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Abstract. We consider algorithms for generating networks that are extremal with respect to degree assor-
tativity. Networks with maximized and minimized assortativities have been studied by other authors. In
these cases, networks are rewired whilst maintaining their degree vectors. Although rewiring can be used
to create networks with high or low assortativities, it is not known how close the results are to the true
maximum or minimum assortativities achievable by networks with the same degree vectors. We introduce
the first algorithm for computing a network with maximal or minimal assortativity on a given vector of
valid node degrees. We compare the assortativity metrics of networks obtained by this algorithm to assor-
tativity metrics of networks obtained by a greedy assortativity-maximization algorithm. The algorithms
are applied to Erdős-Rényi networks, Barabàsi-Albert and a sample of real-world networks. We find that
the number of rewirings considered by the greedy approach must scale with the number of links in order
to ensure a good approximation.

1 Introduction

Networks play an ever-larger role in the analysis of various
systems. Examples are biological systems, social networks
and computer networks. Comparison of such networks is
difficult since they vary in size (both in node and link
counts) and link configurations. Topological metrics pro-
vide one way of comparing different networks by encoding
their properties as scalars or vectors: two networks with
similar metrics could be considered equivalent, depending
on the context.

Degree distributions of networks are an often-used
metric for characterizing networks. Such first-order de-
scriptions are not always enough to describe the topology
of networks. Thus, it may be necessary to consider second-
order measures in addition to degree distributions. One
such measure is Newman’s degree assortativity [1] (a spe-
cial case of assortative mixing [2]), a relatively new metric
that measures the extent to which nodes with similar de-
grees are connected by links. The limits of this metric are
not yet as well studied as those of other metrics. Extremal
graph theory provides a framework for studying these lim-
its. A typical approach in extremal studies is the gener-
ation of networks that are extremal with respect to the
metric being studied. As an example, in Wang et al. [3],
the maximum and minimum assortativities achievable by
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networks with binomial degree distributions are shown to
vary greatly with the densities of the networks. This is
a non-obvious result, illustrating that assortativity mea-
sures have to be considered relative to a given network
structure. We consider two methods for obtaining net-
works with maximal degree assortativity subject to fixed
degree vectors: a greedy algorithm based on link rewiring
and an exact algorithm based on weighted b-matching.

Watts and Strogatz [4] introduced link rewiring as
a technique for generating random networks. During
rewiring, a link is chosen at random and one of its end-
points is replaced by a random node in the same network
provided that no self-loops or duplicate links are intro-
duced (that is, the network must remain simple). Due to
the way that rewiring works, the node and link counts are
invariant. Evans [5] and Lindquist et al. [6] exploited this
property and studied rewiring as a mechanism for opti-
mizing metrics subject to fixed node and link counts.

Degree-preserving rewiring is a restriction of link
rewiring where a pair of links is chosen at random and
a random end-point from the first link is exchanged for
a random end-point from the second link. Maslov and
Sneppen [7] introduced degree-preserving rewiring as a
technique for generating null models. Their aim was to
determine the likelihood of features observed in protein-
protein interaction networks (relative to the null models).
By requiring that degrees are preserved, the rewiring pro-
cedure is able to generate random networks that can be
characterized by their degree sequences. The utility of this
is evident from the fact that two of the most well-known
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classes of random networks are characterized by their de-
gree distributions: Erdős-Rényi networks and Barabàsi-
Albert networks.

Degree-preserving rewiring forms the basis of a simple
technique for optimizing the degree-assortativity of a net-
work (with a constant degree vector): a number of such
rewiring steps are applied such that each rewiring step in-
creases/decreases the assortativity. This is essentially the
approach taken by our greedy algorithm. Menche et al. [8]
implemented a heuristic degree-preserving rewiring algo-
rithm based on simulated annealing that they used to pro-
duce networks with maximized and minimized assortativ-
ities, focusing on the class of scale free networks. However,
as they did not have an exact algorithm, they could not
compare the results of their heuristic algorithm to exact
results.

