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Abstract. Improving robustness of com-
plex networks is a challenge in several
application domains, such as power grids
and water management networks. In such
networks, high robustness can be achieved
by optimizing graph metrics such as the
effective graph resistance, which is the fo-
cus of this paper. An important challenge
lies in improving the robustness of com-
plex networks under dynamic topological
network changes, such as link addition
and removal. This paper contributes the-
oretical and experimental findings about
the robustness of complex networks un-
der two scenarios: (i) selecting a link whose
addition maximally decreases the effec-
tive graph resistance; (ii) protecting a link
whose removal maximally increases the
effective graph resistance. Upper and lower
bounds of the effective graph resistance
under these topological changes are de-
rived. Four strategies that select single
links for addition or removal, based on
topological and spectral metrics, are eval-
uated on various synthetic and real-world
networks. Furthermore, this paper illus-
trates a novel comparison method by con-
sidering the distance between the added
or removed links, optimized according to
the effective graph resistance and the al-
gebraic connectivity. The optimal links
are different in most cases but in close
proximity.

1 Introduction

Several complex infrastructural networks are built to geo-
graphically distribute flows of critical resources for our so-
ciety. Electrical networks, via power lines, and water/gas
networks, via pipe lines, are representative examples. In
the lines of these networks, opposition forces, governed
by physical laws1, resist the passage of electric current or
water/gas molecules. It is shown that these physical char-
acteristics of resistance in individual lines play a key role
in the robustness of the network as a whole [1–3], e.g.,
network robustness under cascading failures [4].

This paper studies the graph metric of effective graph
resistance as a robustness measure of complex networks.
The effective graph resistance can be measured in graphs,
therefore, it is a robustness indicator for several real-world
networks that can be modeled as graphs. Ellens et al. [1]
show that the lower the effective graph resistance is, the
more robust a network is. Adding a link reduces the effec-
tive graph resistance and thus improves the robustness
of a network. This scenario is applicable to infrastruc-
tural investments that shall increase system lifetime by
installing single lines. On the other hand, removing a link
increases the effective graph resistance. The robustness
is improved by ‘protecting’ the link whose removal max-
imally increases the effective graph resistance. This sce-
nario is applicable to cyber-physical targeted attacks of
infrastructural lines. The challenge in both scenarios lies in
the selection of a link, among all the possible ones, whose
addition or removal maximally decreases or increases the
effective graph resistance.

Earlier work studies the effective graph resistance in
networks that are topologically changed. For example, Gh-
osh et al. [5] study the minimization of the effective graph
resistance by allocating link weights in weighted graphs.
Van Mieghem et al. [6] show the relation between the ef-
fective graph resistance and the linear degree correlation
coefficient. Abbas et al. [3] reduce the effective graph re-
sistance of a graph by adding links in a step-wise way.
In contrast to the aforementioned approaches, this paper
focuses on the effective graph resistance as an indicator
of robustness in complex networks when single links are
added or removed.

The contributions of this paper are the following: (i)
Theorems that prove upper and lower bounds of the effec-
tive graph resistance. (ii) Optimization strategies that are
experimentally evaluated under synthetic and real-world
networks. These strategies maximize the decrease or the
increase of effective graph resistance under link addition
and removal respectively. (iii) A method and experimen-
tal results that topologically compare the optimal added
or removed links according to effective graph resistance
and algebraic connectivity. Therefore, this paper provides
a broad spectrum of theoretical and experimental findings
on effective graph resistance as an indicator of robustness
in synthetic and real-world networks.

1 The Ohm’s law for electrical networks and the Poiseuille’s
law for water networks.
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This paper is organized as follows: Section 2 defines the
effective graph resistance and summarizes its properties.
Section 3 derives bounds of the effective graph resistance
under link addition and removal. The design and evalu-
ation of the four strategies are illustrated in Section 4.
The comparison between the optimization of the effective
graph resistance and the algebraic connectivity is investi-
gated in Section 5. Section 6 compares the optimization
of the effective graph resistance with other approaches in
related work. Section 7 concludes the paper and outlines
future work.

2 Effective graph resistance in Complex
Networks

Let G(N,L) be an undirected graph with N nodes and
L links. Adding or removing a link e = i ∼ j results in
a graph G + {e} or G − {e}. The adjacency matrix A of
a graph G is an N × N symmetric matrix with elements
aij that are either 1 or 0 depending on whether there is a
link between nodes i and j or not. The Laplacian matrix
Q of G is an N ×N symmetric matrix Q = ∆−A, where
∆ =diag(di) is the N × N diagonal degree matrix with

the elements di =
∑N
j=1 aij . The average degree in G is

denoted as E [D] = 2L
N . The Laplacian eigenvalues of Q

are all real and non-negative [7]. The eigenvalues of Q
are ordered as 0 = µN ≤ µN−1 ≤ . . . ≤ µ1. The second
lowest eigenvalue µN−1 = αG is coined by Fielder [8] as the
algebraic connectivity. In this paper, the effective graph
resistance RG is computed as follows [7]:

RG = N

N−1∑
i=1

1

µi
(1)

In order to compare the effective graph resistance RG be-
tween networks with different size, the value of the effec-
tive graph resistance in Section 4 is normalized by dividing
RG with

(
N
2

)
.

An alternative normalization approach is the normal-
ized effective graph conductance defined as follows:

C∗ =
N − 1

RG
(2)

The values of C∗ lie in the interval [0, 1] that follows from
the general inequality [7]:

RG ≥
(N − 1)

2

E [D]
(3)

where E [D] ≤ N − 1. For the complete graph, it holds
that C∗ = 1, whereas for disconnected graphs, it holds
that C∗ = 0. This paper focuses on the first normalization
method that is closer to the concept of effective graph
resistance.

