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Abstract. Newman’s measure for (dis)assortativity, the linear degree correlation coefficient ρD, is refor-
mulated in terms of the total number Nk of walks in the graph with k hops. This reformulation allows
us to derive a new formula from which a degree-preserving rewiring algorithm is deduced, that, in each
rewiring step, either increases or decreases ρD conform our desired objective. Spectral metrics (eigenvalues
of graph-related matrices), especially, the largest eigenvalue λ1 of the adjacency matrix and the algebraic
connectivity µN−1 (second-smallest eigenvalue of the Laplacian) are powerful characterizers of dynamic pro-
cesses on networks such as virus spreading and synchronization processes. We present various lower bounds
for the largest eigenvalue λ1 of the adjacency matrix and we show, apart from some classes of graphs such
as regular graphs or bipartite graphs, that the lower bounds for λ1 increase with ρD. A new upper bound
for the algebraic connectivity µN−1 decreases with ρD. Applying the degree-preserving rewiring algorithm
to various real-world networks illustrates that (a) assortative degree-preserving rewiring increases λ1, but
decreases µN−1, even leading to disconnectivity of the networks in many disjoint clusters and that (b)
disassortative degree-preserving rewiring decreases λ1, but increases the algebraic connectivity, at least in
the initial rewirings.

1 Introduction

“Mixing” in complex networks [1] refers to the tendency
of network nodes to connect preferentially to other nodes
with either similar or opposite properties. Mixing is com-
puted via the correlations between the properties, such as
the degree, of nodes in a network. Networks, where high-
degree nodes preferentially connect to other high-degree
nodes, are called assortative, whereas networks, where
high-degree nodes connect to low-degree nodes, are called
disassortative. The degree correlation is widely studied
after it was realized that the degree distribution alone
provides a far from sufficient characterization of complex
networks. Networks with a same degree distribution may
still differ significantly in various topological features (as
we will also show in this paper). A stronger confinement
than a same degree distribution are networks with a same
– apart from a possible node relabelling – degree vector
dT = [d1, d2, ..., dN ], where dj is the degree of node j.
Also “same degree vector” networks may possess widely
different topological properties. Consequently, degree cor-
relation related investigations have been performed along
various axes: (a) models to generate networks with given
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degree correlation have been developed [2,3]; (b) the ef-
fect of degree correlation on topological properties is stud-
ied in [4,5], and (c) the influence of degree correlation
in dynamic processes on networks such as the epidemic
spreading [6] and on percolation phenomena [7] have been
targeted. Relations between degree correlation and other
topological or dynamic features are examined experimen-
tally [5] or in a specific network model [6,7]. “Local”
assortativity is proposed in [8]. Analytic insight in de-
gree correlations in an arbitrary network remains far from
well understood. In this work, we explore the influence
of the degree correlation on spectra of networks, which
well capture both topological properties [9] and dynamic
processes [10] on the network.

Let G be a graph or a network and let N denote the
set of N = |N | nodes and L the set of L = |L| links.
An undirected graph G can be represented by an N × N
symmetric adjacency matrix A, consisting of elements aij

that are either one or zero depending on whether there is
a link between node i and j. The adjacency spectrum of
a graph is the set of eigenvalues of the adjacency matrix,
λN ≤ λN−1 ≤ . . . ≤ λ1, where λ1 is called the spectral ra-
dius. The Laplacian matrix of G with N nodes is an N×N
symmetric matrix Q = ∆−A, where ∆ = diag(di) and di

is the degree of node i ∈ N . The set of N eigenvalues of
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the Laplacian matrix µN = 0 ≤ µN−1 ≤ . . . ≤ µ1 is called
the Laplacian spectrum of G. The theory of the spectra
of graphs provides many beautiful results [9]. Recently,
modern network theory has been integrated with dynamic
system’s theory to understand how the network topol-
ogy can predict dynamic processes such as synchroniza-
tion or virus spread taking place on networks. The SIS
(susceptible-infected-susceptible) virus spreading [11] and
the Kuramoto type of synchronization process of coupled
oscillators [12] have been characterized on a given, but
general, network topology. Both these dynamic and non-
linear processes feature a phase transition that specifies
the onset of a remaining fraction of infected nodes and
of locked oscillators, respectively. The more curious as-
pect is that each of the phase transitions in these dif-
ferent processes occurs at an effective spreading rate τc

and coupling strength gc respectively, that is proportional
to 1/λ1. In addition, dynamic processes on graphs con-
verge towards their steady-state, in most cases, exponen-
tially fast in time and with a time-constant related to the
spectral gap (difference between λ1 and λ2). Connectivity
and the number of disjoint clusters in G follows from the
algebraic connectivity (second-smallest eigenvalue of the
Laplacian) and the number of smallest Laplacian eigenval-
ues that are zero [9]. Hence, these spectral metrics (eigen-
values of graph-related matrices), especially, the largest
eigenvalue λ1 of the adjacency matrix and the algebraic
connectivity µN−1, are powerful characterizers of dynamic
processes on graphs.