In this paper, we consider the open question of how
good a simple greedy assortativity maximization approach
is. To this end, we present a novel exact algorithm for com-
puting the maximum degree-preserved assortativity of a
network. Using ensembles of Erdős-Rényi and Barabàsi-
Albert networks as well as a number of real-world net-
works, we compare results from the greedy algorithm to
those of the exact algorithm. We show that while a greedy
rewiring process does not, in general, attain optimum as-
sortativity, it achieves very good approximations.

2 Assortativity maximization algorithms

2.1 Exact algorithm

Van Mieghem et al. [9] have shown that the assortativity
ρ(G) of a network G(N ,L) with N = |N | nodes and L =
|L| links can be expressed as

ρ(G) = 1 −
∑

i∼j(di − dj)2

∑N
i=1 d3

i − 1
2L

(∑N
i=1 d2

i

)2 (1)

= 1 −
∑N

i=1 d3
i − 2

∑
i∼j didj

∑N
i=1 d3

i − 1
2L

(∑N
i=1 d2

i

)2 , (2)

where di is the degree of the ith node and i ∼ j means
that node i and node j are joined by a link. Under
degree-preserving rewiring,

∑
i∼j didj is the only vari-

able part of the expression, attaining a maximum when
the assortativity of G is maximized. Now consider the
weighted complete network KG whose nodes have the
same labels n1, n2, . . . , nN as G and in which the link
{ni, nj} ∈ L(KG) has weight w(i, j) = didj . Thus, G is an
unweighted subnetwork of KG. Let Gw be equal to G ex-
cept that it has the same link weights as KG (thus, Gw is
simply a weighted subnetwork of KG). The sum of the link
weights in Gw is exactly

∑
i∼j didj =

∑
i∼j w(i, j). Thus,∑

i∼j didj can be maximized by finding the maximum
weight subnetwork in KG whose degree vector matches
that of G.

2.1.1 Assortativity optimization with b-matching

The maximum weight subnetwork problem in this con-
text can also be viewed as a weighted b-matching prob-
lem (see [10]): every node ni in KG is matched with
exactly di other nodes in KG such that the weights
of the links spanned by the matched nodes is maxi-
mized. In the terminology of graph matching, the num-
ber of nodes to be matched with ni (di in this con-
text) is known as the capacity of ni. If every node is
matched with a number of nodes equalling its capacity,
the match is said to be perfect. Weighted b-matchings
can be efficiently computed using the algorithm of Miller
and Pekny [11] which has a worst-case time complexity
of max{O(NL log(maxi{di})), O(N2L)}. Since the algo-
rithm is always applied to the network KG, L = O(N2),
rendering the running time O(N4).

2.1.2 Converting b-matching to 1-matching problems

We were unable to find a usable implementation of Miller’s
and Pekny’s algorithm and the algorithm is difficult to
implement correctly. Hence we took a simpler route due
to Shiloach [12], wherein we transform KG into a network
T (KG) = M such that a perfect weighted 1-matching on
M specifies a perfect weighted b-matching on KG. In a
perfect 1-matching, each node is matched to exactly one
adjacent node.

Every node ni in KG is represented by a set of di

nodes in M which we denote by T (ni) = ni; the nodes
in ni are denoted by nik for k ∈ {1, 2, . . . , di}. A link
l = {ni, nj} in KG is represented by subgraph T (l) in
M . Instead of connecting the nodes of ni directly to the
nodes of nj , we represent the link in M by two connected
nodes, ni0 and nj0, which we call bridge nodes. Each node
in ni is connected to ni0 whilst each node in nj is con-
nected to nj0. Each link in T (l) is assigned the weight
T (w(i, j)) =

∑
{s,t}∈L(KG) w(s, t) + w(i, j); as explained

below, the addition of
∑

{s,t}∈L(KG) w(s, t) ensures that
maximum weight 1-matchings are also perfect matchings.
This scheme is demonstrated in Figure 1; the black links
are the links of T (l).