The improvement of robustness via the effective graph
resistance consists of two parts: adding an optimal link
lR+ that minimizes the effective graph resistance RG+{e}

and protecting the link lR− whose removal maximizes the
effective graph resistance RG−{e}. The effective graph re-
sistance strictly decreases if a link is added into a graph
and strictly increases if a link is removed from a graph2[1,
9]. A strategy in this work refers to the addition of a sin-
gle link e = i ∼ j according to a specific rule, with the
aim to minimize the effective graph resistance of the graph
G+ {e}. The total number of possible links are:

Lc = (N2 )− L (4)

A strategy also selects a link to protect from all the pos-
sible links L whose removal maximally increases the effec-
tive graph resistance.

The comparison between the optimal link lR+ for the
effective graph resistance RG+{e} and the optimal link lα+

for the algebraic connectivity αG+{e} is based on two com-
putations. The two computations are also performed for
the comparison between optimal links lR− and lα− .

The first computation calculates the probability that
the two optimal links are the same link. From the defini-
tion (1) of the effective graph resistance RG, the algebraic
connectivity αG can be written as αG = µN−1 = 1

RG/N−S ,

where S =
∑N−2
k=1

1
µk

. Based on the definition of S, an up-

per and lower bound of the algebraic connectivity in terms
of the effective graph resistance is derived in the Appendix
A. When S is negligibly low, the two optimal links for the
algebraic connectivity αG and for the effective graph resis-
tance RG are the same link with probability Pr[lR+ = lα+ ]
for link addition and Pr[lR− = lα− ] for link removal.

The second computation concerns the distance between
lR+ and lα+ when they are not the same link with prob-
ability 1−Pr[lR+ = lα+ ]. The distance between links in a
graph G is measured by the hopcount in the correspond-
ing line graph G∗. A line graph G∗ of a graph G is a graph
in which every node of G∗ corresponds to a link in G and
two nodes of G∗ are adjacent if and only if the correspond-
ing links in G have a node in common [7]. The graph G
is referred to as the root graph of G∗. The links lR+ and
lα+ in the root graph G are denoted as the nodes nR+ and
nα+ in the line graph G∗. The hopcount H(nR+ , nα+) in
G∗ is the number of links in the shortest path between
nodes nR+ and nα+ . The probability Pr[H(nR+ , nα+) = 0]
equals to the probability Pr[lR+ = lα+ ]. The hopcount
H(nR+ , nα+) = 1 means that the link lR+ and the link
lα+ share a common node.

Table 1 illustrates the mathematical symbols used in
this paper.

The complex networks in which this paper focuses on
include synthetic and real-world networks. Synthetic net-
works are as follows3:
Erdős-Rényi random graph [10] Gp(N): This graph
is generated from a set of N nodes by randomly assigning
a link between each node pair with probability p. The
probability p is also called the link density. When the link

2 This is also confirmed by Section 3 based on interlacing [7].
3 All these listed networks are converted to undirected and

unweighted connected networks.
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Table 1: An overview of the mathematical symbols

Symbol Interpretation
G A graph
N Number of nodes in a graph G
L Number of links in a graph G
e A link in a graph G
A Adjacency matrix
aij An element in the adjacency matrix A
di Degree of a node i
∆ Diagonal matrix with the nodal degrees
Q Laplacian matrix
E[D] Average degree
µi Eigenvalue of the Laplacian matrix
αG Algebraic connectivity
RG Effective graph resistance for a graph G
C∗ Effective graph conductance
RG+{e} Effective graph resistance for G+ {e}
RG−{e} Effective graph resistance for G− {e}
lR+ Optimal link whose addition minimizes RG
lR− Optimal link whose removal maximizes RG
lα+ Optimal link whose addition maximizes αG
lα− Optimal link whose removal minimizes αG
Lc Number of possible links for link addition
G∗ Line graph of a graph G
nR+ Node in line graph corresponding to lR+

nR− Node in line graph corresponding to lR−
nα+ Node in line graph corresponding to lα+

nα− Node in line graph corresponding to lα−
H(nR+,nα+) Hopcount between nR+ and nα+

H(nR− , nα−) Hopcount between nR− and nα−
∆µi Increase or decrease of an eigenvalue µi
ρ Diameter of a graph G
Ss A strategy s
y Fiedler vector
Rij Effective resistance between nodes i and j
Q−1 Moore-Penrose pseudoinverse of Q
cci Closeness centrality of a node i
Hij Hopcounts from a node i to a node j
Gp(N) An Erdős-Rényi graph
p Link density
E[H] Average hopcount
RDs Relative difference of RG
E[RDs ] Average of RDs

density p is higher than a critical threshold pc ≈ lnN/N ,
the graph is connected [11].

Barabási-Albert power law graph [12]: This graph is
generated by starting with m nodes. At every time step,
a new node with m links is connected to the m existing
nodes in the network. A new node connects to a node i in
step t with probability p = di/2Lt, where di is the degree
of node i and Lt is the total number of links at time t.

Watts-Strogatz small-world graph [13]: This graph
is generated from a ring lattice of N nodes and k links per
node. Each link is rewired at random with probability p.

These graph models have characteristics found in real-
world networks. For example, Erdős-Rényi graphs can mo-
del collaboration networks [14]. The world-wide web fol-
lows approximately a power law degree distribution [15].

Social networks are often connected as small world net-
works [13].

In this paper the following real-world networks are con-
sidered:
Dutch Soccer Network [16]: A graph of the Dutch
football in which players represent the nodes. Two nodes
are connected if the corresponding two players have played
together in a football match.
Coauthorship Network of Scientists [17]: Scientists
are nodes and two scientists are considered connected if
they are authors in one or more papers.
Protein-Protein Interaction Network4: The nodes
are proteins and the links are pairwise protein-to-protein
interactions.
Citation Network5: The nodes are scientific papers and
the links between the nodes are citations.
Western States Power Grid Network [18]: The nodes
represent transformers, substations and generators. The
links represent high-voltage transmission lines.
Western European Railway Network [18]: The sta-
tions are the nodes and the links are lines between the
stations.

