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Abstract. Modularity has been explored as an important quantitative metric for community and cluster
detection in networks. Finding the maximum modularity of a given graph has been proven to be NP-
complete and therefore, several heuristic algorithms have been proposed. We investigate the problem of
finding the maximum modularity of classes of graphs that have the same number of links and/or nodes and
determine analytical upper bounds. Moreover, from the set of all connected graphs with a fixed number of
links and/or number of nodes, we construct graphs that can attain maximum modularity, named maximum
modular graphs. The maximum modularity is shown to depend on the residue obtained when the number
of links is divided by the number of communities. Two applications in transportation networks and data-
centers design that can benefit of maximum modular partitioning are proposed.

1 Introduction

Real-world networks are composed of hierarchically con-
nected communities. For instance, people in online social
networks tend to connect with their friends, forming co-
hesive groups of schoolmates, colleagues and others with
similar interests. Web pages covering the same topic tend
to link to each other rather than to web pages covering
different topics.

Quantitative measures for detecting the presence of
communities can aid network exploration by dividing the
analysis of interactions into inter-community and intra-
community analyses. In this paper, we focus on one such
measure: Newman’s modularity [1]. Determining a parti-
tioning of nodes in a network that maximizes the mod-
ularity is known to be an NP-complete problem [2] and
several heuristic algorithms have been proposed [3–6] for
calculating the maximum modularity.

The modularity is a multi-variable metric depending
on the graph’s topology, the number of nodes N and the
number of links L, the degree distribution, and the num-
ber of communities c. We target the problem of finding the
maximum modularity of networks subject to certain con-
straints, such as a fixed number of links L. We rewrite
the common modularity expression in equation (2) [7]
in a different form given in equation (4), which is suit-
able for finding the maximum modularity [8]. Our results
determine:

– the number of links between the communities (inter-
connecting links) contributes [9] by an order of O(L−1)
and the differences of the cumulative degrees con-
tribute by an order of O(L−2) in the modularity;
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– an upper bound for the modularity of the class of
graphs with a given number of links L and given num-
ber of communities c;

– an upper bound for the modularity of the class of
graphs with a given number of links L and nodes N ,
divided into 2 communities;

– graphs that attain maximum modularity are con-
structed, named maximum modular graphs.

Our results provide a step forward in the problem of find-
ing the maximum modularity in general. Finally, we give
two possible applications in transportation planning and
data-center design, where maximum modular graphs could
be used.

The remaining part of the paper is outlined as follows.
Section 2 gives an overview of the current literature on
modularity. In Section 3, we cover the notation and the
theoretical basis needed for this paper. Our upper bound
for the modularity is derived for the class of graphs with
a given number of links L and communities c in Section 4.
Section 5 places an additional constraint, namely that,
besides a given L and c, also the number of nodes N is
fixed. Moreover, in both Sections 4 and 5, we construct the
graphs that attain the maximum modularity. In Section 6,
some practical applications are proposed and the paper is
concluded in Section 7.

2 Related work

Newman and Girvan’s introduction of the modularity [1]
immediately attracted attention in the fields of commu-
nity detection and clustering. Unfortunately, finding the
maximum modularity for a given graph has been proven
to be an NP-complete problem [2]. A thorough survey of
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the modularity definition, proposed algorithms and close
variations is given by Fortunato [7].

Newman [3] proposed a greedy algorithm for finding
the maximum modularity, whose main drawback is that
in some cases only local maxima are found. Simulated an-
nealing, a technique that randomly explores the spaces of
all the possible solutions, has been applied to this prob-
lem [4,5]. External optimization, which is a variation of
simulated annealing, has also been used for modularity
maximization [6]. A spectral approach, based on Fiedler’s
eigenvector partitioning [10], was also used for modular-
ity [11], where the modularity matrix [12] is used instead
of the Laplacian. An algorithm for calculating modularity
of very large networks is given in [13].

A more theoretical approach was followed by Brandes
et al. [2], who formally proved the NP-hardness of modu-
larity maximization. Like our approach, they focus on the
problem of maximum modular structures. Unlike our an-
alytical upper bounds for the modularity, they proposed
an integer linear programming formulation. Finding the
maximum modularity as a mathematical programming
problem was also suggested by Agarwal and Kempe [14].
Regarding the modularity, a measure for quality of the
communities has been proposed by Delvenne et al. [15],
who also found that “balanced” communities leads to high
modularity. Unlike this work, we re-write modularity in a
suitable form, such that, the property of “balanced” com-
munities could be observed and furthermore, analytically
determine the maximum modular graphs. Finally, an up-
per bound, which is only based on the number of links
between the communities by an order of O(L−1) has been
determined by Fortunato and Barthélemy [9]. However,
we have extended this result by deducing a tighter upper
bound and an additional dependence on the cumulative
degree differences by an order of O(L−2). Furthermore,
we have determined the structure of maximum modular
graphs. Unlike our work, Fortunato and Barthélemy [9]
have pointed to the weakness of algorithms for detecting
small communities and the effect on modularity by merg-
ing communities. To determine the limit size of a “de-
tectable” community, they have introduced the concept of
resolution limit.

3 Another expression for the modularity

Newman’s original expression [1] for the modularity m of
a graph with N nodes and L links states that

m =
1

2L

N∑

i=1

N∑

j=1

(
aij − didj

2L

)
1{i,j∈ the same community}

(1)
where aij is adjacency matrix element and dj is the degree
of node j.

Definition 1. In a certain community Ci (i = 1, 2, . . . , c)

(i) The cumulative degree DCi is the sum of the degrees
of all nodes that belong to the community.

(ii) The total number of links within the community is
denoted by LCi.

By the Definition 1, DCi counts LCi (twice), but also the
links that connect the community Ci with another com-
munity Cj (i �= j).

Definition 2. The links whose end-nodes belong to dif-
ferent communities are named inter-connecting links. The
sum of all inter-connecting links is denoted by Linter.

If we sum over all pairs of nodes within the community
Ck, we have

N∑

i=1

N∑

j=1

aij · 1i,j∈Ck
= 2LCk

N∑

i=1

N∑

j=1

didj · 1i,j∈Ck
=

N∑

i=1

di ·
N∑

j=1

dj · 1i,j∈Ck
= D2

Ck
.