The nodes in a set ni can only be matched to bridge
nodes (such as ni0), since these are the only nodes to which
they have links. The node ni has N−1 links in KG. Each of
these links is transformed to a subgraph T (l). Therefore,
there are N − 1 bridge nodes with which the di ≤ N − 1
nodes in ni can be matched. Now, if a matching is to be
perfect, one of the following two cases must hold for each
T (l):

– ni0 and nj0 are matched with each other, or
– ni0 is matched with a node in ni and nj0 is matched

with a node in nj .

The second case is equivalent to b-matching the nodes ni

and nj in KG. Each set ni is connected to every other set
nj , j %= i, allowing the second case to apply to any pair
of node sets in M (in other words, every node in KG can
be b-matched to every other node in KG). It is possible to
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Fig. 1. Representation of a link {ni, nj} ∈ L(KG) in the net-
work M .

1-match each node in every set ni because |ni| = di which
is the degree of ni in the original network G. If this were
not true, it would imply that the degree sequence d of G
does not support a valid pairing (matching) of nodes into
links such that the node degrees are equal to d, a contra-
diction. All nodes in M that are matched as in the first
case correspond to nodes in KG that are not b-matched.
Thus, a perfect 1-matching on M is always possible and
corresponds to a perfect b-matching on KG.

If the cost for not matching a pair of nodes is smaller
than the resulting gain, the 1-matching will not be perfect.
By adding the constant

∑
{s,t}∈L(KG) w(s, t) when trans-

forming link weights, we ensure that cost for not match-
ing exceeds any difference in weight that could have been
gained. Thus in M , a matching is perfect if and only if it
is a maximum matching.

We used Kolmogorov’s [13] very fast O(N3) Blossom V
1-matcher. The network M has N(N − 1)+ 2N(N − 1) =
O(N2) nodes, resulting in a final running time of O(N6).
As this grows very quickly with increasing N , we were
limited in the sizes of the instances we could investigate.

2.2 Greedy algorithm

Like the exact assortativity maximization algorithm, the
greedy algorithm modifies the topology of a given network
in order to maximize the term

∑
i∼j didj in (2). As op-

posed to the exact algorithm which computes an entirely
new link configuration, the greedy algorithm increases the
term

∑
i∼j didj by rewiring pairs of links in a sequence of

steps.
In an optimistic rewiring strategy, a pair of links {u, v},

{w, x} ∈ L(G) is selected such that u, v, w and x are dis-
tinct. If, in this configuration of four nodes, {u, x} %∈ L(G)
and {w, v} %∈ L(G), {u, v} and {w, x} can be rewired
to (that is, replaced by) {u, x}, {w, v}. Rewirable link
pairs are always part of such four-node configurations
(see Fig. 2). Let du, dv, dw and dx be the degrees of
u, v, w, x in G. If −dudv − dwdx + dudx + dwdv > 0,
the rewiring increases the term

∑
i∼j didj and therefore

the change is made. Otherwise, the rewiring is rejected.
There are eleven non-isomorphic four-node configurations
of which only three – those in Figure 2 – permit pair-wise
link rewiring. Inspection reveals that the symmetry of the
first and last of these configurations allow for two possible
rewirings, whereas the middle configuration allows only
for one rewiring.

Fig. 2. The only link configurations that permit link rewirings.

The greedy algorithm searches the input network for
the configurations in Figure 2 whose links can be rewired
to increase the assortativity. In each iteration of the algo-
rithm, a random assortativity-increasing configuration is
selected to ensure that different invocations of the greedy
algorithm can sample different parts of the rewiring space.
A simple way to facilitate this selection is to maintain a
set R of rewirable link pairs from which selections can
be made (R is in fact a network with links from the in-
put network as its nodes; the links in R correspond to
rewirable link pairs in the input network). After a pair
of links {u, v}, {w, x} is rewired, all rewirable configura-
tions containing at least two nodes in {u, v, w, x} have to
be re-evaluated for rewirability. Those that are no longer
rewirable are removed from R whilst those that become
rewirable are added to R. The nodes of a rewirable link
pair in R induce one of the rewirable configurations in
Figure 2. The reason for focusing on rewirable link pairs
as opposed to rewirable configurations, is that the first
and last of the rewirable configurations in Figure 2 may
be rewired in two ways and it is easier to consider each of
the two rewirings as a separate element in the set R.