3 Theoretical Bounds

Topological network changes influence various graph met-
rics such as the effective graph resistance and algebraic
connectivity studied in this paper. Upper and lower theo-
retical bounds measure the highest and lowest values that
a graph metric can have after certain topological network
changes. Therefore, bounds can be used to reason about
robustness estimations under topological changes such as
link addition or removal. Bounds provide valuable esti-
mations in various application domains. For example, the
upper and lower bounds of throughput instruct the design
of a wireless network in which node connections follow mo-
bility patterns [19]. Another example is the estimation of
interference by upper and lower bounds when nodes are
clustered in Ad Hoc Networks [20].

3.1 Link Addition

After adding a link e, resulting in a graph G+{e}, a lower
bound of the effective graph resistance RG+{e} is derived
in Theorem 1. An upper bound RG+{e} ≤ RG is obtained
in the proof of Theorem 1 based on interlacing [7].

Theorem 1. By adding a link e to a graph G, resulting in
the graph G + {e}, the lower bound of the effective graph
resistance RG+{e} is

RG+{e} ≥
RG

1 + ρ
2N

(5)

where ρ is the diameter of G.

4 http://www.pdb.org/pdb/home/home.do (Last accessed:
Apr. 2014).

5 http://vlado.fmf.uni-lj.si/pub/networks/data/ (Last ac-
cessed: Apr. 2014).
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Proof.. The sum of Laplacian eigenvalues equals [7]

N−1∑
j=1

µj = 2L

After a link addition, graph G has L + 1 links and it

holds that
∑N−1
j=1 (µj + ∆µj) = 2(L + 1). The increase

of the eigenvalue ∆µj satisfies
∑N−1
j=1 ∆µj = 2(L + 1) −∑N−1

j=1 µj = 2(L + 1) − 2L = 2. Interlacing [7] µj ≤
µj + ∆µj ≤ µj−1 shows that ∆µj ≥ 0 for any j, so that
∆µj ≤ 2. For positive real numbers q1, q2,. . ., qn and real
numbers a1, a2,. . ., an, it holds [7]

min
1≤k≤n

xk
ak
≤ x1 + x2 + . . .+ xn
a1 + a2 + . . .+ an

≤ max
1≤k≤n

xk
ak

(6)

Let xj = 1
µj+∆µj

and aj = 1
µj

. Based on the definition (1)

of the effective graph resistance, inequality (6) yields

1

1 + max1≤j≤N−1
∆µj
µj

≤
∑N−1
j=1

1
µj+∆µj∑N−1

j=1
1
µj

=
RG+{e}

RG
≤ 1

Furthermore, with max1≤j≤N−1
∆µj
µj
≤ 2

µN−1
and the lower

bound [7] for the algebraic connectivity µN−1 ≥ 4
ρN , the

lower bound of (5) is derived.

A consequence of the lower bound (5) is
RG+{e1...em}

RG
≥(

1 + mρ
2 N

)−1
after m repeated link additions. In partic-

ular, a graph G can always be constructed by starting
from its minimum spanning tree and adding L − N + 1
links. Given that the effective graph resistance RMST =(
N
2

)
E [HMST ] for a minimum spanning tree [7], where

HMST is the hopcount in any minimum spanning tree,
the lower bound of the effective graph resistance can be
expressed as follows:

RG ≥
RMST

1 + ρMST
2 N(L−N + 1)

=

(
N
2

)
E [HMST ]

1 + maxHMST
2 N(L−N + 1)

This bound may be valuable in sparse networks where L
is not significantly larger than N − 1.

Figure 1 shows the lower bound of the effective graph
resistance RG+{e} from Theorem 1 in Erdős-Rényi, Barab-

ási-Albert and square lattice6 graphs. The lower bound is
not tight, yet, a sharper lower bound can be derived by
using the algebraic connectivity µN−1 in the lower bound

RG
1+ 2

µN−1

. Figure 1 also shows the improved lower bound

based upon the algebraic connectivity. This observation
and the proof followed here suggest that the lower bound
(5) can be improved with a sharper lower bound for the
algebraic connectivity.

6 The square lattice graph is a two-dimensional grid. Exclud-
ing the boundary nodes, the square lattice can be regarded as
a regular graph with degree d = 4.
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(a) Erdős-Rényi graph
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(b) Barabási-Albert graph
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(c) Square lattice graph

Fig. 1: Lower bounds of the effective graph resistance
RG+{e}.

3.2 Link Removal

When a link e is removed from a graph, a lower bound of
the effective graph resistance RG−{e} is derived in Theo-
rem 2 and an upper bound in Theorem 3.

Theorem 2. By removing a link e from a graph G, re-
sulting in a reduced graph G − {e}, the lower bound of
the effective graph resistance RG−{e} of the reduced graph
G− {e} is

RG−{e} ≥
N(N − 1)(N + 1)

2(L− 1)
(7)

where N is the number of nodes and L is the number of
links of the original graph G.

Proof.. Let ∆µi defined as the amount of the decrease of
an eigenvalue µi. The effective graph resistance RG−{e} of
the reduced graph G− {e} is

RG−{e} = N

N−1∑
i=1

1

µi −∆µi

= N(
1

µN−1 −∆µN−1
+

N−2∑
i=1

1

µi −∆µi
) (8)

For positive real numbers a1, a2, . . ., an, the harmonic,
geometric and arithmetic mean inequality [7] is

n∑n
k=1

1
ak

≤ n

√√√√ n∏
k=1

ak ≤
1

n

n∑
k=1

ak (9)

with equality only if all ak are equal. Let a1, a2, . . ., an be
equivalent to µN−2−∆µN−2, µN−3−∆µN−3, . . ., µ1−∆µ1
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and n = N − 2. Inequality (9) is expressed as follows:

