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Abstract—The effect of virus spreading in a telecommunication
network, where a certain curing strategy is deployed, can
be captured by epidemic models. In the N -intertwined model
proposed and studied in [1], [2], the probability of each node to be
infected depends on the curing and infection rate of its neighbors.
In this paper, we consider the case where all infection rates are
equal and different values of curing rates can be deployed within
a given budget, in order to minimize the overall infection of the
network. We investigate this difficult optimization together with
a related problem where the curing budget must be minimized
within a given level of network infection. Some properties of
these problems are derived and several solution algorithms are
proposed. These algorithms are compared on two real world
network instances, while Erdös-Rényi graphs and some special
graphs such as the cycle, the star, the wheel and the complete
bipartite graph are also addressed.

I. INTRODUCTION

Security attacks and error propagation are one of the ma-
jor issues when designing resilient networks. Computer and
telecommunication networks are increasingly complex and
interdependent. As a consequence, the security of each host
depends heavily on the level of protection of its neighbors and,
more generally, of all other hosts in the network. The choice,
for every host, of an efficient protection strategy is hence a
very complex problem.

Security breaches are very different in nature, to name a
few: the spread of viruses and worms in the Internet, as
well as social engineering compromises and direct exploitation
of a host’s vulnerability. An exposed host becomes a new
source of infection, and data it contains about other hosts
are new penetration points. We term a breach as a virus, and
interdependency of systems is modeled as an infection process.
In order to overcome such threats, hosts are equipped with
protection and curing tools, such as antivirus software, with
its signature quality and the speed of response to new virus
strains. Each host is checked and secured with a certain fre-
quency, however the protection depends on available resources.

The N -intertwined epidemic model, proposed and studied
in [2], [1], is used as an approach to a general risk analysis
framework. The system (computer or program) is modeled
as a black box with interfaces to the other components and
interactions between components are modeled by Markov
theory. Protection of these boxes can be viewed as the ”curing”
of malfunctions.

While spreading processes in networks have been exten-
sively studied (Susceptible Infected Susceptible (SIS) epi-
demics in [3], [4], [5], [6] and the influence of the topology
on the spreading process in [7], [8], [9], [2], [1]), optimization
of protection in such networks have hardly been considered.
The optimization of network protection for the SIS model at
the threshold was considered by Borgs et al. in [10]. The
conclusion that the amount of protection depends on the node
degree is a starting point of our research. We analyze the
network above the threshold and determine that protection
proportional to the node degree is not the optimal solution, but
rather an upper bound. The optimization problem is a difficult
fractional programming problem (which can be related to an
NP-complete problem). Relying on heuristic approaches, we
manage to solve these optimization problem for two real-size
network instances. It appears that the set of optimal solutions,
for various values of a parameter, are aligned, suggesting some
hidden property in the model. Further, we analyzed some
simple graphs, such as the cycle, the star, the wheel and
the complete bipartite graph which, due to symmetry, reduce
to a one variable function optimization. We determined the
difference between the optimum and the upper bound for a
complete bipartite graph with 1000 nodes.

II. N -INTERTWINED MODEL

In this section, we briefly review the N -intertwined epi-
demic model [1]. In contrast to all published SIS-type of
models, the N -intertwined model only makes 1 (mean-field)
approximation in the exact SIS model and is applicable to
all graphs. A network is represented by an undirected graph
G = (N ,L) where N (|N | = N ) is the set of nodes or
vertices and L (|L| = L) is the set of edges or links. The
networks is specified by a symmetric adjacency matrix A:
aij = aji = 1 iff there is an edge between nodes i and j (and
otherwise, the value is 0). A node is not considered connected
to itself, i.e., aii = 0. We denote N (i) = {j ∈ N : aij = 1}
the neighborhood of i ∈ N . If (xi)i∈N is a vector of variables
and S a subset of N , we will sometimes denote the sum