Substituted into equation (1), we deduce the widely
used [7,8], alternative form of the modularity

m =
c∑

k=1

(
LCk

L
−
(

DCk

2L

)2
)

. (2)

Using the Cauchy identity [16]

c∑

j=1

x2
j

c∑

k=1

y2
k =

⎛

⎝
c∑

j=1

xjyj

⎞

⎠
2

+
1
2

c∑

j=1

c∑

k=1

(xjyk − xkyj)
2

with xj = DCj , yj = 1√
c

for each j ∈ {1, 2, . . . , c} and
the fact that each link is counted twice in the sum of the
cumulative degrees (

∑c
k=1 DCk

= 2L), we obtain

c∑

k=1

D2
Ck

=
(2L)2

c
+

1
2c

c∑

j=1

c∑

k=1

(
DCj − DCk

)2
. (3)

Additionally using the fact that
∑c

k=1 Lk = L − Linter

and equation (3) in equation (2), we arrive at yet another
expression for the modularity

m = 1 − 1
c
− Linter

L
− 1

2c

c∑

j=1

c∑

k=1

(
DCj − DCk

2L

)2

. (4)

From equation (4), we immediately obtain the upper
bound 1− 1

c that is only achieved for disconnected graphs
(Linter = 0) with all equal cumulative degrees. Moreover,
equation (4) clearly suggests that graphs that attain max-
imum modularity pose following properties: (1) have small
number [9] of inter-connecting links and their contribution
in the modularity is by an order of O(L−1) and, (2) all
the communities are “balanced” i.e. have similar cumula-
tive degrees (DCi), which has been also inspected in [15].
Additionally, equation (4) shows that the differences of
cumulative degrees contribute by an order of O(L−2) in
the modularity. This observation is related to the reso-
lution limit [9] dependence on the number of links per
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community. Nevertheless, we shade new quantitative light
by finding that maximum modular graphs tend to have
the smallest number of inter-connecting links as a first
priority and “balanced” communities as a second prior-
ity as O(L−1) > O(L−2). However, for a given numbers
of links and communities, it is not always possible to con-
struct completely “balanced” communities (equal DCi). In
the sequel of this paper, we based upon mentioned facts
and analytically determine the structure and details of the
maximum modular graphs.

4 Maximum modular graphs for given
numbers of links L and communities c

In this section we consider the set of all graphs G with
a fix number of links L and we determine those graphs,
called maximum modular graphs that attain a maximum
value for the modularity. Indeed, the modularity of all
other partitions and all other graphs (with fixed number
of links L) is not larger than the maximum modularity.

We show below that the maximum modularity depends
on the residue L modulo c. For each possible residue L
mod c = r, we find the maximum value, but also at least
one partitioning where this modularity is obtained.

4.1 Graph modifications

We denote by community graph the graph abstraction,
where a node reflects one community and a link connects
two nodes from the original graph from different commu-
nities. Particularly, the term tree-configuration is a com-
munity graph, which is a tree. It is important to highlight
that the original graph is not necessarily a tree, but only
the community graph, which is composed by the communi-
ties. A community with exactly one inter-connecting link
is leaf community. A star-configuration is a community
graph, which is a star. In the star-configuration, the com-
munity connected to all leaf communities is called central.
Similarly, star-configuration is different from star graph as
in the first a node is one community.

We define the following graph modifying steps:

Definition 3. Replacing one inter-connecting link be-
tween two communities with an internal link in one of
those two communities is local rewiring.

Definition 4. Replacing one internal link in one commu-
nity with an internal link in another community is shift-
ing.

Definition 5. If the number of communities c > 2, re-
placing one inter-connecting link between two communi-
ties with one internal link in a third (different) community
is general rewiring.

The states before and after each of the defined opera-
tions are given in Figure 1: local re-wiring ((a) and (b)),
shifting ((c) and (d)) and general rewiring ((e) and (f)).

The following Lemma 1 shows that the modularity
increases by decreasing the number of inter-connecting
links, given that the number of links L is fixed.

Lemma 1. The modularity increases by local rewiring.

Proof. The graph G is partitioned into c communities and
we use the definitions given in Section 3. We apply local re-
wiring between Ci and Cj , such that an inter-connecting
link between Ci and Cj is deleted and a new link is added
in the community Ci. The result is a new graph G′ with
corresponding partitioning c′ and all its properties men-
tioned in Section 3 are denoted by an accent. It holds that

⎧
⎨

⎩

D′
Ck

= DCk
, for k �= i and k �= j

D′
Ci

= DCi + 1 and D′
Cj

= DCj − 1
L′

inter = Linter − 1 and c′ = c.
(5)

Using equation (4) and equation (5) the difference between
the modularity of G and G′ is

m′ − m =
2L − (DCi − DCj + 1)

2L2
.

Details are given in Appendix A.1. Because of the basic
law of the degrees

∑c
k=1 DCk

= 2L; DCi ≤ 2L − 1 and
DCj ≥ 1 we have DCi −DCj +1 ≤ 2L−1−1+1 = 2L−1.
The difference is lower bounded as

m′ − m ≥ 2L − (2L − 1)
2L2

=
1

2L2
> 0.

Hence the modularity m′ of the graph G′ is larger. �

The next Lemma 2 resolves the distribution of the
community’s cumulative degrees in the maximum mod-
ular graph.

Lemma 2. In the maximum modular graph with a given
number of links L and number of communities c, the abso-
lute value of the difference between two cumulative degrees
DCi and DCj is always 0, 1 or 2, thus

∣∣DCi − DCj

∣∣ ≤ 2.

Proof. Let us consider a maximum modular graph with
cumulative degrees DCk

, k = 1, 2, . . . , c. Assume that
there are two communities Ci and Cj such that DCi −
DCj > 2. If we shift one link from the community Ci into
the community Cj , we obtain a new graph G′ and then
the corresponding partitioning has modularity m′. Now,
if we label the cumulative degrees by D′

Ck
, k = 1, 2, . . . , c,

it holds that

D′
Ck

= DCk
, for k �= i and k �= j

D′
Ci

= DCi − 2 and D′
Cj

= DCj + 2. (6)

Using equation (6), we show in Appendix A.2 that

m′ − m =
DCi − DCj − 2

L2
> 0.

Thus we obtain a graph G′ with higher modularity, which
is a contradiction. The last proves that |DCi − DCj | ≤ 2
or every two cumulative degrees DCi and DCj are equal,
consecutive or differ by 2. �
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(f) After global re-wiring.

Fig. 1. (Color online) Graph modifying steps.

The next Lemma 3 shows that increasing/decreasing
the modularity by a general rewiring is conditional.

Lemma 3. The modularity does not necessarily increase
if one inter-connecting link is changed by an internal link.