N − 2∑N−2
i=1

1
µi−∆µi

≤ 1

N − 2

N−2∑
i=1

(µi −∆µi) (10)

Taking the reciprocal and then multiplying N −2 on both
sides of the inequality (10) yields

N−2∑
i=1

1

µi −∆µi
≥ (N − 2)2∑N−2

i=1 (µi −∆µi)

=
(N − 2)2

2(L− 1)− (µN−1 −∆µN−1)
(11)

where the sum of eigenvalues satisfies
∑N−1
i=1 (µi−∆µi) =

2(L− 1). Substituting the inequality (11) into (8) yields

RG−{e} ≥N(
1

µN−1 −∆µN−1

+
(N − 2)2

2(L− 1)− (µN−1 −∆µN−1)
)

Since the function, for x > 0,

f(x) =
1

x
+

(N − 2)2

2(L− 1)− x

has a unique minimum at the positive value x = 2(L−1)
N−1 ,

it holds that

f(x) ≥ f(x1) =
(N − 1)(N + 1)

2(L− 1)

which leads to the lower bound (7).

Theorem 3. By removing a link e, resulting in a graph
G− {e}, the upper bound of the effective graph resistance
RG−{e} of the reduced graph G− {e} is

RG−{e}

RG
≤ max

i

µi
µi+1

where i ∈ [1, N − 2].

Proof.. Let xk = 1
µj−∆µj and ak = 1

µk
in inequality (6),

then

1

1−min
i

(∆µiµi )
≤

N−1∑
i=1

1
µi−∆µi

N−1∑
i=1

1
µi

≤ 1

1−max
i

(∆µiµi
)

(12)

After a link removal, the interlacing property [7] shows
that,

µi+1 ≤ µi −∆µi ≤ µi (13)

where i = 1, 2, . . ., N − 1. Subtracting µi on both sides of
(13) leads to

0 ≤ ∆µi ≤ µi − µi+1 (14)

Substituting (14) into the right-hand side of (12) yields

1

1−max
i

(∆µiµi
)
≤ 1

1−max
i

(µi−µi+1

µi
)

=
1

1− (1−min
i

(µi+1

µi
))

=
1

min
i

(µi+1

µi
)

= max
i

(
µi
µi+1

)

Based on definition (1) of the effective graph resistance,
we establish the theorem.

Figure 2 shows the probability that µi
µi+1

has a maxi-

mum at the index i within 103 instances of Erdős-Rényi
and Barabási-Albert graphs, respectively. Figure 2a shows
that µi

µi+1
has a maximum at i = N − 2 with a probability

higher than 0.5. Figure 2b shows that µi
µi+1

has a maximum

at i = 1 with a probability 0.35. In both Figure 2a and
2b, the maximum of µi

µi+1
is attained within several high-

est and lowest values of the index i. Figure 3 shows the
upper and lower bounds of the effective graph resistance
RG−{e} from Theorem 2 and 3.
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Fig. 2: The probability that µi
µi+1

has a maximum at the

index i in Erdős-Rényi and Barabási-Albert graphs.

4 Optimization of the effective graph
resistance

This section introduces four strategies for selecting a link
whose addition minimizes the effective graph resistance
and for protecting a link whose removal maximizes the ef-
fective graph resistance. The strategies are evaluated by
comparing with the optimal effective graph resistance ob-
tained by exhaustive search.

4.1 Strategies for Link Addition and Removal

In an exhaustive search, the optimal link lR+ added be-
tween two nodes is discovered by checking all the possi-
ble links Lc. Similarly, the optimal link lR− is determined
among all the possible links L.
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(a) Erdős-Rényi graph
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Fig. 3: Upper and lower bounds of the effective graph re-
sistance RG−{e}.

An exhaustive search is computationally expensive as
the number of nodes increases. More specifically, exhaus-
tive search has a complexity order O(N5). This is com-

puted by the computational order
(
N
2

)
−Lc for checking all

possible links multiplied by the order O(N3) for comput-
ing the pairwise effective resistance as illustrated in detail
in Section 4.1.4. Strategies that determine the added or
removed link based on topological and spectral properties
of a network, provide a trade-off between a scalable com-
putation and a high decrease or increase in the effective
graph resistance. This section illustrates four strategies
from which three of them are introduced in earlier work
[21,22], yet none of these strategies are evaluated for the
effective graph resistance.

A strategy Ss, s ∈ {1, 2, 3, 4}, defines a link e = i ∼ j,
where e does not already exist under link addition and e
already exists under link removal. The selection criteria
of nodes i and j for each strategy are illustrated in the
rest of this subsection. In this paper, strategies S1, S2 are
topological strategies and S3, S4 are spectral strategies.

4.1.1 Semi-random - strategy S1

The node i has the minimum degree min(di) and node j
is randomly chosen as rand{1, ..., Lc}.

The complexity of strategy S1 is O(N2 −N + Lc + 1)
computed as follows: (i) O(N(N − 1)) is for counting the
degrees of all the nodes. (ii) O(Lc) is for finding the node
i with minimum degree. (iii) O(1) is for finding a random
node.

4.1.2 Degree product - strategy S2

The nodes i and j have the minimum7 product of degrees
min(didj). If there are multiple node pairs with the same
minimum product of degrees, one of these pairs is ran-
domly chosen.

The complexity of strategy S2 is O(N2 − N + 2Lc)
computed as follows: (i) O(N(N − 1)) is for counting the
degrees of all the nodes. (ii) O(Lc) is for computing didj
for Lc unconnected node pairs. (iii) O(Lc) is for finding
the minimum product didj .

4.1.3 Fiedler vector - strategy S3

The nodes i and j correspond to the ith and jth compo-
nents of the Fiedler vector y that satisfy ∆y = max(|yi −
yj |), where |yi− yj | is the absolute difference between the
ith and jth components of the Fiedler vector y.