∑
i∈S

xi

by x(S).
The state of a node i is specified by a Bernoulli random

variable Xi ∈ {0, 1}: Xi = 0 for a healthy node and Xi = 1



for an infected node. A node i at time t can be in one of the
two states: infected, with probability vi(t) = Pr[Xi(t) = 1]
or healthy, with probability 1 − vi(t). We assume that the
curing process per node i is a Poisson process with rate δi,
and that the infection rate per link is a Poisson process with
rate β which is imminent for all nodes and thus constant in
the network. For a node i, we can formulate the following
differential equation

dvi(t)

dt
= β(1− vi(t))

N∑
j=1

aijvj(t)− δivi(t) (1)

In words, the probability of a node being infected depends
on the probability (1−vi(t)) that it is not infected, multiplied
with the probability aijvj(t) that a neighbor j is infected
and that it tries to infect the node i with the rate β. We
denote the set of curing rates for a network by the vector
∆ = [δ1 δ2 .. δN ]T .

The completely homogeneous setting, where all δi are equal
was studied in [1]. On the contrary, both the curing rates δi
and the infection rates βi can be potentially different for each
i ∈ N . Detailed derivations in this heterogeneous setting are
given in [2]. Here, our aim is to determine the influence of
the protection distribution in a network, where βi = β for all
i and where the curing rates δi may vary for each i ∈ N .

In the steady-state, where dvi(t)
dt = 0 for each node i ∈ N

and vi∞ = limt→∞ vi(t), we deduce from (1) that

vi∞ =

β
N∑
j=1

aijvj∞

β
N∑
j=1

aijvj∞ + δi

(2)

For any given curing vector ∆, this system of equations has
2N solutions with one positive solution and one solution equal
to 0 [1]. The positive solution gives the probability of nodes
being in the infected state. The fraction y(t) of infected nodes
at any given time t can be calculated as a sum of probabilities
that the nodes are infected, thus, in the steady-state y∞ =

1
N

N∑
j=1

vj∞.

In the pure homogeneous case (same δ for each node), the
fraction of infected nodes as a function of the curing rate per
node is depicted in Figure 1. The model shows a threshold
value δ = δc. For values of δ larger than δc, the epidemic
extinguishes and the number of infected nodes in the steady-
state is 0. In the case of different curing rates per node, the
epidemic threshold occurs [2] when

βc =
1

λmax(Aδ)
(3)

where λmax(Aδ) is the largest eigenvalue of the matrix Aδ =
diag( 1

δi
)A. There are many different matrices Aδ with the

same largest eigenvalue, and as a consequence, there are many
different curing rate vectors ∆ that result in the same threshold
βc. If we have β < βc, the infection dies out, and for β >

Fig. 1. Fraction y∞ of infected nodes as a function of the curing rate δ
(when all curing rates are equal).

βc the epidemic persists with the average number of infected
nodes equal to y∞. If all the curing rates are the same δ1 =
δ2 = .. = δN = δ, the threshold is given by βc

δc
= 1

λmax(A) .
For βc = 1, the critical curing rate [1] is

δc = λmax(A) (4)

For example, the largest eigenvalue of a path graph is
λmax(A) ' 2 = δc, while that of a star topology is
λmax(A) =

√
N − 1 = δc. Although both trees have the

same number of nodes and links, the level of protection in the
homogeneous case required for a star is significantly higher
than for a path topology.

III. PROBLEM STATEMENT

Given a limited curing ”budget”
∑
i∈N

δi, we are interested to

find a curing strategy that minimizes the steady-state infection
vector V∞ = [v1∞ v2∞ .. vN∞]T of the network. Since we
are considering steady-state conditions, we will, from now on,
denote vi instead of vi∞. We make the dependence of the
steady-state probability on the curing rates of all the nodes,
explicitly and write vi(∆) ∈ [0, 1], where ∆ = [δ1 δ2 .. δN ]T .
We formulate the following problem:

(P1) : min f1(∆) =
∑
j∈N

vj(∆) (5)

s.t.
∑
i∈N

δj = 2Lαβ (6)

0 ≤ δj ≤ δc, j ∈ N . (7)

where α is a parameter in [0, 1] and the constant right-hand-
side of the constraint (6) is proportional to the number L of
links in the graph.

For every α, we denote the optimal value of problem P1 by
f∗1 (α). When α = 0, (6) shows that all δj must be equal to 0,
and (2) yields vj(∆) = 1, for all j ∈ N , so that f∗1 (0) = N .