Explicitly maintaining R is expensive, at least initially
(before any rewirings) when it may be that |R| = O(N4).
However, when |R| is large, keeping track of R is unnec-
essary as there is a good chance of finding rewirable link
pairs when randomly sampling links from the network.
Since not every random sampling will yield a rewirable
link pair, sampling is repeated up to a pre-specified num-
ber of times s; if a valid rewiring is found, it is applied and
the algorithm starts with a new iteration. As the greedy
algorithm progresses, the number of rewirable link pairs
|R| decreases, rendering it less and less likely for a ran-
domly sampled pair of links to be rewirable. Eventually, s
random samplings will fail to discover rewirable link pairs.

At this point, R can be constructed explicitly, since |R|
should be small enough. From this point onwards, all link
pairs are sampled from R and the algorithm proceeds un-
til |R| = 0. The algorithm naturally decomposes into two
states. In the first state, links are sampled at random from
the input network; in the second, the set R is constructed
and links are subsequently sampled from R. We refer to
the first state as the random selection state and the sec-
ond as the exhaustive state (since it continues until no
more assortativity increasing configurations exist). Note
that although |R| may be small, constructing R requires
O(L2) time, as all link pairs have to be enumerated.

The execution time on a large network is consider-
able and therefore such an exhaustive state is impracti-
cal for real-world assortativity-maximization algorithms.
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Fig. 3. State diagram for the greedy assortativity maximiza-
tion algorithm.

Our motivation for including it was to study whether al-
gorithms without exhaustive states might miss good, dif-
ficult to find solutions. The exhaustive step is optional
in our greedy algorithm, allowing exhaustive and non-
exhaustive results to be compared.

Combining all of this leads to the state diagram in Fig-
ure 3. When the exhaustive state is skipped, the greedy
algorithm is a simple optimization algorithm whose re-
sults are unlikely to best those of more sophisticated algo-
rithms, such as the algorithm of Menche et al. [8]. When
the exhaustive state is engaged, our algorithm has the
opportunity to find rewirings that will be missed by algo-
rithms based on random link pair selection.

3 Approach setup

3.1 Data sets

We investigate ensembles of Erdős-Rényi and Barabàsi-
Albert networks, as well as a number of real-world net-
works. Erdős-Rényi networks [14] are a 2-parameter fam-
ily of random networks denoted Gp(N). The parameter
N is the number of nodes in the network whilst the pa-
rameter p is the probability that a pair of nodes are con-
nected by a link. We considered networks of size N ∈
{25, 50, 80, 100, 150, 200} and p ∈ [0.05, 0.95]. We also con-
sidered networks of size N ∈ {250, 300, 350, 400, 450, 500}
for p = 0.05; we were forced to limit p due to the excessive
computation time required for larger p.

Barabàsi-Albert networks [15] are a 2-parameter fam-
ily of random scale-free networks. As before, the param-
eter N denotes the number of nodes in the network. The
parameter m represents the degree of nodes added in the
growth process (Barabàsi-Albert networks are grown one
node at a time). For these networks, we considered in-
stances with N ∈ [25, 1000] (including most values of N
for which the Erdős-Rényi experiments were computed)
and m ∈ {2, 3, 4}.

Random network ensembles were constructed for each
pair of parameters: {N, p} for Erdős-Rényi networks and
{N, m} for Barabàsi-Albert networks. With the exception
of a few cases, at least 104 ensemble instances were gener-
ated for each parameter pair. Only 103 Erdős-Rényi net-
works with N = 200 and p > 0.1 were generated due to
the long running times required on these networks.

