ ) = xT
k V∞ (τ ) is the scalar product of V∞ (τ ) and the eigen-

vector xk and where the eigenvector xk obeys the normalization xT
k xk = 1. Physically,

(26) maps the dynamics V∞ (τ ) of the process onto the eigenstructure of the network,
where γk (τ ) determines the importance of the process in a certain eigendirection of
the graph. The definition y∞ (τ ) = 1

N uT V∞ (τ ) shows that

y∞ (τ ) = 1
N

N∑

k=1

γk (τ ) uT xk (27)

Substitution of (26) into (16) yields

y∞ (τ ) = τ

N

N∑

k=1

λkγk (τ )
(

uT xk − γk (τ )
)

(28)

For irregular graphs, generally, γm (τ ) = xT
m V∞ (τ ) )= 0 for m > 1 and all eigen-

values and eigenvectors in (28) play a role. Moreover, γm (τ ) can be negative, as well
as λm , while

∑N
k=1 λk = 0 (see [32, p. 30]). The larger the spectral gap λ1 − λ2 and

the smaller |λN |, the more y∞ is determined by the dominant k = 1 term in (28),
and the more its viral behavior approaches that of a regular graph. Graphs with large
spectral gap possess strong topological robustness [32], in the sense that it is difficult
to tear that network apart.

Theorem 2 suggests, for all 1 ≤ k ≤ N , the existence of the power series

γk (τ ) =
∞∑

j=1

c j (k)
(
τ−1

c − τ−1
) j

(29)
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where c1 (k) = 0 for 2 ≤ k ≤ N , c1 (1) =
(
λ1

∑N
j=1 (x1)

3
j

)−1
and all other coeffi-

cients c j (k) can be determined in a recursive way as specified in the following lemma,
which is proved in [33]:

Lemma 3 Defining

X (m, l, k) =
N∑

q=1

(xm)q (xl)q (xk)q

the coefficients c j (m) in (29) obey, for m > 1 and j > 2, the recursion

c j (m) = c j−1 (m)

λ1 − λm
{1 − c1 (1) (λ1 + λm) X (m, m, 1)}

− c1 (1)

λ1 − λm

N∑

k=1;k )=m

(λ1 + λk) c j−1 (k) X (m, k, 1)

− 1
λ1 − λm

j−2∑

n=2

N∑

l=1

N∑

k=1

c j−n (l) cn (k) λk X (m, l, k)

while, for j = 2 and m > 1,

c2 (m) = − 1
λ1 − λm

X (m, 1, 1)

λ1 X2 (1, 1, 1)

and c1 (m) = 0. For m = 1, there holds that c1 (1) =
(
λ1

∑N
j=1 (x1)

3
j

)−1
and for

j > 1, the coefficients c j (1) satisfy the recursion

c j (1) = − 1
λ1 X (1, 1, 1)

N∑

k=2

(λ1 + λk) c j (k) X (1, 1, k)

−
j−1∑

n=2

N∑

l=1

N∑

k=1

c j+1−n (l) cn (k) λk X (1, l, k)

The radius of convergence of the Laurent series (11) and of the series (29) is, in
general, unknown and still an open problem. From the definition (27), we obtain the
series expansion of y∞ (τ ) around τ−1

c − τ−1 as

y∞ (τ ) =
∞∑

j=1

{
1
N

N∑

k=1

c j (k) uT xk

}(
τ−1

c − τ−1
) j

(30)
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Fig. 3 The steady-state fraction y∞ of infected nodes versus s = 1/τ (and vs. τ in the inset) for a regular
graph with degree d = 2 and a star. Both graphs have N = 100 nodes and almost the same average degree

valid for τ ≥ 1
λ1

. Similarly, from the eigenvector expansion (26), all steady-state
infection probabilities vi∞ (τ ) are expanded as

vi∞ (τ ) =
∞∑

j=1

{
N∑

k=1

c j (k) (xk)i

}(
τ−1

c − τ−1
) j

Finally, Sahneh and Scoglio [11] have extended the N -intertwined model to three
states: besides the susceptible and infected state, an alert state is introduced, that takes
the behavior into account when a node realizes that it is surrounded by infected neigh-
bors. The three-state extension is shown to exhibit two distinct epidemic thresholds.
Between the two thresholds, the infection spreads at first, but eventually dies out due
to increased alertness in the network.