In general, the probability of infection vi cannot be found
from (2) as an explicit function of ∆. Hence, given a vector
∆, the value f1(∆) cannot be obtained analytically, which
complicates the resolution of problem P1. Fortunately, given



a vector ∆, vi can be approximated to any desired level of
accuracy by a continued fraction expansion (see [1], [2]), or
can also be obtained using a fixed point algorithm.

A. An Inverse Optimization Problem
Although vi cannot be elegantly expressed as an explicit

function of ∆, the reverse is not true and any δi can be written
from (2) as a function of the infection probability vector V =
[v1 v2 .. vN ],

δi(V ) =
1− vi
vi

β
∑
j∈N

aijvj ≡
1− vi
vi

× βv(N (i)). (8)

Problem P1 can be rephrased into an inverse problem,
where the sum of curing rates is to be minimized whereas
the probability of infection is bounded:

(P2) : min f2(V ) =
∑
j∈N

δj(V ) (9)

s.t.
∑
j∈N

vj = Nα (10)

0 ≤ δj(V ) ≤ δc, j ∈ N . (11)

where δc is set to 2L
N and α ∈ [0, 1]. We will denote Π the

hyperplane represented by the equality constraint (10) and Ω
the set resulting from the bounding constraints (11).

For every α, the optimal value of problem P2 is denoted by
f∗2 (α).

When α = 1, since every vj is bounded by 1, the constraint
implies that vj = 1 for all j ∈ N and, hence, that f∗2 (1) = 0.
When α = 0, then vj = 0 for all j ∈ N , and it is shown in
[11] that limα→0 f

∗
2 (0) = 2Lβ .

The objective function of problem P2 is now explicit, but
it is still non-convex, and potentially possessing several local
optima. More precisely, this problem belongs to the class of
fractional programming problems [12]. As many other global
optimization problems, fractional programming problems in-
volving a sum of ratios are difficult problems, because many
local minima can exist. Freund et al. [13] have shown that such
problems can be reformulated as combinatorial NP - complete
problems. Several authors [14], [15] proposed algorithms for
solving linear sum of ratios functional program.

One approach towards local minima are the so-called KKT
(Karush-Kuhn-Tucker) conditions. These first order necessary
optimality conditions are usually expressed by the Lagrangean
L(V ;µ2) of the problem

L(V ;µ2) =
∑
j∈N

δj(V ) + µ2

Nα−∑
j∈N

vj

 . (12)

where µ2 is the Lagrangean multiplier associated with the
single equality constraint of the problem. A couple of primal-
dual vectors (V ∗, µ∗2) is a solution of problem P2 if it satisfies
the first order conditions. From these conditions, we deduce
for every i ∈ N and β = 1 that

µ∗2 =
∂f2

∂vi
(V ) = β

−di +
∑

j∈N (i)

(
1

v∗j
−

v∗j
v∗2i

) , (13)

As a consequence, at every local optima V ∗ of problem P2

(and hence also for the global minimum), we have that:

∂f2

∂vi
(V ∗) =

∂f2

∂vj
(V ∗), ∀i, j ∈ N . (14)

Another consequence of (13) is
Lemma 1: For every pair (V ∗, µ∗2) satisfying the first order

necessary conditions, it holds that µ∗2 < 0.
Proof: Consider an optimal solution V ∗ that satisfies the

first order necessary conditions and let v∗min = min
i∈N

v∗i > 0

with corresponding index imin. Since (13) is valid for any
i ∈ N , it is valid for imin and

v∗j
v∗2min

≥
v∗j
v∗2j

=
1

v∗j

immediately shows that µ∗2 ≤ −dimin
< 0.

Finally, we conclude with
Theorem 1: The optimal value of problem P2 is a strictly

decreasing function of α

∂f∗2
∂α

(α) < 0. (15)

Proof: According to the envelope theorem (which refers
to perturbation functions in optimization [16]) and given an
optimal solution V ∗(α), the variations of the global optimum
value f∗2 (α) with respect to α are

∂f∗2
∂α

(α) =
∂L

∂α
(V ∗(α);µ∗2) = Nµ∗2. (16)

By Lemma 1, µ∗2 < 0 and Theorem 1 follows immediately.