The real-world networks that we considered come from
a number of different domains and include protein-protein
interaction networks, software call graphs, food webs,
telecommunications networks and electronic circuits.

3.2 Algorithm setup

The greedy algorithm was executed in both its exhaustive
and non-exhaustive modes. In the non-exhaustive mode,
we considered various upper bounds to the number of ran-
dom samplings: s ∈ {100, 1000, 10 000, 100 000}. In the
exhaustive mode, s = 100 000 random samplings were
allowed before the algorithm switched to the exhaustive
state.

3.3 Measured data

We considered the means and standard deviations of the
differences between the assortativities as computed by the
exact and greedy algorithms for each network instance (in
a given ensemble of networks). A simple approach is to
consider E[ρ − ρ′] and Std[ρ − ρ′]. Here, ρ is a random
variable representing the maximum assortativity of an en-
semble of networks as computed by the exact algorithm.
Similarly, ρ′ is a random variable representing the max-
imum assortativity of the ensemble as computed by the
greedy algorithm. Wang et al. [3] show that the range
of degree assortativities achievable by networks with bi-
nomial degree distributions (which include Erdős-Rényi
networks) vary greatly with their density and can often
be much smaller than the possible assortativity range of
[−1, 1]. In particular, as the density increases, the range
shrinks. This variation in ranges skews the results, as the
absolute differences may appear to be small whilst they are
in fact large relative to the attainable assortativity range.
To account for this, we normalize the mean and standard
deviation by dividing the differences by ρ − ρ0. Here, ρ0

represents the assortativities of the original, unmodified
networks. The normalized mean and standard deviation
are given as E[(ρ− ρ′)/(ρ− ρ0)] and Std[(ρ− ρ′)/(ρ− ρ0)]
respectively.

4 Results

4.1 Erdős-Rényi networks

4.1.1 Results as functions of N

First, we consider how the performance of the greedy al-
gorithm changes as node counts increase. The normalized
mean differences between the exact and greedy algorithms
are shown in Figure 4 as functions of N for a few repre-
sentative values of p. Instead of showing error bars, the
standard deviations corresponding to the means in Fig-
ure 4 are shown in Figure 5.

These plots paint a favorable picture for the greedy
approach, as it performs well even when the number of
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Fig. 4. (Color online) Means of relative differences in solutions obtained by the exact and greedy algorithms for various values
of N and p. These plots apply to Erdős-Rényi networks. Each plot corresponds to a fixed p.

random samplings s is small. The downward slopes cor-
responding to some of the non-exhaustive results seem to
suggest that they improve as N increases. However, the
Barabàsi-Albert, sparse Erdős-Rényi (Sect. 4.2) and real-
world (Sect. 4.3) results show increasing trends. But in all
cases, the exhaustive greedy algorithm tends towards the
exact algorithm as N increases. The results also suggest
that if s is chosen to be sufficiently large (for a given N),
the non-exhaustive greedy algorithm can approach the ex-
act algorithm.

The plots in Figure 5 suggest that the deviation from
the mean tends to shrink with increasing N , regardless
of the number of samplings s performed by the greedy
algorithm. It seems reasonable to assume that these will
all asymptotically approach 0.

4.1.2 Results as functions of p

In Section 4.1.1, we considered the performance of the
greedy algorithm in terms of node counts. Here, we con-
sider the performance relative to network density. The
normalized differences between the exact and greedy algo-
rithms are shown in Figure 6. Starting with N ≥ 50, there
are peaks and dips around p = 0.5. When the number of

random selection trials s is small, the greedy results dis-
play peaks, whilst when s is large the results display dips.
The same trends can be seen in the associated variance
plots (which can be found in the supplementary material).