3.3 Transform s = 1
τ

Figure 3 illustrates the typical behavior of y∞ (s) versus s = 1
τ and y∞ (τ ) versus τ

in the insert for a regular and irregular graph. Theoretically – though debatable –, one
might argue that the effective curing rate s = δ

β = 1
τ is more natural than the effective

infection rate τ = β
δ , because a Taylor expansion of y∞ (s) around s = 0 exists, while

the corresponding one (15) for y∞ (τ ) is a Laurent series in 1
τ around τ → ∞. The

Taylor expansion of y∞ (s) around sc = λ1 = τ−1
c follows directly from (30).
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4 Behavior of y∞ (s) around s = E[D]
2

In [25], we have shown, for any graph, that y∞ ≤ 1
2 for τ ≤ 1

E[D] . Moreover, sim-
ulations in [25] indicate that the maximum variance for the N -intertwined model is
reached for τ ≈ 2

E[D] .

Via extensive simulations, Youssef et al. [42] have observed that y∞ + 1
2 around

s = E[D]
2 . In this section, several lemmas, proved in [33], explain and support these

simulations.

Lemma 4 For any graph, it holds that

y∞ (s) ≤ 1
2

+ 1
2

(
1 − E [D]

λ1

)
for s = E [D]

2
(31)

and equality is only possible for the regular graph.

Lemma 5 For any graph, it holds that

y∞ (τ ) ≤ τ

(
E [D]

4
+ V T

∞QV∞
N

)
(32)

and equality is only possible for the regular graph for which V T
∞QV∞ = 0.

Lemma 5 shows for the regular graph that the “tangent” line through the origin
(τ = 0) lies above y∞; regular and only touches y∞; regular at the point τ = 2

E[D] = 2
d .

For any other graph, the slope is not larger than E[D]
4 + V T∞ QV∞

N and, after transforming
s = 1

τ in (32), we find

y∞ (s) ≤ 1
2

+ 2V T
∞QV∞

N E [D]
for s = E [D]

2
(33)

that complements (31). The correction 1
2

(
1− E[D]

λ1

)
in (31) and the correction 2V T

∞ QV∞
N E[D]

in (33) are positive and small, but nevertheless show that y∞ (s) can be larger than 1
2

at s = E[D]
2 , as numerically found in [42].

Lemma 6 For any graph, it holds that

y∞ (τ )

τ
≥ r (τ ) = 1

N

N∑

j=1

v j∞
(
d j − λ1v j∞

)
(34)

where the lower bound obeys, for any τ ,

r (τ ) ≤ N2

4Nλ1

and where Nk = uT Aku denotes the number of walks of length k.
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We will now estimate the value ξ for which r (ξ) = N2
4Nλ1

in irregular graphs where

Var[D] > 0. Provided that there exists a value of τ = ξ for which v j∞ (ξ) = d j
2λ1

for
each 1 ≤ j ≤ N , that maximizes r (τ ), we have that

y∞ (ξ) = 1
N

N∑

j=1

d j

2λ1
= 1

2λ1

2L
N

= 1
2

E [D]
λ1

<
1
2

Lemma 6 then states that y∞ (ξ) ≥ ξ N2
4Nλ1

or

1
λ1

L
N

≥ ξ N2

4Nλ1

from which

ξ ≤ 4L
N2

= 2
E [D]

(E [D])2 + Var [D]
<

2
E [D]

In conclusion, there may exist a value ξ such that τc < ξ < 2
E[D] for which y∞ (ξ) =

1
2

E[D]
λ1

< 1
2 .

We end by deducing, approximately though, another type of lower bound. Con-
cavity of y∞ (τ ) for τ ≥ τc = 1

λ1
similarly leads to y∞ (qτc + (1 − q) mτc) ≥

(1 − q) y∞ (mτc). For sufficiently large m, the Laurent series (11) up to first order
leads to

y∞ (mτc) ≥ 1 − 1
mτc N

N∑

j=1

1
d j

because the second order term of O
(

1
(mτc)

2

)
is positive due to η2 (i) > 0 in (13).