Proof. The graph G is partitioned into c communities with
cumulative degrees DCk

, k = 1, 2, . . . , c and the number of
inter-connecting links is Linter. If we globally rewire, i.e. we
delete one inter-connecting link between Ci and Cj and
add a new link in the community Ck, then we obtain a
graph G′ with corresponding partitioning c′ = c. It holds
that

{
D′

Ci
= DCi − 1 and D′

Cj
= DCj − 1

D′
Ck

= DCk
+ 2 and L′

inter = Linter − 1 (7)

and the modularity is

m′ = 1 − L′
inter

L
− 1

c
− 1

2c

c∑

p=2

c∑

k=1

(
D′

Cp
− D′

Ck

2L

)2

. (8)

Using equation (4) and equation (7) the difference between
the modularity is

m′ − m =
2L + DCi + DCj − 2DCk

− 3
2L2

. (9)

Details are given in Appendix A.3. If DCi = DCj = 1 and
DCk

= 2L − 2 (for c = 3), then m′ < m such that the

modularity decreases. If DCk
= 1, then m′ > m in which

case the modularity increases. �

Corollary 1. In a connected graph, the modularity in-
creases if one inter-connecting link is changed by an in-
ternal link in the community Ck, under the condition
DCk

≤ L − 1.

Proof. According to the relation (9) and the fact that the
graph is connected DCi ≥ 1 and DCj ≥ 1

m′ − m ≥ 2L + 1 + 1 − 2 (L − 1) − 3
2L2

=
1

2L2
> 0. (10)

This implies that the modularity increases. �

4.2 A maximum modular connected graph

In this section, we focus on the value of the modularity of
a maximum modular connected graph and the existence
of the corresponding partitioning.

Corollary 2. The maximum modular connected graph
with L links and divided into c communities has a tree-
configuration and Linter = c − 1.

Proof. Assume that the number of inter-connecting links
in the graph obeys

Linter ≤ c − 2. (11)

http://www.epj.org
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Inequality (11) implies that the number of connected com-
munities is at most c− 1. Consequently, at least one com-
munity will be isolated from the remaining part, such that
the graph is not connected. Suppose next a maximum
modular connected graph, where

Linter ≥ c. (12)

There are two possibilities in this case:
– There are two communities Ci and Cj with at least

2 inter-connecting links between them. Local rewiring
can be applied between Ci and Cj .

– The communities are arranged in a circle-
configuration. This is a community graph, where
all the communities considered as a nodes form a
circle graph. Exactly 2 inter-connecting links start
from each community. It is again possible to apply
local rewiring.

In both cases, the communities Ci and Cj will remain
connected and also the graph in general. According to the
Lemma 1 the modularity of the modified graph after local
rewiring is higher. Hence, we constructed a graph with the
same number of links L, but with a higher modularity,
which is in contradiction with inequality (12). As a result
of inequalities (11) and (12), we obtain Linter = c − 1 for
a maximum modular graph. The last is possible when all
the communities are arranged in a tree-configuration. �

Based on Corollary 1 and equation (4) for the modu-
larity, a maximum modular graph obeys

m = 1 − 1
c
− c − 1

L
− 1

c

c∑

j=2

j−1∑

k=1

(
DCj − DCk

2L

)2

. (13)

4.2.1 Implication of the residue L mod c on the maximum
modularity

The double sum in equation (13) can be rewritten as

Sm =
1

8cL2

c∑

j=1

c∑

k=1

(
DCj − DCk

)2
. (14)

A community connected to exactly one other community
is called a leaf community. Let Pk be the set of commu-
nities connected to k other communities and nk = |Pk|.
Hence, P1 is the set of leaf communities. If all the commu-
nities in Pk have the same cumulative degree equal to D,
the numbers of internal links are also the same and equal
lk = (D − k)/2.

Lemma 4. In a tree-configuration Sm = 0 if and only if
c is even and L ≡ c

2 (mod c)

Proof. Suppose that the graph is partitioned in a tree-
configuration with Linter = c − 1 (Corollary 2) and that
Sm = 0. Based on equation (14), we have that DCi = DCj

for all i, j ∈ {1, 2, . . . , c}. There are c communities in total

c−1∑

k=1

nk = c. (15)

If we sum over all inter-connecting links Linter = c−1 per
community, considering that each link is counted twice,
we have

c−1∑

k=1

knk = 2(c − 1). (16)

If the number of internal links in the leaf community Cp

of a tree-configuration is l, then the cumulative degree is

DCp = 2l + 1.

Hence, all leaf communities have an odd cumulative de-
gree. Because all cumulative degrees are equal, all commu-
nities have an odd number of inter-connecting links. The
last results in n2i = 0, for i = 1, 2, . . . , (t − 1) and t =

[
c
2

]

such that equation (15) becomes
t∑

i=1

n2i−1 = c (17)

and equation (16) is transformed into
t∑

i=1

(2i − 1)n2i−1 = 2 (c − 1) . (18)

If we subtract equation (17) from equation (18), we obtain

2
t∑

i=2

(i − 1)n2i−1 = c − 2. (19)

Equation (19) implies that c must be even, hence that
t =
⌊

c
2

⌋
= c

2 . Thus, it can be rewritten as
c
2∑

i=2

(i − 1)n2i−1 =
c

2
− 1. (20)

Consider the total number of links in the graph. Because
n2i = 0, there exist only communities connected to k other
communities, where k is odd and we can use the variables
l2i−1 for the number of internal links in each community in
P2i−1. The cumulative degree of the communities in P2i−1

is (2li + 2i − 1). If we compare the cumulative degrees of
the communities in P2i−1 and the leaf communities (P1)
we obtain

2l2i−1 + 2i − 1 = 2l + 1
⇐⇒ l2i−1 = l − i + 1

for all i = 1, 2, . . . , c
2 and l1 = l number of internal links in

a leaf community. If we sum over all those links and add
the Linter = c−1 inter-connecting links, using the relation
for l2i−1 and n2i = 0 we find

c − 1 +
c−1∑

i=1

nili = L

⇐⇒ c − 1 +

c
2∑

i=1

n2i−1l2i−1 +

c
2−1∑

i=1

n2il2i = L

⇐⇒ c − 1 +

c
2∑

i=1

n2i−1 (l − i + 1) = L
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Fig. 2. (Color online) One example of maximum modular
graph for L = 33 and c = 6.

and

l

c
2∑

i=1

n2i−1 −
c
2∑

i=2

(i − 1)n2i−1 + c − 1 = L. (21)

Substituting equation (17) and equation (20) into equa-
tion (21) yields

cl − ( c
2 − 1

)
+ c − 1 = L

⇐⇒ L = cl + c
2 .