B. Bounds on the optimal value f∗2 (α)

As for any minimization problem, any feasible solution of
P2 provides an upper-bound on f∗2 (α). Among all possible
feasible solutions, the local minimizers are those that provide
the better bounds. Consider, for instance, the vector V1(α) =
α1I where 1I is the N -dimensional vector (1, . . . , 1).

Theorem 2: For α > 0, the vector V1(α) is a feasible
solution of problem P2 and f∗2 (α) ≤ 2L(1− α)β. Moreover,
if the graph is regular (all degrees are equal), then V1(α) is a
local minimum.

Proof: First, this solution is indeed feasible, because it
satisfies the equality constraint. Moreover, for every i, we have
δi = (1−α)βdi ≤ L. Hence, it also satisfies the second set of
inequality constraints such that f2(V1(α)) =

∑
i∈N

(1−α)βdi =

2L(1 − α)β is the value of the upper-bound on the optimal
value of problem P2.

The gradient of f2 evaluated at V = V1(α) (with α > 0)
is:

∂f2

∂vi
(V1(α)) = −βdi ≤ 0. (17)

The local direction for improving f2 (since we are minimizing)
around V1(α) is hence the vector (di)i∈N , which, for a regular
graph with degree r, reduces to r1I. Since this vector is
orthogonal to the hyperplane Π, V1(α) is indeed a local



minimum. Alternatively, we can immediately check that V1(α)
satisfies the first order necessay conditions with µ∗2 = −βd and
hence the result holds.

As soon as the graph is not regular, there is a direction of
improvement for f2 along the hyperplane Π and V1(α) is then
no longer a local minimum.

However, in the particular case where α = 1, V1(α) is again
a local minimum. This is basically due to the fact that there is
no direction u pointed within Ω such that the scalar product
< u,∇f2(1I) > is positive. In other words, all improving
direction lead outside Ω. Note that at this particular solution
of P2(α = 1) we also have a locally convex function. Indeed,
the Hessian matrix of f2 can then be written as

Hf (V ) = 2V TA×diag(V −3)−diag(V −2)×A−A×diag(V −2).
(18)

The Hessian matrix evaluated at the unit vector 1I reduces to:

Hf (1I) = 2D − 2A = 2Q, (19)

where D is the diagonal matrix where each entry djj is equal
to d(j) the degree of node j ∈ V and Q is the Laplacian
matrix of a graph G. Since the Laplacian matrix is positive
semi-definite, it follows that f2 is indeed convex at V = 1I.

When the graph is not regular, starting from V1(α), a
direction of improvement of function f2 can be computed as
the orthogonal projection of the gradient ∇f(V1(α)) onto the
hyperplane Π. The j-th component of this projected vector
is −βdj + 2L

N . As a direct consequence, the function f
will decrease the most along directions where the degree is
maximal.

Starting from V1(α) or from any other vector in Ω ∩ Π,
a gradient or projected-gradient method can be used to itera-
tively improve the current value of the objective function and
finally converge to some local minimum of Problem P2.

IV. RELATIONSHIP BETWEEN PROBLEMS P1 AND P2

Both problems P1 and P2 involve essentially two sums:
denote SV =

∑
j∈N

vj and S∆ =
∑
j∈N

δj . In problem P1, the

sum SV is minimized while the sum S∆ is constrained to be
equal to the constant value 2Lα1. In problem P2, the sum S∆

is minimized while the sum SV is constrained to be equal to
the constant value Nα2. Hence, it is legitimate to investigate
the set of vectors (SV , S∆) ∈ IR2 such that both vectors V
and ∆ are linked by the system (2). More precisely, we are
interested in the vectors that are optimal solutions of either P1

or P2. We have:

P1 : f∗1 (α1) = min
Ω∆

{SV (α1,∆) : S∆ = 2Lα1},

and

P2 : f∗2 (α2) = min
ΩV

{S∆(α2, V ) : SV = Nα2}.

We have some interesting results linking both problems:
Lemma 2: Any feasible solution of one of the two problems

P1 and P2 leads to a feasible solution for the other problem.