Choosing qτc + (1 − q) mτc = 2
E[D] provides us with

y∞

(
2

E [D]

)
≥

2
E[D] − τc

(m − 1) τc



1 − 1
mτc N

N∑

j=1

1
d j





>

(
2λ1

E [D]
− 1

)
1
m

(

1 − λ1 E
[ 1

D

]

m

)

Ignoring the integer nature of m, the maximizer of the right-hand side occurs at
m = 2λ1 E

[ 1
D

]
, resulting in
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y∞

(
2

E [D]

)
!

2λ1
E[D] − 1

4λ1 E
[ 1

D

]

Notice that
2λ1
E[D] −1

4λ1 E
[

1
D

] ≤
2λ1

E[D] −1

4 λ1
E[D]

< 1
2 .

In summary, both last lower bound arguments illustrate, together with the upper
bounds in Lemmas 4 and 5 that, for values of τ approaching 2

E[D] , the steady-state frac-

tion of infected nodes y∞ (τ ) is close to 1
2 in any graph, in agreement with simulations

[42].

5 The viral conductance

The viral conductance ψ of a virus spreading process in a graph was first proposed
in [20] as a new graph metric and then elaborated in more detail in [42]. The viral
conductance ψ is defined as

ψ =
λ1∫

0

y∞ (s) ds (35)

where s = 1
τ and λ1 is the spectral radius (i.e. the largest eigenvalue of the adja-

cency matrix A of the graph) and equal to sc = 1
τc

. Below the epidemic threshold
τc, the network is virus-free in the steady-state. Hence, vi∞ (τ ) = 0 for τ < τc, and
equivalently, vi∞ (s) = 0 for s > 1

τc
= λ1. Since the function y∞ (τ ) versus τ is not

integrable over all τ , Kooij et al. [20] have proposed to consider y∞
( 1

τ

)
versus s = 1

τ
(see Fig. 3).

In most published work so far, network G1 was considered to be more robust
against virus spread than network G2 if the epidemic threshold τc (G1) > τc (G2).
For example, in Fig. 3, the regular graph with the same number N of nodes and nearly
the same number L of links possesses a higher epidemic threshold than the star, and,
thus, according to the above robustness criterion, the regular graph is more robust
against virus propagation than the star. However, when the effective infection rate
τ > 1 = 2τc

(
Gregular

)
, we observe from Fig. 3 that the percentage of infected nodes

in the star is smaller than in the regular graph. The extent of the virus-free region is one
aspect of the network’s resilience against viruses, but once that barrier, the epidemic
threshold, is crossed, the virus may conduct differently in networks with high and
low epidemic threshold. This observation has led Kooij et al. [20] to propose the viral
conductance as an additional metric.

The viral conductance ψ is a graph metric that represents the overall conductance
of the virus for all possible effective infection rates τ : when ψ is high for the graph
G, the virus can spread easily in G. Thus, instead of grading graphs only based on
their epidemic threshold τc from virus vulnerable, where τc is small (high spectral
radius λ1) to virus robust (where τc is large), the viral conductance complements this
classification with an average infection notion because
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y∞ = 1
λ1

λ1∫

0

y∞ (s) ds < 1

so that ψ = y∞
τc

< 1
τc

= λ1. Graphs with small epidemic threshold may possess a
small average fraction of infected nodes y∞ so that the viral conductance can be equal
to graphs with large epidemic threshold and large y∞.

Using both expansions (15) and (30) into the definition (35) of ψ yields, subject to
the condition that the radius of convergence of both series is at least λ1

2 ,

ψ = λ1

2
− 1

N

{
N∑

k=1

1
dk

− uT x1

λ1
∑N

j=1 (x1)
3
j

}
λ2

1

8
+ R

where the remainder is

R = 1
N

∞∑

m= j

{
N∑

k=1

ηm (k) + cm (k) uT xk

}
(λ1)

m+1

2m+1 (m + 1)

Subject to the above convergence condition, the expansion R j can be numerically com-
puted up to any desired accuracy when the adjacency matrix A is given, from which
the eigenvectors x1, x2, . . . , xN belonging to the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λN
can be computed.