For strategy S3, the complexity is O(N3 + 2Lc) com-
puted as follows: (i) O(N3) is for computing the Fiedler
vector yi assuming the adoption of the QR algorithm [23]
for computation. (ii) O(Lc) is for computing |yi − yj | for
Lc unconnected node pairs. (iii) O(Lc) is for finding the
maximum of the difference |yi − yj |.

4.1.4 Effective resistance - strategy S4

The nodes i and j have the highest effective resistance
max(Rij). The pairwise effective resistance Rij can be cal-

culated as Rij = (Q̂−1)ii+(Q̂−1)jj−2(Q̂−1)ij , where Q̂−1

is the Moore-Penrose pseudoinverse [7] of Q.
For strategy S4, the complexity is O(N3 + 4Lc) com-

puted as follows: (i) O(N3) is for computing Q̂−1. (ii)
O(3Lc) is for computing Rij for Lc unconnected node
pairs. (iii) O(Lc) is for finding the maximum Rij .

In case of link removals, Lc is replaced with L in all
the four strategies. Table 2 summarizes all the strategies
that add or remove a link e = i ∼ j and the order of their
corresponding computational complexity.

Node i Node j Complexity
Order

S1 arg min
i

(di) rand{1,..., Lc or L} O(N2)

S2 arg min
i,j

(didj) O(N2)

S3 arg max
i,j

(|yi − yj |) O(N3)

S4 arg max
i,j

(Rij) O(N3)

Table 2: A summary of the strategies and the order of
their computational complexity.

7 Adding a link between nodes with the highest degree is
evaluated as well. However, the performance is low and there-
fore this choice is not illustrated in this paper.
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The strategies illustrated in this paper are indicative of
a large number of other possible strategies. For example,
two other strategies are tested:
S5: The nodes i and j have the minimum product of
closeness centrality min(cciccj). The closeness of a node

i, cci =
[∑

j 6=i,j∈GHij

]−1
, is computed as the inverse of

the sum of hopcounts Hij from a node i to each node j.
S6: The nodes i and j correspond to the ith and jth com-
ponents of the principal eigenvector x1 that have the max-
imum product max((x1)i(x1)j) of the eigenvector compo-
nents. The principal eigenvector x1 belongs to the highest
eigenvalue of the adjacency matrix.

Strategy S5 has higher complexity than S1 and has
approximately the same performance with S1 for link ad-
dition. Strategy S6 has the lowest performance under link
addition and has approximately the same performance
with S2 for link removal. The rest of this paper focuses
on the four main strategies illustrated in this section.

4.2 Strategy Evaluation

The strategies are implemented and evaluated in MAT-
LAB R2012b. First, the optimal effective graph resistance
R∗ is obtained by applying exhaustive search. Second, the
effective graph resistance RSs is computed by adding or
removing a link under each strategy s ∈ {1, 2, 3, 4}.
Third, the absolute relative difference, RDs =

∣∣∣RSs−R∗R∗

∣∣∣
and the probability Pr[RDs > x], where x ∈ [min(RDs),
max(RDs)], evaluate the performance of the four strate-
gies. The lower the probability is, the closer RSs is to R∗

and the more effective the strategy is. The average differ-
ence E[RDs ] =

∫∞
0

Pr[RDs > x] dx computed by the area
under the curve of the probability distribution, indicates
the average performance of the strategies.

4.2.1 Erdős-Rényi random graph

Figure 4 illustrates the performance of the four strategies
in Erdős-Rényi random graphs. The figure is split into two
subgraphs (a), (b), concerning link addition and removal.
Figure 4a demonstrates that strategy S4 is superior to all
other strategies. Strategy S2 outperforms strategy S3 and
strategy S1 has the lowest performance. In Figure 4a, the
average difference E[RDs ] for strategies S1, S2, S3, S4 is
2.99× 10−3, 0.24× 10−3, 0.36× 10−3, 0.04× 10−3.

Figure 4b shows that strategy S4 is superior to S3 and
S1. Compared to the second highest performance in Figure
4a, strategy S2 has the lowest performance. The average
difference E[RDs ] of strategies S1, S2, S3, S4 is 1.26×10−4,
4.39× 10−4, 1.31× 10−4, 1.01× 10−4.

4.2.2 Barabási-Albert power law graph

Figure 5 illustrates the performance of the four strategies
in Barabási-Albert power law graphs. Strategy S4 achieves
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Fig. 4: Pr[RDs > x] for each strategy Ss, s ∈ {1, 2, 3, 4} in
the Erdős-Rényi random graph with N = 100, p = 2pc.

the highest performance in Figure 5a. Strategy S3 outper-
forms strategies S1 and S2. The average difference E[RDs ]
in Figure 5a for strategies S1, S2, S3, S4 is 1.74 × 10−3,
1.69× 10−3, 0.29× 10−3, 0.01× 10−3.
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Fig. 5: Pr[RDs > x] for each strategy Ss, s ∈ {1, 2, 3, 4}
in the Barabási-Albert power law graph with N = 200,
m = 3.

Figure 5b shows strategy S4 has the highest perfor-
mance. The performance curve for S3 crosses the curves
for S2 and S1. Strategies S2 and S1 have comparable per-
formance. The average difference E[RDs ] for strategy S4 is
0.17×10−3. For strategy S3, the average difference E[RDs ]
is 0.95× 10−3 compared to 1.09× 10−3 for strategies S2,
S1, which indicates that strategy S3 slightly outperforms
S2, S1.

4.2.3 Watts-Strogatz small-world graph

Figure 6 illustrates the performance of the four strategies
in the Watts-Strogatz small-world graphs. In contrast to
the results for Erdős-Rényi and Barabási-Albert, strat-
egy S3 outperforms strategy S4 in both Figure 6a and
6b. Strategy S1 is superior to S2 in Figure 6a, while the
opposite holds in Figure 6b.