(22)

From equation (22), it follows that the assumption is pos-
sible if L ≡ c

2 (mod c).
For the proof in another direction, if c is even and L ≡

c
2 (mod c), L = lc+ c

2 there is a graph with corresponding
partitioning, where Sm = 0. A star-configuration, where
the central community has l − c

2 + 1 internal links and is
connected with all others (c − 1) leaf communities each
with l internal links, satisfies the condition. Figure 2 ex-
emplifies the case for L = 33 and c = 6 with modularity
m = 15

22 ≈ 0.682.
The total number of links is (c − 1) l +

(
l − c

2 + 1
)

+
(c − 1) = cl+ c

2 = L. The cumulative degree of the central
community is 2

(
l − c

2 + 1
)

+ c − 1 = 2l + 1 equal to the
cumulative degree of each of the leaf communities which
leads to DCi = DCj for all i, j ∈ {1, 2, . . . , c} and Sm = 0.
Hence, Lemma 4 is completed. �

Another example when L ≡ c
2 (mod c) and Sm = 0 is

given in Figure 3, particularly when r = c
2 .

Lemma 4, combined with equations (14) and (13),
shows, when c is even and L ≡ c

2 (mod c), that the maxi-
mum modular graph has modularity

m = 1 − 1
c
− c − 1

L

and if c is odd or L ≡ r (mod c), r �= c
2 the modularity of

the maximum modular graph is

m < 1 − 1
c
− c − 1

L
.

Let us denote the set of communities with equal cumu-
lative degree k by Qk and |Qk| = qk. Based on the
Lemma 2, all communities in the graph with maximum
modularity might be divided into three sets Qi, with
i ∈ {D − 1, D, D + 1} (consecutive numbers). Clearly,

|QD−1| + |QD| + |QD+1| = qD−1 + qD + qD+1 = c.

Let us consider all the values |DCi − DCj |, where i, j ∈
{1, 2, . . . , c} in the sum Sm in equation (14). All the dif-
ferences between elements in the same set QD−1, QD or
QD+1 are 0. In the other cases, we have

|DCi − DCj | =

⎧
⎨

⎩

1, Ci ∈ QD−1, Cj ∈ QD

1, Ci ∈ QD, Cj ∈ QD+1

2, Ci ∈ QD−1, Cj ∈ QD+1.

Thus, according to equation (14) and the cardinalities of
QD−1, QD and QD+1

Sm =
2qD−1 · qD · 1 + 2qD · qD+1 · 1 + 2qD−1 · qD+1 · 22

8cL2

=
qD (qD−1 + qD+1) + 4qD−1 · qD+1

4cL2

=
qD (c − qD) + 4qD−1 · qD+1

4cL2
. (23)

Because qD−1, qD+1 ≥ 0 we have

Sm ≥ qD (c − qD)
4cL2

. (24)

With the exception that c | L, we will prove that it
is possible to construct the case, where equality in in-
equality (24) is achieved. Equality is possible only if
(qD−1 = 0 or qD+1 = 0) and qD is an integer from the set
{1, 2, . . . , c − 1}. Without loss of generality we can con-
sider the case qD−1 = 0, because the equality in inequal-
ity (24) is achieved when qi are two consecutive integers
with sum c.

Lemma 5. If L ≡ r (mod c), and r �= 0, the minimum
value of Sm is

Sm =

{
r(c−2r)

2cL2 , 1 ≤ r ≤ [ c
2

]
(c−r)(2r−c)

2cL2 ,
[

c
2

]
< r ≤ c − 1.

Proof. Suppose that qD−1 = 0 and 1 ≤ qD+1 ≤ c − 1.
Using L = ck + r, r �= 0 and qD = c − qD+1 we derive

(c − qD+1) · D + qD+1 · (D + 1) = 2L = 2ck + 2r

from which
D = 2k +

2r − qD+1

c
. (25)

Because D is integer, we have

c | (2r − qD+1) . (26)

We distinguish two cases: 1 ≤ r ≤ ⌊ c
2

⌋
and
⌊

c
2

⌋
+ 1 ≤ r ≤

c − 1.
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1

1

k links

1

(k-1) links

1

1 1 1 1

1

...

(c-r-1) communities

(k-1) links k links k links k links

k links k links

Fig. 3. (Color online) Maximum modular partitioning for 1 ≤ r ≤ ⌊ c
2

⌋
.

1

1

k links

1

(k-1) links

1

1 1 1 1

1

...

(r-1) communities

(k-1) links (k-1) links (k-1) links k links

k links k links

Fig. 4. (Color online) Maximum modular partitioning for
⌊

c
2

⌋
< r ≤ c − 1.

1. If 1 ≤ r ≤ ⌊ c
2

⌋
, we have 1 ≤ 2r ≤ c, hence

− (c − 3) ≤ 2r − qD+1 ≤ c − 1 (27)

and Inequality (27) holds only if 2r − qD+1 = 0.
It is possible to construct a partitioning where |QD| =
c − 2r and |QD+1| = 2r. If we have the partition-
ing in Figure 3, where there is a tree-configuration
such as (r + 1) communities are leafs (with 1 inter-
connecting link) and having k internal links; (r − 1)
communities have 3 inter-connecting and (k − 1) in-
ternal links and (c − 2r) communities have 2 inter-
connecting and (k − 1) internal links. The cumulative
degree of the first two groups ((r + 1) + (r − 1) = 2r
in total-set QD+1) is 2 (k − 1)+3 = 2k+1. The cumu-
lative degree of the third group ((c − 2r) in total-set
QD) is 2 (k − 1)+2 = 2k. The total number of links in
this tree-configuration is (r + 1) k + (r − 1) (k − 1) +
(c − 2r) (k − 1) + (c − 1) = ck + r = L

In this case Sm = r(c−2r)
2cL2 .

2. If
⌊

c
2

⌋
+ 1 ≤ r ≤ c− 1, we have 2 ≤ 2r − c ≤ c− 2 and

we can rewrite equation (25) as

D = 2k + 1 +
2r − c − qD+1

c
. (28)

Thus, D is integer only in the case where qD+1 = 2r − c.
It is possible to construct a partitioning where |QD| = 2r

and |QD+1| = c−2r. The partitioning in Figure 4 is a tree-
configuration, where (c − r + 1) communities are leafs (1
inter-connecting link) having k internal links; (c − r − 1)
communities have 3 inter-connecting and (k − 1) inter-
nal links and 2r communities have 2 inter-connecting and
k internal links. The cumulative degree of the first two
groups ((c − r + 1) + (c − r − 1) = 2c − 2r in total-set
QD) is 2 (k − 1) + 3 = 2k + 1. The cumulative degree of
the third group ((2r − c) in total-set QD+1) is 2k + 2.
The total number of links in this tree-configuration is
(c − r + 1) k + (c − r − 1) (k − 1) + (2r − c) k + (c − 1) =
ck + r = L

In this case Sm = (c−r)(2r−c)
2cL2 . �

In the next Lemma we consider the remaining case, L is
divisible by c (r = 0).