Several bounds for the viral conductance are derived in [33] of which we only
recall here a few. A simple upper bound, deduced from the convexity of y∞ (s) in
s ∈ [0, λ1), is

ψ ≤ λ1

2

More accurate lower and upper bounds are

ψ ≥ λ1

2

{
Z + ζ (1 − Z) + mins∈[0,λ1] y′′

∞ (s)
3

{
λ2

1 − 3λ1ζ + 3ζ 2
}}

(36)

and

ψ ≤ λ1

2

{
Z + ζ (1 − Z) + maxs∈[0,λ1] y′′

∞ (s)
3

{
λ2

1 − 3λ1ζ + 3ζ 2
}}

where Z = 1
N

∑N
j=1(x1) j∑N
j=1(x1)

3
j

< 1 and ζ = 1−Z
λ1 E

[
1
D

]
−Z

≤ 1. Other types of bounds are

dmin

2
≤ ψ < ln

(
1 + λ1

dmin − 1

)
{E [D] − 1}
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The largest possible ratio λ1
dmin

= O
(√

N
)

occurs in the star, which illustrates that the

viral conductance is bounded by 1
2 E [D] log N . Likely, the star possesses the largest

viral conductance among all graphs with N nodes and L links. It is further conjectured
in [42] that the regular graph attains the lowest viral conductance all graphs with N
nodes and L links. This conjecture has only partially been proved so far in [33] to be
true for the class of complete bipartite graphs, but not yet for all graphs.

6 Heterogeneous N-intertwined model

The homogenous N -intertwined model, where the infection and curing rate is the same
for each link and node in the network, has been extended to a heterogeneous setting
in [35], where an infected node i can infect its neighbors with an infection rate βi , but
it is cured with curing rate δi .

Heterogeneity rather than homogeneity abounds in real networks. For example, in
data communications networks, the transmission capacity, age, performance, installed
software, security level and other properties of networked computers are generally dif-
ferent. Social and biological networks are very diverse: a population often consists
of a mix of weak and strong, or old and young species or of completely different
types of species. The network topologies for transport by airplane, car, train, ship are
different. Many more examples can be added illustrating that homogeneous networks
are the exception rather than the rule. This diversity in the “nodes” and “links” of real
networks will thus likely affect the spreading pattern of viruses. In previous Sections,
only a homogeneous virus spread was investigated, where all infection rates βi = β

and all curing rates δi = δ were the same for each node. We believe that the extension
to a full heterogeneous setting is, perhaps, the best SIS model that we can achieve.

The governing differential equation (1) is straightforwardly generalized to

dvi (t)
dt

=
N∑

j=1

β j ai jv j (t) − vi (t)




N∑

j=1

β j ai jv j (t) + δi



 (37)

while the corresponding matrix equation is

dV (t)
dt

= Adiag
(
β j

)
V (t) − diag (vi (t))

(
Adiag

(
β j

)
V (t) + C

)
(38)

where diag(vi (t)) is the diagonal matrix with elements v1 (t) , v2 (t) , . . . , vN (t) and
the curing rate vector is C = (δ1, δ2, . . . , δN ). We note that A diag(βi ) is, in gen-
eral and opposed to the homogeneous setting, not symmetric anymore, unless A and
diag(βi ) commute, in which case the eigenvalue λi (Adiag (βi )) = λi (A) βi and both
βi and λi (A) have a same eigenvector xi .
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6.1 The steady-state

The metastable steady-state follows from (38) as

Adiag (βi ) V∞ − diag (vi∞) (Adiag (βi ) V∞ + C) = 0

where V∞ = limt→∞ V (t). We define the vector

w = Adiag (βi ) V∞ + C (39)

and write the stead-state equation as

w − C = diag (vi∞) w

or

(I − diag (vi∞)) w = C

Ignoring extreme virus spread conditions (the absence of curing (δi = 0) and an infi-
nitely strong infection rate βi → ∞), then the infection probabilities vi∞ cannot be
one such that the matrix (I − diag (vi∞)) = diag(1 − vi∞) is invertible. Hence,

w = diag
(

1
1 − vi∞

)
C

Invoking the definition (39) of w, we obtain

Adiag (βi ) V∞ = diag
(

vi∞
1 − vi∞

)
C

= diag
(

δi

1 − vi∞

)
V∞ (40)

that generalizes (24). The i-th row of (40) yields the nodal steady state equation,

N∑

j=1

ai jβ jv j∞ = vi∞δi

1 − vi∞
(41)