The average difference E[RDs ] for strategies S1, S2, S3,
S4 in Figure 6a is 22.7 × 10−3, 26.4 × 10−3, 0.34 × 10−3,
2.75 × 10−3. These values in Figure 6b are 1.34 × 10−2,
1.33× 10−2, 0.10× 10−2, 0.23× 10−2.
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Fig. 6: Pr[RDs > x] for strategy Ss, s ∈ {1, 2, 3, 4} in the
Watts-Strogatz small world graph with N = 100, k = 6
and p = 0.1.

4.2.4 Real-world networks

Table 3 illustrates the performance of the four strategies in
real-world networks. The table is ordered by the number of
nodes in the network. The optimal added link by exhaus-
tive search is not calculated because of the high computa-
tional complexity. Using Western States Power Grid Net-
work as an example, the number of possible added links is
1.2 × 107. Therefore, the four strategies are evaluated by
comparing the value of the effective graph resistance: the
lower the effective graph resistance after link addition or
the higher the effective graph resistance after link removal,
the more effective the strategy.

For a given network, for example the Dutch Soccer Net-
work in Table 3, the effective graph resistance of strategy
S3 is 0.1318 that is the lowest one compared to the effec-
tive graph resistance of S1, S2 and S4. Strategy S3 outper-
forms strategies S1, S2 and S4. For all the listed networks
except the Western European Railway Network in Table
3, S3 has the lowest effective graph resistance and outper-
forms the other three strategies. In contrast, the strategy
S4 outperforms strategy S3 in Western European Rail-
way Network. Strategy S4 has the same performance as
strategy S3 in Protein-Protein Interaction Network and
Citation Network.

Name N L RS1 RS2 RS3 RS4

Coauthorship 379 914 2.05 2.04 1.95 1.96
Protein 529 535 49.5 69.7 36.8 36.8
Dutch Soccer 685 10310 0.132 0.132 0.131 0.132
Citation 2678 10368 0.823 0.823 0.819 0.819
Power Grid 4941 6594 2.03 2.04 1.95 1.96
Railway 8710 11332 18.2 19.0 17.4 17.3

Table 3: The effective graph resistance of the four strate-
gies after link addition in real-world networks.

Table 4 shows the effective graph resistance of the
four strategies under link removal. The infinite value of
the effective graph resistance indicates that the removal
of the selected link by a strategy disconnects the net-
work. Strategy S4 has the highest performance in all the
listed networks. Strategy S3 has comparable performance

Name N L RS1 RS2 RS3 RS4

Coauthorship 379 914 2.08 2.07 2.21 ∞
Protein 529 535 ∞ ∞ ∞ ∞
Dutch Soccer 685 10310 0.133 0.133 0.133 0.133
Citation 2678 10368 0.824 0.824 ∞ ∞
Power Grid 4941 6594 5.22 5.22 5.76 ∞
Railway 8730 11332 19.0 19.0 19.4 ∞

Table 4: The effective graph resistance of the four strate-
gies after link removal in real-world networks.

in Protein-Protein Interaction Network, Dutch Soccer and
Citation Network.

4.2.5 Performance Overview

Table 5 shows the ranking of the four strategies according
to their performance. Strategy S4 has the highest perfor-
mance for both link addition and removal in Erdős-Rényi
and Barabási-Albert graphs. In contrast, strategy S3 has
the highest performance in Watts-Strogatz graphs under
link addition and removal. Results are consistent with the
larger graphs with number of nodes up to 400. In real
world networks, either strategy S3 or strategy S4 has the
highest performance for link addition and removal.

Link Addition Link Removal
PPPPPPPNetwork

Rank
1 2 3 4 1 2 3 4

Erdős-Rényi S4 S2 S3 S1 S4 S1 S3 S2

Barabási-Albert S4 S3 S2 S1 S4 S3 S2 S1

Watts-Strogatz S3 S4 S1 S2 S3 S4 S2 S1

Real-world S3 or S4 S1 or S2 S3 or S4 S1 or S2

Table 5: The ranking of the four strategies according to
their performance.

Despite the lower performance of strategies S1 and S2,
their computational complexity is much lower compared
to strategies S3 and S4. Therefore, the set of all strategies
provides a trade-off between a low changing value of effec-
tive graph resistance and low computational complexity.
Strategies S1 and S2 can be chosen when the computa-
tional resources are limited. Assuming that the computa-
tion of the optimal R∗ is not an option for large networks,
strategies S3 and S4 can be chosen under two scenarios:
(i) In case of long term investments on infrastructural net-
works, such as railway networks, in which a link addition
or removal is a costly operation and a strategy close to
optimal R∗ is a requirement. (ii) In case when the op-
tion of parallel computations, e.g. with MapReduce [24],
is possible.
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5 Effective Graph Resistance vs Algebraic
Connectivity

The spectral expression of the effective graph resistance
includes all the non-zero Laplacian eigenvalues, whereas
the algebraic connectivity is one of the N − 1 Laplacian
eigenvalues. This section introduces a novel approach to
compare the optimal links lR+ , lα+ and lR− , lα− . The
comparison includes the probability that two optimal links
are the same and the distance between the two optimal
links in the corresponding line graph.

5.1 Probability of the same optimal link

Table 6 illustrates the probability Pr[lR+ = lα+ ] that
lR+ equals lα+ in the 103 instances of Erdős-Rényi and
Barabási-Albert graphs8. All the optimal links are ob-
tained by exhaustive search. Table 6 illustrates that the
maximum probability Pr[lR+ = lα+ ] obtained for Erdős-
Rényi graph is 0.139 and for Barabási-Albert graph is
0.105. The optimal link for the algebraic connectivity is
different from the optimal link for the effective graph re-
sistance in most cases.

Erdős-Rényi Probability Barabási-Albert Probability
G2pc(50) 0.139 N = 100, m = 3 0.034
G2pc(100) 0.102 N = 100, m = 4 0.105
G2pc(200) 0.074 N = 200, m = 3 0.013
G4pc(200) 0.068 N = 200, m = 4 0.066

Table 6: The probability Pr[lR+ = lα+ ] in Erdős-Rényi
and Barabási-Albert graphs.