Lemma 6. If c | L then the minimum value of Sm is 1
2L2 .

Proof. Let us assume that qD−1 = 0. Using L = ck, we
derive

(c − qD+1)D + qD+1(D + 1) = 2L.

Hence,
D = 2k − qD+1

c
.

Because 1 ≤ qD+1 ≤ c−1 it is not possible for D to be an
integer. Hence, for qD−1 = 0 is not possible to construct a
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1

1 1 1 1

k links (k-1) links (k-1) links (k-1) links

(c-2) communities

Fig. 5. (Color online) Maximum modular partitioning for r = 0.

partitioning. Thus qD−1 ≥ 1 and by reasons of symmetry
qD+1 ≥ 1. If we use equation (23), we have

Sm =
qD (c − qD) + 4qD−1 · qD+1

4cL2
≥ qD (c − qD) + 4

4cL2
.

(29)
It is possible to construct the case, where qD−1 = qD+1 =
1 and qD = c − 2, as illustrated in Figure 5. The parti-
tioning in Figure 5 consists of a very left leaf community
having k internal links (set QD+1), which implies that the
cumulative degree is 2k+1; the very right community is a
leaf and has (k − 1) internal links, which implies that the
cumulative degree is 2k−1 (set QD−1) and the (c − 2) cen-
tral communities have 2 inter-connecting links and (k − 1)
internal links, which implies that the cumulative degree is
2k (set QD).

Thus, equation (23) is reduced to

Sm =
22 + 22 + 2 (c − 2) · 1 + 2 (c − 2) · 1

8cL2
=

1
2L2

and equality in inequality (29) is reached. �
In the previous lemmas we have examined all possi-

ble cases of the residue r in L ≡ r (mod c). The general,
combined result is given in the next theorem.

Theorem 1. The maximum modular connected graph
with L links and partitioned into c communities, where
L ≡ r (mod c) has modularity

m = 1 − 1
c
− c − 1

L
−
⎧
⎨

⎩

1
2L2 , r = 0
r(c−2r)

2cL2 , 1 ≤ r ≤ ⌊ c
2

⌋
(c−r)(2r−c)

2cL2 ,
⌊

c
2

⌋
< r ≤ c − 1.

Proof. Lemma 1 shows that in the maximum modular
connected graph always Linter = c − 1. The values for
Sm for maximum modular graphs are determined in Lem-
mas 5 and 6. �

For all connected graphs, we can state the following
corollary.

Corollary 3. The maximum modularity of any connected
graph with L links and partitioned into c communities,
where L ≡ r (mod c) is bounded by

m ≤ 1 − 1
c
− c − 1

L
−
⎧
⎨

⎩

1
2L2 , r = 0
r(c−2r)

2cL2 , 1 ≤ r ≤ ⌊ c
2

⌋
(c−r)(2r−c)

2cL2 ,
⌊

c
2

⌋
< r ≤ c − 1

5 Maximum modular graph for a given L, N
and c

In this section, we consider the additional constraints that
number of nodes N in the graph is also fixed. This is a sub-
case of the problem considered in Section 4, which implies
that the maximum modular graph has modularity smaller
than or equal to the modularity of the maximum modular
graph obtained in Theorem 1. As demonstrated in this
section, it is not always possible to reach the maximum
modularity obtained in previous section when the number
of links L and the number of communities c is fixed.

If we have a connected graph with N nodes and L
links, we have the inequality

N − 1 ≤ L ≤
(

N

2

)
(30)

where the left-hand side equality is achieved when the
graph is a tree and the right-hand side equality is achieved
when the graph is a complete graph. Otherwise the original
graph is not connected. If we write L and N as

{
L = c · kL + rL

N = c · kN + rN
(31)

where the residues rL, rN ∈ {0, 1, . . . , c−1}. Based on the
left inequality in inequality (30), we have

rN − rL − 1 ≤ c (kL − kN ) .

Because rN − rL − 1 ≥ 0 − (c − 1) − 1 = −c we obtain
kL − kN ≥ −1.

1. The equality (kL = kN − 1) is possible if and only
if rL = c − 1 and rN = 0. Now we can place kL

links and kN nodes in each community, forming a tree-
configuration. Because kL = kN − 1 each community
internally is a tree graph. The maximum modularity
for rL = c − 1, mentioned in the Theorem 1, is

m = 1 − 1
c
− c − 1

L
− c − 2

2cL2
.

2. If kL = kN , based on the left inequality in inequal-
ity (30), we obtain

rL ≥ rN − 1. (32)

According to Lemma 5 in the maximum modular con-
figurations there are (c − rL − 1) communities with
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(kL − 1) links and (rL + 1) communities with kL links.
Here, we can place exactly kN nodes in each commu-
nity with (kL − 1) links. It is possible because, based
on inequality (32), c−rL−1 ≤ c−rN . In rN communi-
ties with kL links we can place (kN + 1) nodes and kN

nodes in the remaining (rL + 1 − rN ) communities. In
the final partitioning, we have communities with

(a) (kL − 1) internal links and kN nodes,
(b) kL internal links and kN nodes,
(c) kL internal links and (kN + 1) nodes.

Hence, the modularity obtained in Theorem 1 is
achieved again.

3. If kL ≥ kN + 1, then it is also possible to achieve the
modularity from Theorem 1. According to the relations
in equation (31), there is at least one:
– community with at least (kN + 1) nodes if rN > 0

or at least kN nodes if rN = 0,
– community with at least kL internal links.