A partial explanation for why this happens lies in
the number of rewirable configurations available in net-
works with p = 0.5 and in the probability of finding a
rewirable link pair during random link selection. Consider
the rewirable configurations in Figure 2. The left-most
configuration depends on the links {u, v} and {w, x} be-
ing present, which has a probability of p2, and on the other
links being absent, which has a probability of (1−p)4. This
configuration can also arise when the links are replaced
by {u, w} and {v, x} or by {u, x} and {v, w}. Thus, the
probability of finding a rewirable configuration with two
links is 3(1 − p)4p2. By the same reasoning, one deduces
that the probability of finding the rightmost configura-
tion is 3(1 − p)2p4. The middle configuration has three
links present, three links absent and can be constructed
in twelve ways, rendering the probability of its appearing
as 12(1 − p)3p3. There are

(N
4

)
possible configurations in

a network on N nodes. In an Erdős-Rényi network, the
probability of finding a rewirable configuration on four
randomly chosen nodes is independent of the probability
of finding a rewirable configuration on another set of four
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Fig. 5. (Color online) Standard deviations of relative differences in solutions obtained by the exact and greedy algorithms for
various values of N and p. These plots apply to Erdős-Rényi networks. Each plot corresponds to a fixed p.

nodes (even if the sets overlap). Thus, the expected num-
ber Rp(N) of rewirable configurations in an Erdős-Rényi
network Gp(N) is:

Rp(N)=
(

N

4

)(
3(1−p)2p4+12(1−p)3p3+3(1−p)4p2

)
.

(3)
For all N , Rp(N) attains a maximum at p = 0.5. Thus,
an algorithm that is able to find all possible rewirings has
ample opportunity for maximizing the assortativity and is
less penalized for bad rewiring choices early in the rewiring
process. As rewiring proceeds, the number of rewirable
configurations decreases (non-linearly) and the probability
of finding such rewirable configurations decreases to the
point where the non-exhaustive greedy algorithm will fail
to find them. Thus, while there may be many rewirable
configurations, they are greatly outnumbered by the total
number of link pairs.

Some caveats apply to Rp(N). First, it is a mean-field
approximation to the number of rewirable configurations.
Second, the expression is not valid for networks that have
been rewired (since these networks are no longer Erdős-
Rényi networks). However, numerical simulations show
that when p = 0.5, the number of rewirable configurations
is indeed maximized (data not shown).

4.2 Barabàsi-Albert networks

To ensure that the results observed for Erdős-Rényi
networks are not merely accidental, we also considered
Barabàsi-Albert networks. It is difficult to fairly com-
pare results on these two network classes, as link counts
in Erdős-Rényi networks with fixed p grow by O(N2)
whereas link counts in Barabàsi-Albert networks grow by
Nm + C = O(N) (where C is a small integer whose value
depends on the link count of the seed network used to
start generation of Barabàsi-Albert networks). By letting
p = (mN+C)/

(
N
2

)
one obtains Erdős-Rényi networks that

have (on average) the same number of links as Barabàsi-
Albert networks (constructed using the same N and m).
The sparsity of these networks allowed us to investigate
instances with up to N = 1000 nodes.

The means of the differences between the exact and
greedy algorithms for Barabàsi-Albert networks are shown
in Figure 7 as a function of N (for each m). Their Erdős-
Rényi counterparts are shown in Figure 8. The overall
trends are similar to those of the earlier Erdős-Rényi
results (Fig. 4): the greedy algorithm approximates the
exact algorithm well and the exhaustive greedy results
tend towards the exact greedy results as N increases.
The fact that lines corresponding to the non-exhaustive
greedy algorithm dip before rising (with increasing N)

http://www.epj.org
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Fig. 6. (Color online) Means of relative differences in solutions obtained by the exact and greedy algorithms for various values
of N and p. These plots apply to Erdős-Rényi networks. Each plot corresponds to a fixed N .
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Fig. 7. (Color online) Means of relative differences in solutions obtained by the exact and greedy algorithms for various values
of N and m in Barabàsi-Albert networks. Each plot shows results as a function of N at fixed m.

suggests that if s grows sufficiently with increasing N ,
non-exhaustive approaches will also tend towards exact
solutions.