Table 7 illustrates the probability Pr[lR− = lα− ] un-
der link removal in the 103 instances of Erdős-Rényi and
Bárabasi-Alber graphs. In contrast to the results in Ta-
ble 6, the probability Pr[lR− = lα− ] is higher than 0.6
in Erdős-Rényi graph with link density p = 2pc. How-
ever, when the link density p increases to 4pc, the prob-
ability Pr[lR− = lα− ] drops to approximately zero. One
explanation is that the number of links in graph G in-
creases with the increase of link density. The probabil-
ity of choosing two links among all the possibilities de-
creases. The maximum probability Pr[lR− = lα− ] is 0.504
in Barabási-Albert graph. The decrease of the probabil-
ity Pr[lR− = lα− ] with the increase of link density is also
observed.

5.2 Proximity of optimal links

This subsection illustrates how the distance between the
optimal links lR+ and lα+ is computed when lR+ is dif-
ferent from lα+ . The hopcount in the corresponding line

8 Results for the Watts-Strogatz small-world graphs are not
included to keep the illustrations more compact. However,
these results are available upon request

Erdős-Rényi Probability Barabási-Albert Probability
G2pc(50) 0.677 N = 100, m = 3 0.504
G2pc(100) 0.665 N = 100, m = 4 0.208
G2pc(200) 0.613 N = 200, m = 3 0.460
G4pc(200) 0.002 N = 200, m = 4 0.113

Table 7: The probability Pr[lR− = lα− ] in Erdős-Rényi
and Barabási-Albert graphs.

graph is proposed as a measure of the distance between
the two optimal links lR+ and lα+ . Table 8 shows the av-
erage hopcount E[H] between nodes nR+ and nα+ in the
line graphs. In the line graphs of Erdős-Rényi graphs, the
average hopcount between nR+ and nα+ approximates 1
that means the links lR+ and lα+ share a node in the origi-
nal graph on average. The average hopcount between nR+

and nα+ in the line graphs of Barabási-Albert graphs ap-
proximates 2. From the definition of line graph, it can be
derived that the end nodes of lR+ and lα+ are different but
one of the end nodes of lR+ is adjacent to one of the end
nodes of lα+ . Table 8 indicates that the optimal link for
the algebraic connectivity is in a proximity of 1 or 2 hops
to the optimal link for the effective graph resistance. This
distance corresponds to 25%−40% of the graph diameter.

Erdős-Rényi E[H] Barabási-Albert E[H]
G2pc(50) 0.987 N = 100, m = 3 1.759
G2pc(100) 1.002 N = 100, m = 4 1.636
G2pc(200) 1.001 N = 200, m = 3 2.285
G4pc(200) 0.998 N = 200, m = 4 2

Table 8: The average hopcount E[H] between lR+ and lα+

in the Erdős-Rényi and Barabási-Albert graphs.

As shown in Table 9, the average hopcount between
nR− and nα− under link removal is lower than the aver-
age hopcount under link addition. For example, the E[H]
between nR− and nα− is 0.584 compared to 1.001 between
nR+ and nα+ in Erdős-Rényi graph G2pc(200). This ob-
servation is also confirmed by the fact that Pr[lR− = lα− ]
is higher than Pr[lR+ = lα+ ].

Erdős-Rényi E[H] Barabási-Albert E[H]
G2pc(50) 0.537 N = 100, m = 3 1.269
G2pc(100) 0.517 N = 100, m = 4 1.628
G2pc(200) 0.584 N = 200, m = 3 1.568
G4pc(200) 1.334 N = 200, m = 4 1.916

Table 9: The average hopcount E[H] between lR− and lα−
in the Erdős-Rényi and Barabási-Albert graphs.

Figure 7 illustrates the distribution of the hopcount
H(nR+ , nα+) between the node nR+ and nα+ in the line
graph of the Erdős-Rényi and Barabási-Albert graphs. In
Figure 7a, the probability Pr[H(nR+ , nα+)] is maximized
for H(nR+ , nα+) = 1. The probability Pr[H(nR+ , nα+) >



10 X. Wang et al.: Improving Robustness of Complex Networks via the Effective Graph Resistance

1] converges to zero in 2 − 3 extra hops, especially for
large N . In Figure 7b, the probability Pr[H(nR+ , nα+)] is
maximized for H(nR+ , nα+) = 1 and converges to zero for
H(nR+ , nα+) = 5.
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(a) Erdős-Rényi graph

1.0

0.8

0.6

0.4

0.2

0.0

P
r[

H
(n

R
+
,n

α

+
) 

=
 h

]

543210
Hopcount h

 N = 100, m = 3
 N = 100, m = 4
 N = 200, m = 3
 N = 200, m = 4

(b) Barabási-Albert graph

Fig. 7: The distribution of the hopcount H(nR+ , nα+) in
the line graph G∗ between the node nR+ and the node
nα+ .

Figure 8 illustrates the distribution of the hopcount
H(nR− , nα−) between the node nR− and nα− under link
removal. In Figure 8a, the probability Pr[H(nR− , nα−)] is
maximized forH(nR− , nα−) = 0 with link density p = 2pc.
when link density p increases, the peak of the probabil-
ity shifts from 0 to 1. The probability Pr[H(nR− , nα−) >
1] converges to zero in 2 − 3 extra hops. In Figure 8b,
the peak of the probability Pr[H(nR− , nα−)] shifts from
0 to 1 as the average degree grows and the probability
Pr[H(nR− , nα−) > 1] converges to zero at H(nR− , nα−) =
5.
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Fig. 8: The distribution of the hopcount H(nR− , nα−) in
the line graph G∗ between the node nR− and the node
nα− .