We can place kN nodes in (c − rN ) communities and
(kN + 1) nodes in rN communities. In this case, we
have possibilities (a), (b) and (c) from the above, and
in addition communities with (d) (kL − 1) internal
links and (kN + 1) nodes are also possible.
The communities from (a), (b), (c) and (d) should be
connected graphs. The left inequality in inequality (30)
is always satisfied. Indeed, for the right-hand side, the
conditions for the connected graphs are

(a) kL − 1 ≤
(

kN

2

)
, (b) kL ≤

(
kN

2

)
,

(c) kL ≤
(

kN + 1
2

)
, (d) kL − 1 ≤

(
kN + 1

2

)
. (33)

Based on inequality (33) we have two possibilities

(a) If rL + 1 > rN and kL ≤(kN

2

)
, we can construct:

rN communities each with kL internal links could
be placed (kN + 1) nodes; (rL − rN + 1) commu-
nities each with kL internal links could be placed
kN nodes; and (c − rL − 1) communities each with
(kL − 1) internal links could be placed kN nodes.
In this case we have communities as in (a), (b)
and (c). The existence condition for (b) given in
inequality (33) is sufficient.

(b) If rL + 1 ≤ rN and kL − 1 ≤ (kN

2

)
, we can con-

struct: (rL + 1) communities each with kL internal
links could be placed (kN + 1) nodes; (rN − rL − 1)
communities each with (kL − 1) internal links could
be placed (kN + 1) nodes; and (c − rN ) commu-
nities each with (kL − 1) internal links could be
placed kN nodes. In this case we have communities
as in (a), (c) and (d). The existence condition for
(a) given in inequality (33) is sufficient.
In the cases 1 and 2 the modularity of the max-
imum modular graph will be the value in Theo-
rem 1 and in all the other cases, the modularity of
the maximum modular graph will be smaller. The

main obstacle is that there is no space for addi-
tional links. There are two possible strategies for
placing a new link:

– re-placing a node from one community to an-
other;

– adding an inter-connecting link.
According to Lemma 3 there is no general rule that
the modularity increases/decreases by both steps.
The increase of the modularity in each case is con-
ditional. The general direction is that replacing a
node from one community to another holds until
the community, where the node will be placed, has
a small enough cumulative degree. Therefore, only
adding inter-connecting links will be possible.

5.1 The two communities case (c = 2)

In the case of dividing the graph into two communities,
there is no general rewiring. When c = 2, we calculate the
modularity of the maximum modular graph for a fixed
number L of links and number N of nodes. We consider
different cases for the residues of L and N , divided by
c = 2. We already calculated in the general case for c the
modularity of the maximum modular graph for smaller

L ≤ 2
( 
N/2�

2

)
.

(a) if kL ≤
(

kN

2

)
⇐⇒ L ≤ 2

( 
N/2�
2

)
, placing kN

nodes in both communities and (kL − 1) links in one
community and kL in another (1 inter-connecting link)
the modularity of the maximum modular graph is

m =
1
2
− 1

L
− 1

2L2
;

(b) if L ≥ 2
(

N/2
2

)
+ 1, we consider several cases for

L ∈
[
2

( �N/2�
2

)
+ (k − 1)2 + 2, 2

( �N/2�
2

)
+ k2 + 1

]

(34)
where k = 1, . . . , 
N/2� − 1. Lemma 1 states that the
maximum modular graph has 1 inter-connecting link.

The exact result is determined in the remaining part of
this section.

Lemma 7. If NC1and NC2 (NC1 ≤ NC2) are the number
of nodes and LC1and LC2 the number of internal links in
the communities C1 and C2, respectively then
(a) LC1 ≤ LC2

(b) kL the modularity m(LC1) is increasing function
(c) NC1 ≤ N − k, if L belongs to the interval (34)

Proof. Details are given in Appendix A.4 �
Corollary 4. If L lies in the interval (34), then

NC1 =
⌊

N

2

⌋
− k

LC1 =
(⌊

N
2

⌋− k
2

)
.
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We use the term bi-modular for partitioning into 2 com-
munities (c = 2).

Lemma 8. The maximum bi-modular graph with L links
and N nodes, when L is in the interval (34) is

m =
1
2
− 1

L
−

(
L − 1 − 2

(⌊
N
2

⌋− k
2

))2

2L2
.

Proof. Corollary 4 shows that LC1 =
(⌊

N
2

⌋− k
2

)
and

Linter = 1, hence, LC2 = L− 1−
(⌊

N
2

⌋− k
2

)
. The defini-

tion in equation (4) leads to

m =
1
2
− 1

L
−

(
L − 1 − 2

(⌊
N
2

⌋− k
2

))2

2L2
.

It remains to prove the existence of a graph with NC2 =[
N
2

]
+ k nodes and LC2 links. We have

LC2 = L − 1 − LC1

≤ 2
( 
N/2�

2

)
+ k2 + 1 − 1 −

(⌊
N
2

⌋− k
2

)

=
(⌊

N
2

⌋
+ k

2

)
. (35)

On the other hand

LC2 = L − 1 − LC1

≥ 2

( �N/2�
2

)
+ (k − 1)2 + 2 − 1 −

( ⌊
N
2

⌋− k
2

)

= 1 +

( �N/2� − k + 1
2

)
−
( ⌊

N
2

⌋ − k
2

)

+

( �N/2� + k − 1
2

)

=

( ⌊
N
2

⌋
+ k − 1
2

)
+

⌊
N

2

⌋
− k + 1

=

⌊
N

2

⌋
+ k − 1 +

(⌊
N
2

⌋
+ k − 2

) (⌊
N
2

⌋
+ k − 3

)

2

≥
(⌊

N

2

⌋
+ k

)
− 1. (36)

Based on inequalities (36) and (35) and the condition in
inequality (30), it is possible to construct a graph with⌊

N
2

⌋
+ k nodes and LC2 nodes and the proof is complete.

�
The next Lemma 9 resolves the problem of finding

the modularity of a maximum modular connected graph,
when L is significantly larger than N .

Lemma 9. If L ∈
[
2 +
(

N − 1
2

)
,

(
N
2

)]
the modular-

ity of a maximum bi-modular graph (c = 2) is

m = −1
2

⎛

⎜⎜⎝1 −

(
N − 1

2

)

L

⎞

⎟⎟⎠

2

.

Proof. Details are given in Appendix A.5. �

An immediate corollary of the last Lemma 9 is

Corollary 5. In the complete and bi-modular graph, the
maximum modularity is 0.

We conclude the discussion by the following Theorem 2.