Proof: : Consider first a solution ∆1, feasible for problem
P1(α1). We know that there exists a solution V2 of system (2)
such that 0 ≤ v2i ≤ 1 for all i. It follows that 0 ≤

∑
i∈N

v2i ≤ N

and hence, there exists α2 ∈ [0, 1] such that this sum equals
Nα2. Given a feasible solution V2 of P2, the solution ∆1

such that δ1i = β 1−v1i

v1i
v1(N (i)) for all i is then feasible for

P1 with α1 = 1
2L

∑
i∈N

δ1i.

As a direct consequence of this lemma, an optimal solution
of one problem yields a feasible solution of the other problem.
We can even demonstrate a stronger result:

Theorem 3: Any optimal solution of one of the two prob-
lems P1 and P2 leads to an optimal solution of the other
problem.

Proof: : We will only prove that an optimal solution of
P2 can be deduced from an optimal solution of P1 (the other
proof is analogous). Consider a given α1 ∈ [0, 1], an optimal
solution ∆∗(α1) of problem P1(α1) and the corresponding
optimal value f∗1 (α1). We then consider the problem P2 with
parameter:

α2 =
1

N
f∗1 (α1).

We know that the solution vj = vj(∆
∗(α1)) implicitly

obtained from system (2), is a feasible solution of problem
P2(α2) with a corresponding value f2(α2) = 2Lα2β (see
Figure 2). If this solution is not optimal then we have
f∗2 (α2) < f2(α2) = 2Lα2β. Denoting α̃1 = 1

2Lβ f
∗
1 (α1), we

have α̃1 < α1 and both values of α yield the same optimal
value. Since f∗2 is a strictly decreasing function of α2, there
would exist α̃2 < α2 such that f2(α̃2) = f2(α2) and hence a
f1(α1) < f∗1 (α1) which is in contradiction with the fact that
f∗1 (α1) is the optimal value.

As a consequence, assume that, for two distinct values
αa2 < αb2, one knows the optimal values of the corresponding
problems P2, namely f∗2 (αa2) > f∗2 (αb2). Letting

α`1 =
1

2Lβ
f∗2 (α`2), for ` = a, b,

then one has the result that all the optimal values of the prob-
lems P1(α1) with α1 ∈ [αb1, α

a
1 ] lie in the interval [αa2 , α

b
2].

This useful property can be used to design an approximation
algorithm to solve problem P1, assuming some algorithm is
available to solve problem P2.

V. SOME PARTICULAR GRAPHS

When dealing with specially structured graphs, we can use
the fact that symmetrical elements or parts of the graph behave
in a similar fashion. For instance in the steady-state, all nodes
in a cycle CN with N nodes will incur the same infection and
have the same protection rate. As a consequence, the problem
size reduces from N to 1 and can be treated analytically. In
this Section, we investigate some special cases of graphs for
which the problem can be solved analytically.



Fig. 2. Illustration of the decreasing function f∗2 (α).

A. Cycles

In a cycle CN each node i ∈ {1, . . . , N} is linked to its
two neighbors (i− 1) and (i+ 1) mod N (see Figure 3(a)).
By symmetry, all infections rates are equal: vi = v(cte). In
problem P2, the constraint (10) translates into v = α. As a
consequence, the sum of curing rates is a linear function of
α: f cycle2 (V ) = 2N(1− α).

Fig. 3. Some particular graphs: (a) cycle, (b) star, (c) wheel, (d) complete
bipartite graph.

B. Stars

A star K1,N has a central node v0 connected to all other
vertices vi, i ∈ {1, . . . , N} (see Figure 3(b)). Except the
central node, all other vertices play a symmetrical role. As
a consequence, we have: vi = v(cte), {1, . . . , N}. The curing

rates are then given by:

δ0 =
1− v0

v0
Nv, (20)

δi = δ(cte) =
1− v
v

v0, i = 1, . . . , N. (21)

It follows that:

fstar2 (V ) = δ0 +Nδ = N(
v

v0
+
v0

v
− v − v0). (22)

Using the fact that v0 +Nv = (N + 1)α, we can then derive
an expression of fstar2 (V ) as a function of v (and α).