Let Ṽ∞ = diag(βi ) V∞ and the effective spreading rate for node i, τi = βi
δi

, then we
arrive at

Q
(

1
τi (1 − vi∞)

)
Ṽ∞ = 0 (42)
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where the symmetric matrix

Q (qi ) = diag (qi ) − A (43)

= diag (qi − di ) + Q

can be interpreted as a generalized Laplacian1, because Q (di ) = Q = ' − A, where
' = diag(di ). The observation that the non-linear set of steady-state equations can be
written in terms of the generalized Laplacian Q (qi ) is fortunate, because the power-
ful theory of the “normal” Laplacian Q applies. Many properties of the generalized
Laplacian Q (qi ) are given in [35] that enabled to prove three important theorems.
The first theorem is

Theorem 3 The critical threshold is determined by vectors τc = (τ1c, τ2c, . . . , τNc)
that obey λmax (R) = 1, where λmax (R) is the largest eigenvalue of the symmetric
matrix

R = diag
(√

τi
)

Adiag
(√

τi
)

(44)

whose corresponding eigenvector has positive components if the graph G is connected.

Several bounds for λmax (R) are derived and λmax (R) for the complete graph KN
is solved exactly. The generalization of Theorem 1 is

Theorem 4 The non-zero steady-state infection probability of any node i in the
N-intertwined model can be expressed as a continued fraction

vi∞ = 1 − 1

1 + γi
δi

− δ−1
i

∑N
j=1

β j ai j

1+ γ j
δ j

−δ−1
j

∑N
k=1

βk a jk

1+ γk
δk

−δ−1
k

∑N
q=1

aqkβq

...

(45)

where the total infection rate of node i , incurred by all neighbors towards node i , is

γi =
N∑

j=1

ai jβ j =
∑

j∈ neighbor(i)

β j (46)

Consequently, the exact steady-state infection probability of any node i is bounded by

0 ≤ vi∞ ≤ 1 − 1
1 + γi

δi

Perhaps the most important theorem proved in [35] is

1 All eigenvalues of the Laplacian Q = ' − A in a connected graph are positive, except for the smallest
one that is zero. Hence, Q is positive semi-definite. Much more properties of the Laplacian Q are found
e.g. in [5,9,32].
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Theorem 5 Given that all curing rates δ j for 1 ≤ j )= i ≤ N are constant and
independent from the infection rates β j , the non-zero steady-state infection proba-
bility vi∞ (δ1, . . . , δi , . . . , δN ) > 0 is strict convex in δi , while all other non-zero
steady-state infection probabilities v j∞ (δ1, . . . , δi , . . . , δN ) > 0 are concave in δi .

A direct consequence of Theorem 5 to the homogeneous setting is that y∞ (s) is
convex for s ∈ [0, λ1) (or y∞ (τ ) is concave for τ > τc).

7 Conclusion

The N -intertwined SIS network model has been introduced and many derived results
in the steady-state have been reviewed. While extensions of the model are certainly
expected in the future, we believe that the steady-state theory of the homogeneous
N -intertwined SIS network model is almost entirely established. The time-dependent
theory, on the other hand, needs much more efforts towards maturity. Although the
N -intertwined model is not exact, the only—a mean-field—approximation has enabled
analytic computations as presented here that are, to the best of our knowledge, not
possible with any other SIS model that is more accurate than the N -intertwined model.
An open problem is to determine of the overall accuracy of the N -intertwined model
(with respect to the exact SIS Markov process) for any value of τ in a broad class of
interesting networks. So far, numerical simulations [21] point to a promisingly good
accuracy that improves with N .

A newly envisioned direction is the coupling of the virus spread process with the
underlying topology. In other words, the presented model has assumed that the adja-
cency matrix A is fixed and is not changed by the virus spread process. Hence, nodes
can only protect themselves against the virus by increasing their curing rate δ. While
taking medicine or vaccination is one measure in the fight against the virus, a more
natural one is to avoid contact with infected people. The latter assumes that the adja-
cency matrix A is changed by the process and the knowledge that a node’s neighbor(s)
is (are) infected. The precise description of the coupling between virus spread pro-
cess and topology as well as the solution of the far more complex set of differential
equations stand on the agenda of future research.
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