6 Comparison with Related Work

Network robustness is mostly studied under topological
perturbations that usually concern (i) addition of nodes or
links, (ii) removal of nodes or links, (iii) rewiring of links.
These perturbations influence the spectral properties of
networks. For example, Takamitsu et al. [25] study the

influence of node removal on the second lowest Laplacain
eigenvalue. Attilio et al. [26] focus on the largest eigen-
value under links perturbations. Van Mieghem et al. [22]
study the spectral radius under link removal, whereas,
Li et al. [27] investigate the spectral radius under node
removal. In contrast to the spectral methodologies that
consider a singe eigenvalue, the effective graph resistance
studied in this paper captures the information of all the
eigenvalues and therefore it contains a broader range of
spectral information about the network.

Various Internet protocols and applications transmit
data packets via the shortest path between a source and
destination. The effect of perturbations is studied by the
changes of the shortest path length that is only one aspect
influenced in the network. Holme et al. [28] introduce the
average inverse length of shortest path as a measure of net-
work robustness under perturbations. A higher shortest
path length may result in slower information propagation
in the network. This approach is limited to the evaluation
of the changes on the shortest path length. However, effec-
tive graph resistance is a metric with a broader scope, e.g.,
power grid networks [29] in which power flows are trans-
mitted via all possible paths besides the shortest path. In
contrast to the measure of average shortest path length,
the effective graph resistance is based on pairwise resis-
tance that measures information of all the possible paths
between a source and destination.

Furthermore, the study of topological perturbations
in complex networks can be used for link prediction orig-
inated from information science. Link prediction refers to
inferring added links in the near future or removed links
from an observed network [30]. Link prediction is applied
in recommendation systems such as friendship recommen-
dations between two strangers in social networks [31]. Al-
gorithms based on structural nodal properties, such as
the number of common neighbors [32] and an ensemble
of all paths [31] are proposed for link prediction. Com-
pared to structural properties, spectral characteristics of
nodes provide different insights for link prediction, such
as the Fiedler vector and effective resistance proposed in
the optimization strategies of this paper. Therefore, the
link addition and removal strategies in this paper can be
potentially used in this application domain.

7 Conclusion and Future Work

This paper shows that adding or removing single links in
theoretical and real-world complex networks has a measur-
able impact on network robustness. This paper contributes
theoretical and experimental findings that are applicable
in real-world scenarios such as single-line installments in
infrastructural networks or single-line protection against
cyber-physical attacks. The upper and lower bounds in-
troduced in this paper can be used to support policy and
decision makers to choose a line to install or protect given
certain operational costs. Future work should study such
trade-offs in specific application domain such as power
grids. Moreover, when computational cost for finding op-
timal links to add or remove is prohibitive, the topological
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and spectral strategies studied in this paper can still in-
dicate links resulting in high robustness. This paper also
shows that if the optimal added or removed links for alge-
braic connectivity are known, then the respective links for
effective graph resistance are different but in close prox-
imity. Deriving analytically the optimal links of effective
graph resistance given the optimal links of algebraic con-
nectivity and vice versa, is a theoretical challenge to ad-
dress in future work.

This research is supported by the China Scholarship Council
(CSC) and by the project NWO RobuSmart: Increasing the
Robustness of Smart Grids through distributed energy genera-
tion: a complex network approach, grant number 647.000.001.

A Bounds for αG in terms of RG

The analogy of inequality (10) is:

N − 2∑N−2
j=1

1
µj

≤ 1

N − 2

N−2∑
j=1

µj

Introducing the definition S =
∑N−2
j=1

1
µj

, with the sum of

all the eigenvalues [7] satisfying
∑N−1
j=1 µj = 2L, it follows

that

N − 2

S
≤ 2L− µN−1

N − 2

With the definitions S = RG
N −

1
µN−1

, αG = µN−1 and

by assuming a connected graph (µN−1 > 0), it holds, for
N > 2

αG ≤ 2L− (N − 2)2

RG
N −

1
αG

which is transformed into a quadratic inequality of αG:

RG
N
α2
G + ((N − 2)2 − 1− 2L

RG
N

)αG + 2L ≤ 0 (15)

In a factored form and by denoting 2LRG
N = R̃G, the

quadratic inequality (15) is expressed as follows:

0 ≥

(
αG −

R̃G − (N − 1)(N − 3)− ξ
R̃G/L

)

×

(
αG −

R̃G − (N − 1)(N − 3) + ξ

R̃G/L

)

where ξ =

√
[R̃G − (N − 3)2][R̃G − (N − 1)2] is the square-

root of the discriminant. The lower bound (3), rephrased

as R̃G ≥ (N − 1)2, shows that R̃G − (N − 3)2 > 0 and

R̃G − (N − 1)(N − 3) > 0, hence, ξ is real. Therefore,
the quadratic equation in (15) has the following two real
roots:

x1 =
R̃G − (N − 1)(N − 3)− ξ

R̃G/L

x2 =
R̃G − (N − 1)(N − 3) + ξ

R̃G/L

Vieta’s formula indicates that the product of roots equals
x1x2 = 2L

RG
N

> 0 that results in both x1 and x2 being

either positive or negative. Since x2 > 0, the root x1 is
also positive. In summary, we deduce a new lower bound:

αG ≥ L
(

1− (N−1)(N−3)
R̃G

−
√

[1− (N−3)2

R̃G
][1− (N−1)2

R̃G
]
)

and an upper bound for the algebraic connectivity:

αG ≤ L
(

1− (N−1)(N−3)
R̃G

+
√

[1− (N−3)2

R̃G
][1− (N−1)2

R̃G
]
)

Figure 9 illustrates the lower and upper bounds of the
algebraic connectivity αG for Erdős-Rényi graphs with dif-
ferent link density p. As link density increases, the upper
and lower bounds come closer. The bounds converge to the
algebraic connectivity resulting in an equality for (15).
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Fig. 9: Upper and lower bounds of the algebraic connec-
tivity αG.
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