The present paper starts with a reformulation of the
linear degree correlation coefficient ρD, introduced by
Newman [1], equation (21), in terms of the total num-
ber Nk of walks in the graph with k hops. This refor-
mulation allows us to derive a new formula from which a
degree-preserving rewiring algorithm is deduced, that, in
each rewiring step, either increases or decreases ρD con-
form the desired objective. Thus, we construct a sequence
of degree-preserving rewirings that monotonously in- or
decreases the linear degree correlation coefficient ρD, or
equivalently, that increases the assortativity or disassor-
tativity of G. Next, we present various lower bounds for
λ1 and we show, apart from some classes of graphs such as
regular graphs or bipartite graphs, that lower bounds for
λ1 increase with ρD. We derive an upper bound for the al-
gebraic connectivity µN−1 that decreases with ρD. Then,
as an example, we apply the degree-preserving rewiring
algorithm to a real-world network, the USA air trans-
portation network, and compute in each rewiring the en-
tire adjacency and Laplacian spectrum. A major finding,
also observed in other real-world networks that we have
rewired, is that, increasing λ1 by increasing the assorta-
tivity, relatively rapidly leads to disconnectivity, while in-
creasing disassortativity seems to increase the algebraic
connectivity µN−1, thus the topological robustness.

2 Reformulation of Newman’s definition

Here, we study the degree mixing in undirected graphs.
Generally, the linear correlation coefficient between two

random variables X and Y is defined [13], p. 30 as

ρ (X, Y ) =
E [XY ] − µXµY

σXσY
(1)

where µX = E [X ] and σX =
√

Var [X ] are the mean and
standard deviation of the random variable X , respectively.
Newman [1], equation (21) has expressed the linear degree
correlation coefficient of a graph as

ρD =

∑
xy

xy (exy − axby)

σaσb
(2)

where exy is the fraction of all links that connect the nodes
with degree x and y and where ax and by are the fraction
of links that start and end at nodes with degree x and y,
satisfying the following three conditions

∑

xy

exy = 1, ax =
∑

y

exy and by =
∑

x

exy.

When ρD > 0, the graph possesses assortative mixing, a
preference of high-degree nodes to connect to other high-
degree nodes and, when ρD < 0, the graph features disas-
sortative mixing, where high-degree nodes are connected
to low-degree nodes.

The translation of (2) into the notation of random vari-
ables is presented as follows. Denote by Di and Dj the
node degree of two connected nodes i and j in an undi-
rected graph with N nodes. In fact, we are interested in
the degree of nodes at both sides of a link, without tak-
ing the link, that we are looking at, into consideration. As
Newman [1] points out, we need to consider the number of
excess links at both sides, hence, the degree Dl+ = Di − 1
and Dl− = Dj − 1, where the link l has a start at l+ = i
and an end at l− = j. The linear correlation coefficient of
those excess degrees is

ρ (Dl+ , Dl−) =
E [Dl+Dl− ] − E [Dl+ ] E [Dl− ]

σDl+
σDl−

=
E [(Dl+ − E [Dl+ ]) (Dl− − E [Dl− ])]√

E
[
(Dl+ − E [Dl+ ])2

]
E

[
(Dl− − E [Dl− ])2

] .