Overall, the greedy algorithm performs better on
Barabàsi-Albert networks than it does on Erdős-Rényi
networks with similar link counts. This is also true of the
standard deviation plots corresponding to these networks
(Figs. 2 and 3 in the supplementary material).

4.3 Real-world networks

Finally, we applied our algorithms to some real-world net-
works (see supplemental material at http://dx.doi.org/
10.1140/epjb/e2012-20899-2 for details). These net-
works are from diverse areas, making them a good testbed
for confirming the trends observed for Erdős-Rényi and
Barabàsi-Albert networks. The real-world network results

http://dx.doi.org/10.1140/epjb/e2012-20899-2
http://www.epj.org
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Fig. 8. (Color online) Means of relative differences in solutions obtained by the exact and greedy algorithms for Erdős-Rényi
networks as functions of N . In each figure, probabilities are given by p = (mN + C)/

(
N
2

)
where m ∈ 2, 3, 4 for the respective

figures. The resulting networks have, on average, the same number of links as the Barabàsi-Albert networks in Figure 7.
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Fig. 9. (Color online) Means of relative differences in solutions obtained by the exact and greedy algorithms for a number of
real-world networks.

are shown in Figure 9. The networks were sorted in terms
of their link counts. These counts span two orders of mag-
nitude, starting at 45 links at the left and ending with
5128 links on the right. The real-world network results
confirm our earlier observations (albeit in terms of link
counts). On the one hand, the exhaustive greedy algo-
rithm fares progressively better as link counts increase. On
the other hand, non-exhaustive runs of the greedy algo-
rithm with fixed random sampling bounds s fare worse as

L increases (although this is not so clear when s = 100 000;
this is likely because the link counts are not sufficient to
show the same trends as for smaller s). Thus, for increas-
ing link counts, the penalty incurred by the greedy algo-
rithm requires increases in s. As a side note, there are a
few networks for which the greedy algorithm manages to
find exact solutions. These cases are coincidental and it
remains an open question as to which network properties
are associated with improved performance of the greedy

http://www.epj.org
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algorithm (exact convergence being the golden standard).
Our work so far suggests that power law degree distribu-
tions and large numbers of rewirable configurations are
important factors.

5 Conclusion

In this paper, we performed the first comparative study
between greedy and exact algorithms for maximizing
the assortativity of networks under the constraint that
their degree vectors remain unchanged. We have focussed
only on the maximization of assortativity but our re-
sults hold equally for the minimization of assortativity. A
few sign changes in our algorithms is all that is required
to convert them to minimization algorithms. We ap-
plied the algorithms to Erdős-Rényi, Barabàsi-Albert and
real-world networks of varying sizes and link configura-
tions. The overall theme is clear: the greedy assortativity-
maximization algorithm approximates the exact algorithm
well. We have shown that for all the considered Erdős-
Rényi and Barabàsi-Albert networks, the average differ-
ence between the exhaustive greedy algorithm and exact
algorithm decreases as the number of links is increased.
The results support heuristic approaches such as those of
Menche et al. [8], provided that the number of steps s is
increased as the network size N increases. Our work raises
some interesting questions:

– How many steps s does the greedy algorithm require
to obtains results within a given tolerance of the exact
algorithm?

– How bad can the results of a single greedy algorithm
run be?

– How much better are sophisticated heuristic algo-
rithms than our simple greedy algorithm?

– Why are greedy rewiring algorithms more effective on
Barabàsi-Albert networks than on Erdős-Rényi net-
works?

– Under what circumstances can rewiring algorithms be
expected to find exact solutions (as in the case of the
real-world networks)?

Any approach to these questions would benefit from a
faster exact assortativity-maximization implementation,
such as the algorithm of Miller and Pekny [11]. Armed
with such an implementation, one could investigate (hope-
fully much) larger networks.

The research leading to these results has been funded by the
European Commission, under grant agreement no. 224619 (Re-
sumeNet).
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