C. Wheels

A wheel centered around a node v0 and with N additional
vertices is the edge-wise union of a cycle and a star (see
Figure 3(c)). Using the same symmetry arguments, we can
easily compute the curing rates:

δ0 =
1− v0

v0
Nv, (23)

δi = δ(cte) =
1− v
v

(v0 + 2v), i = 1, . . . , N. (24)

It is interesting to note that, the total curing level fwheel2 (V )
can be expressed as the sum of the two previous functions:

fwheel2 (V ) = f cycle2 (V ) + fstar2 (V ). (25)

D. Complete bipartite graphs

A complete bipartite graph KN1,N2
consists of two disjoint

sets S1 and S2 (|S1| = N1 and |S2| = N2), such that all nodes
in S1 are connected to all nodes in S2 (see Figure 3(d)).

Due to the symmetry, we can assume that nodes from the
same set will have the same protection rate. Thus, the set of
N equations in the steady state, reduces to only two explicit
equations, derived in [1],

v1 =
N1N2 − δ1δ2
N1(N2 + δ1)

; v2 =
N1N2 − δ1δ2
N2(N1 + δ2)

. (26)

For N1 = 1 and N2 = N , the relations (26) simplify to those
of the star in Sec. V-B.

From (26), we find that

f1(∆) =

N∑
j=1

vj = N1v1 +N2v2

= (N1N2 − δ1δ2)

(
1

N2 + δ1
+

1

N1 + δ2

)
Using f2(V ) =

∑N
j=1 δj = N1δ1 +N2δ2 yields

f1(∆) =

(
N1N2 +

N1

N2
δ2
1 −

1

N2
δ1f2(V )

)
×

(
1

N2 + δ1
+

1

N1 + f2(V )
N2
− N1

N2
δ1

)
which shows that f1(∆) is a function of δ1, given that f2(V )
is constant (see (6)). Moreover, this expression illustrates that
f1(∆) is approximately linear in f2(V ), provided the last



fraction is negligibly small. In any case, with 0 ≤ δj ≤ δc,
we have the bounds

1

N1
≤ 1

N1 + f2(V )
N2
− N1

N2
δ1
≤ 1

N1 + δc

which, indeed, confirms that the sensitivity on f2(V ) is small
for any δ1, thus also for the optimum δ∗1 (which is the purpose
of our attempts here).
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Fig. 4. Each curve represents the optimal value f∗1 as a function of α for
several values of the couple (N1, N2).

In figure 4, the optimal solution curves for problem P1 are
represented for several values of the couple (N1, N2). The
total number of nodes N1 + N2 = 1000 is constant. The
curve for the symmetrical case N1 = N2 = 500 is the line
corresponding to V = α1I. This line is also an upper-bound
for the other cases and it corresponds to the approximate
solution where the protection level of each node is taken
proportional to its degree. A slight distortion of the curve
appears when N1 < N2 with a maximum for N1 = 1 and
N2 = 199, corresponding to a star graph. In this extreme case,
the approximate solution based on node degrees can have a
gap up to 12% from the optimal solution.

Finally, we end this section by providing a general argument
that supports the observed almost perfect linearity in numerical
evaluations in Sec. VI. Using the bound in [2]

1− 1

min1≤k≤N
γk
δk

≤ y∞ ≤ 1− 1

N

N∑
i=1

1

1 + γi
δi

where γi =
∑
j∈ neighbor(i) βj is total infection rate of node

i, incurred by all neighbors towards node i, we find, for any
graph, the linear upper bound

f1(∆) ≤ N − 1

max1≤k≤N
γk
δk

f2(V ) (27)

Unfortunately, it is difficult in general to show that minimiz-
ing f1(∆) with respect to the set of {δi}1≤i≤N subject to
f2(V ) = 2Lαβ almost results in equality in (27).

VI. NUMERICAL RESULTS

In this section, we give the results obtained, using sev-
eral optimization algorithms, on two network instances: the
ARPAnet topology with 20 nodes and 31 links and the Cost266
instance from the SNDlib [17] made of 37 nodes and 57
links (see Figure 5). These two networks are typical US and
European backbones.