Theorem 2. The modularity of the maximum modular
and connected graph with N nodes and L links divided
into c = 2 communities is

m =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
− 1

L
− 1

2L2 , ifN − 1 ≤ L ≤ 2

( ⌊
N
2

⌋

2

)
+ 1

1
2
− 1

L
− W2

2L2, if 2

( ⌊
N
2

⌋

2

)
+ 2 ≤ L ≤ 1 +

(
N − 1

2

)

− 1
2

⎛

⎜⎜⎝1 −

⎛

⎝N − 1
2

⎞

⎠

L

⎞

⎟⎟⎠

2

, if 2+

(
N − 1

2

)
≤ L ≤

(
N
2

)

where W = L−1−2

⎛

⎜⎝
⌊

N
2

⌋− 1 −
⌊√

L − 2 − 2

(
[N/2]

2

)⌋

2

⎞

⎟⎠

Proof. The results for N − 1 ≤ L ≤ 2
(⌊

N
2

⌋

2

)
+ 1 and

2 +
(

N − 1
2

)
≤ L ≤

(
N
2

)
, we already obtained. For

L ≤ N−2, there is no connected graph. For L ≥
(

N
2

)
+1

there is no graph without self or multiple links between
nodes. Lemma 8 shows that

m =
1
2
− 1

L
−

(
L − 1 − 2

(⌊
N
2

⌋− k
2

))2

2L2
(37)

for

2
( 
N/2�

2

)
+ (k − 1)2 + 2 ≤ L ≤ 2

( 
N/2�
2

)
+ k2 + 1

which implies

k ≤ 1 +

√

L − 2
( 
N/2�

2

)
− 2 ≤ 1 +

√
k2 − 1 < k + 1.

Hence k = 1 +

⌊√

L − 2 − 2
( 
N/2�

2

)⌋
. If we use this

result into Lemma 8 we will obtain the result stated in
the theorem. �

6 Applications

The theoretical upper bounds determined in the paper can
be used in transportation planning. Suppose that the orga-
nization responsible for world transport connections needs
to make a plan and the condition is that it should spend
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Fig. 6. (Color online) Constructing maximum modular world connections ( c©Google Inc.).

money for establishing exactly L lines in exactly c coun-
tries. It should be possible from each place to reach ev-
ery other place, but also the cost of inter-continental lines
should be minimized. Moreover, for political and diplo-
matic reasons, the distribution of used money per country
should be fair and approximately equal. In practice, we
suppose that the organization should connect Europe, the
United States, China and South Africa, and should spend
an equal amount of money for connecting exactly 4 cities
in those countries or continent. This is a problem of con-
structing a maximum modular network of cities as nodes
and countries/continent as communities. Figure 6 gives a
construction of a maximum modular network, given c = 4
number of countries/continents and L = 19, number of
connections that should be established.

Theorem 1 and the fact that 19 ≡ 3 (mod 4) shows
that the maximum modularity is (r = c−1, c = 4, L = 19)

m = 1 − 1
4
− c − 1

L
− 1 (2c − 2 − c)

2cL2
≈ 0.5914.

The communities are arranged according to Lemma 5,
such that each country/continent has 4 internal connec-
tions and only the 2 central communities, Europe and US,
have 2 external connections. Their cumulative degree is 10,
and those of China and South Africa are 9.

Another possible application is designing a distributed
data-center to keep redundant copies which will increase
the robustness under malicious attacks. The additional
constraint consists of preserving the connectivity and com-
munication between the units. If we want to design 3 iden-
tical redundant parts, apart from the increase in security
and reliability level, additionally the maximum modular-
ity is achieved over all the networks with the same number
of direct connections. For instance, a topological plan of
a data-center with 3 redundant parts each with unique
control unit and 8 functional units connected in a star-
configuration structure is drawn in Figure 7. According to
Theorem 1 and the fact that 26 ≡ 2(mod 3), the maxi-

Fig. 7. (Color online) Reliable data-redundant and maximum
modular data-center.

mum modularity of m = 0.5895 is achieved

m = 1 − 1
3
− c − 1

L
− (c − 2) (2 × 2 − c)

2cL2
≈ 0.5895

7 Conclusion

We introduced and described the notation of maximum
modular graph, which is a graph in the set of all graphs
satisfying given constraint(s) that has a maximum modu-
larity. Using the Cauchy identity [16] we found an alter-
native form of Newman’s modularity [11] that is suitable
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to deduce upper bounds. Considering the divisibility of
the number L of links over the number c of communi-
ties, exact upper bounds are given. For a given number
L of links and for a given number L of links and N of
nodes, we derive the attainable value for the upper bound,
which means that there is at least one graph and partition-
ing where that maximum modularity is reached. We also
propose two possible applications for maximum modular
partitioning of a transportation network and maximum
modular topology of reliable data-center.

An interesting problem is finding the maximum mod-
ularity for a fixed degree vector d =

[
d1 d2 . . . dN

]
. Be-

cause of the basic law of the degrees,
∑c

k=1 di = 2L, we
have a fixed number of links and because of the size of the
degree vector d, the number of nodes is also fixed. This
leads to the conclusion that the maximum modularity is
smaller than or equal to the result obtained in Theorem 1.
However, the problem is not equivalent. Having the fixed
number of neighbors for each node this problem could be
considered as a problem of grouping nodes in the commu-
nities to maximize a multi-variable function. The defined
steps for local/global re-wiring and shifting do not work in
this case, because they change the nodal degrees so that we
need to consider a degree preserving rewiring process [17].

We would like to thank Wynand Winterbach for his useful
suggestions.

Appendix: The derivations used
for the proofs for m′ > m

According to the definition of modularity, the difference
after and before the change we have

m′ − m =
Linter − L′

inter

L

− 1

8cL2

c∑

p=1

c∑

k=1

[(
DCp − DCk

)2 − (D′
Cp

− D′
Ck

)2]
. (A.1)

In equation (A.1), the expression
(
DCp − DCk

)2 −(
D′

Cp
− D′

Ck

)2

is different from 0, only if p ∈ {i, j} or
k ∈ {i, j}. Using equation (A.1), we obtain

m′ − m =
Linter − L′

inter

L

− 2

8cL2

c∑

k=1

[(
D′

Ci
− D′

Ck

)2 − (DCi − DCk)2

+
(
D′

Cj
− DCk

)2

− (DCj − DCk

)2
]

=
Linter − L′

inter

L
− 1

4cL2

×
c∑

k=1
k �=i,j

[(
DCi + D′

Ci
− 2DCk

) (
D′

Ci
− DCi

)

+
(
DCj + D′

Cj
− 2DCk

) (
D′

Cj
− DCj

)]

− 1

4cL2

(
D′

Ci
− DCi − (D′

Cj
− DCj )

)

×
(
D′

Ci
+ DCi − (D′

Cj
+ DCj )

)
. (A.2)

A.1 Details of Lemma 1

In this case according to the condition in the Lemma 1
and the expression in equation (A.2)

m′−m =
1

L
− 1

4cL2

c∑

k=1
k �=i,j

[
(2DCi −2DCk ) − (2DCj −2DCk

)
+2
]

− 1

4cL2

(
DCi − DCi − (DCj − DCj ) + 2

)

× (DCi + DCi − (DCj + DCj ) + 2
)

=
1

L
− 2

4cL2

c∑

k=1
k �=i,j

(
DCi −DCj +1

)− 2
(
2DCi −2DCj +2

)

4cL2

=
1

L
− c − 2

2cL2

(
DCi − DCj + 1

) − DCi − DCj + 1

cL2

=
1

L
− c − 2 + 2

2c · L2

(
DCi − DCj + 1

)

=
1

L
− 1

2L2

(
DCi − DCj + 1

)

=
2L − 1 − DCi + DCj

2L2
.