Fig. 5. The ARPAnet and Cost266 instances

The results are depicted in Figure 6. For each instance,
problem P2 was solved for several values of α2 using a branch-
and-bound algorithm. This algorithm is designed to provide
exact optimal solutions, but only for very small instances.
We have hence limited the number of iterations resulting
to a computing time of one to two minutes (we observed
that giving more time to the algorithm would not improve
significantly the solution). Since the problem of interest is
P1, we have used these results on P2 to try to infer the
right α2 that would provide an optimal solution of P1 with
a given value of α1 (according to theorem 3). These dots
named ”Pb2 inverse” on the figures are hence very closed
to the set of dots ”Pb2” obtained by optimizing problem P2.
Hence, these dots correspond to pairs (

∑
vj ,
∑
δj) where



one sum is optimized and the other held constant, but are
also valid optimal solutions for the other problem. It clearly
appears that this approach outperforms significantly a simple
random search”Pb1 random” that was used to solve problem
P1 directly on the ARPAnet instance. Finally, the solution
where all protection levels are taken proportional to the node
degrees was also investigated (”Pb1 degree”), using a fixed
point algorithm to deduce the corresponding infection levels.

Fig. 6. Solutions obtained on the ARPAnet and Cost266 instances

First note that the dots corresponding to the random sam-
pling strategy are sometimes quite far from the ”optimal” dots,
showing that this approach might be relativelly inefficient,
depending on the values of α. The main observation is that all
these dots seem to be perfectly aligned in both instances. This
suggest that the set of optimal values has some strong property
that we were not yet able to prove in the general case. A
second striking observation is that the solutions proportional to
the node degrees are very close to the optimal ones (or at least,
to those obtained by a more involved resolution approach).
This observation seems to generalize, in a certain sens, the
result proved in the case of regular graphs, that protection
proportional to the node degree is generally a good answer to
the infection problem.

These observations are somewhat tempered by results ob-
tained analytically in the case of complete bipartite graphs.

Fig. 7. Distribution of degrees for the ARPAnet and Cost266 graphs

The results shown in figure 4 illustrate the fact that f∗1 (∆) (and
as a direct consequence, f∗2 (V ) are not always affine functions
of α. However, the strategy assigning the protection propor-
tional to the degree seems to be a very good approximation,
except in highly non-symmetrical cases, such as, for instance
the star network (N1 = 1, N2 = 999). In this case, there can
be a gap up to 12 % (for α = 0.2). However, the sensitivity to
the degree distribution seems to be relatively weak, since the
gap reduce to 8 % for the bipartite graph with N1 = 100 and
N2 = 900. With more ”standard” distribution degrees (such
as the ones of ARPAnet and Cost266 shown in figure 7), the
alignment of dots is excellent.

Additional numerical experiments have been performed on
randomly generated graphs. Two series of 10 Erdös-Rényi
graphs have been generated, respectively with 100 and 200
nodes. The probability of existence of an edge was set to
p = 2pc = logN/N (pc is the critical disconnectivity thresh-
old), thus having a very strong guaranty that the generated
graphs are connected. The problems P2 have been considered
for various values of α. The resulting curves are depicted in
Figures 8 and 9.

Fig. 8. Solutions obtained for Problem P2 on 10 Erdös-Rényi instances
(with 100 nodes)

Again, the almost perfect alignment of the dots confirms
that, in a vast majority of cases, the optimal functions f∗1 (∆)
and f∗2 (V ) behave almost as affine functions of α. The precise
sensitivity of this results to the distribution of degrees in
the graph should be investigated more closely but analytical



Fig. 9. Solutions obtained for Problem P2 on 10 Erdös-Rényi instances
(with 100 nodes)

conclusions might be quite difficult to derive since these
functions are not known analytically themselves.

VII. CONCLUSIONS

We have proposed and analyzed two closely related opti-
mization problems that naturally arise in the context of virus
attacks spreading over a telecommunication network where a
curing strategy is deployed.We have shown how these two
problems are linked and the fact that they share the same set
of optimal solutions. Numerical experiments where optimal
solutions are perfectly aligned, seem even to indicate that the
relationship between the problems is even stronger. The natural
approach consisting in setting a curing strategy proportional to
the degree of each node seems to be quite effective, although
not always optimal.
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