A.2 Details of Lemma 2

Using equation (A.2) and the condition in the lemma one
can get

m′ − m = − 1

4cL2

c∑

k=1
k �=i,j

[(
DCi + D′

Ci
− 2DCk

) (
D′

Ci
− DCi

)

+
(
DCj + D′

Cj
− 2DCk

) (
D′

Cj
− DCj

)]

− 1

4cL2

(
D′

Ci
− DCi − (D′

Cj
− DCj )

)

×
(
D′

Ci
+ DCi − (D′

Cj
+ DCj )

)

=
4

4cL2

c∑

k=1
k �=i,j

[
(DCi − DCk − 1) − (DCj − DCk + 1

)]

+
4

4cL2

(
2DCi − 2 − 2DCj − 2

)

=
1

cL2

c∑

k=1
k �=i,j

(
DCi − DCj − 2

)
+

2

cL2

(
DCi − DCj − 2

)

=
c − 2 + 2

cL2

(
DCi − DCj − 2

)
=

1

L2

(
DCi − DCj − 2

)
.
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A.3 Details of Lemma 3

Using equation (A.2) and the condition in the lemma one
can get

m′ − m =
1

L
− 1

4cL2

c∑

p=1
p�=i,j,k

[
(
DCi + D′

Ci
− 2DCp

) (
D′

Ci
− DCi

)

+
(
DCj + D′

Cj
− 2DCp

) (
D′

Cj
− DCj

)

+
(
DCk + D′

Ck
− 2DCp

) (
D′

Ck
− DCk

)
]

− 1

4cL2

(
D′

Ci
− DCi − (D′

Cj
− DCj )

)

×
(
D′

Ci
+ DCi − (D′

Cj
+ DCj )

)

− 1

4cL2

(
D′

Ci
− DCi − (D′

Ck
− DCk )

)

× (D′
Ci

+ DCi − (D′
Ck

+ DCk )
)

− 1

4cL2

(
D′

Cj
− DCj − (D′

Ck
− DCk )

)

×
(
D′

Cj
+ DCj − (D′

Ck
+ DCk )

)

=
1

L
+

1

4cL2

c∑

p=1
p�=i,j,k

[
(
2DCi − 2DCp − 1

)

+
(
2DCj − 2DCp − 1

)

− 2
(
2DCk − 2DCp + 2

)
]

− 1

4cL2
(−1 − 2) (2DCi − 1 − (2DCk + 2))

− 1

4cL2
(−1 − 2)

(
2DCj − 1 − (2DCk + 2)

)

=
1

L
+

1

2cL2

c∑

p=1
p�=i,j,k

(
DCi + DCj − 2DCk − 3

)

+
3

4cL2

(
2DCi + 2DCj − 4DCk − 6

)

=
1

L
+

2c − 6 + 6

4cL2

[
DCi + DCj − 2DCk − 3

]

=
2L + DCi + DCj − 2DCk − 3

2L2
.

A.4 Details of the Lemma 7

If c = 2 and the number of links is L for maximum mod-
ularity we have the expression

m(LC1) =
1
2
− 1

L
− (L − 1 − 2LC1)

2

2L2

(a) if LC1 > LC2 and using the fact that number of nodes
in C1 is NC1 <

⌊
N
2

⌋
we have

LC1 <

(⌊
N
2

⌋

2

)

L =LC1 + LC2 + 1 < 2LC1 + 1 < 2
(⌊

N
2

⌋

2

)
+ 1.

(A.3)

The inequality in (A.3) is in contradiction with (34)

(b) if we derive the modularity as a function of LC1 we
have

dm(LC1)
dLC1

= −2 (L − 1 − 2LC1) (−2)
2L2

=
2 (L − 1 − 2LC1)

L2
.

In (a) we have just proved that LC1 < LC2 =⇒ L =
LC1 +LC2 +1 > 2LC1 +1 =⇒ (L − 1 − 2LC1 > 0) and
m(LC1) is increasing function;

(c) because of the Lemma 1 and (a) if the number of

links in the community C1 is smaller than
(

NC1

2

)
,

the modularity will increase if we local re-wire one
link from the community C2 into C1. Hence, LC1 =(

NC1

2

)
. For the number of links in the community

C2 we have LC2 ≤
(

N − NC1

2

)
. If
⌊

N
2

⌋
> NC1 ≥

⌊
N
2

⌋− k + 1 then

L = LC1 + LC2 + 1 ≤
(

NC1

2

)
+

(
N − NC1

2

)
+ 1

L ≤ 2

( ⌊
N
2

⌋

2

)
+

(⌊
N

2

⌋
− NC1

)2

+ 1

≤ 2

( ⌊
N
2

⌋

2

)
+ (k − 1)2 + 1.

This is in contradiction with the interval (34).

A.5 Details of Lemma 9

Based on the Lemma 1 the maximum modularity is ob-
tained in the case where the number of inter-connecting
links is minimal. It is in the case NC1 = 1 and NC2 = N−1

and C2 is a full clique i.e. LC2 =
(

N − 1
2

)
. Clearly

there are no links in the communities C1 (LC1 = 0), thus

Linter = L−LC2 = L−
(

N − 1
2

)
. In this case for modu-

larity we obtain

m(LC1) =
1
2
−

L −
(

N − 1
2

)

L
−

(
N − 1

2

)2

2L2

= −1
2

⎛

⎜⎜⎜⎝1 − 2

(
N − 1

2

)

L
+

⎛

⎜⎜⎝

(
N − 1

2

)

L

⎞

⎟⎟⎠

2
⎞

⎟⎟⎟⎠

= −1
2

⎛

⎜⎜⎝1 −

(
N − 1

2

)

L

⎞

⎟⎟⎠

2

.
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