Since Dl+−E [Dl+ ] = Di−E [Di], subtracting everywhere
one link does not change the linear correlation coefficient,
provided Di > 0 (and similarly that Dj > 0), which is
the case if there are no isolated nodes. Removing isolated
nodes from the graph does not alter the linear degree cor-
relation coefficient (2). Hence, we can assume that the
graph has no zero-degree nodes. In summary, the linear
degree correlation coefficient is

ρ (Dl+ , Dl−) = ρ (Di, Dj)

=
E [DiDj ] − µ2

Di

E [D2
i ] − µ2

Di

. (3)

We now proceed by expressing E [DiDj ], E [Di] and σDi in
the definition of ρ (Dl+ , Dl−) = ρ (Di, Dj) for undirected
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graphs in terms of more appropriate quantities of algebraic
graph theory. First, we have that

E [DiDj] =
1

2L

N∑

i=1

N∑

j=1

didjaij =
dT Ad

2L

where di and dj are the elements in the degree vector
dT = [d1, d2, ..., dN ], and aij is the element of the sym-
metric adjacency matrix A, that expresses {0, 1} connec-
tivity between nodes i and j. The quadratic form dT Ad
can be written in terms of the total number Nk = uT Aku
of walks with k hops (see e.g. [9]), where u is the all-one
vector. Since d = Au, dT Ad equals N3 = uT A3u, the to-
tal number of walks with length equal to 3 hops, which is
called the s metric in [4]. The average µDi and µDj are
the mean node degree of the two connected nodes i and
j, respectively, and not the mean of the degree D of a
random node, which equals E [D] = 2L

N . Thus,

µDi =
1

2L

N∑

i=1

N∑

j=1

diaij

=
1

2L

N∑

i=1

di

N∑

j=1

aij

=
1

2L

N∑

i=1

d2
i =

dT d

2L

while

µDj =
1

2L

N∑

i=1

N∑

j=1

djaij = µDi .

The variance σ2
Di

= Var[Di] = E
[
D2

i

]
− µ2

Di
and

E
[
D2

i

]
=

1
2L

N∑

i=1

N∑

j=1

d2
i aij =

1
2L

N∑

i=1

d3
i = E

[
D2

j

]
.

After substituting all terms into the expression (3) of the
linear degree correlation, we obtain, with N1 = 2L and
N2 = dT d, our reformulation of Newman’s definition (2)
in terms of Nk,

ρD = ρ (Di, Dj) =
N1N3 − N2

2

N1

N∑
i=1

d3
i − N2

2

. (4)

The crucial understanding of (dis)assortativity lies in the
total number N3 of walks with 3 hops compared to those
with 2 hops, N2, and one hop, N1 = 2L.

3 Discussion of (4)

Fiol and Garriga [14] have shown that the total number
Nk = uT Aku of walks of length k is upper bounded by

Nk ≤
N∑

j=1

dk
j

with equality only if k ≤ 2 and, for all k, only if the graph
is regular (i.e., dj = r for any node j). Hence, (4) shows
that only if the graph is regular, ρD = 1, implying that
maximum assortativity is only possible in regular graphs1.
Since the variance of the degrees at one side of an arbitrary
link

σ2
Di

=
1

N1

N∑

i=1

d3
i −

(
N2

N1

)2

≥ 0 (5)

the sign of N1N3 −N2
2 in (4) distinguishes between assor-

tativity (ρD > 0) and disassortativity (ρD < 0). Using the
Laplacian matrix, Fiol and Garriga [14] show that

N∑

i=1

d3
i − N3 =

∑

i∼j

(di − dj)
2 =

1
2

N∑

i=1

N∑

j=1

aij (di − dj)
2

(6)
which is the sum over all links of the square of the dif-
ferences of the degrees at both sides of a link l = i ∼ j.
Using (6), the degree correlation (4) can be rewritten as

ρD = 1 −
∑

i∼j (di − dj)
2

N∑
i=1

d3
i − 1

2L

(
N∑

i=1
d2

i

)2 . (7)

The graph is zero assortative (ρD = 0) if

N2
2 = N1N3. (8)

In Appendix 6, we show that the connected Erdős-Rényi
random graph Gp (N) is zero-assortative for all N and link
density p > pc, where pc is the disconnectivity thresh-
old (see [13], p. 329–338). Asymptotically for large N ,
the Barabási-Albert power law graph is zero-assortative
as shown in [15].

Perfect disassortativity (ρD = −1 in (4)) implies that

N2
2 =

N1

2

(
N3 +

N∑

i=1

d3
i

)
. (9)

For a complete bipartite graph2 Km,n, we have that

∑

i∼j

(di − dj)2 = mn (n − m)2 ,
N∑

i=1

d3
i = nm

(
n2 + m2

)

and
N∑

i=1

d2
i = nm (n + m)

1 Notice that the definition (4) is inadequate (due to a zero
denominator and numerator) for a regular graph with degree
r because Nk regular graph = Nrk. For regular graphs where
N∑

i=1
d3

i = N3, the perfect disassortativity condition (9) becomes

N2
2 = N1N3, which is equal to the zero assortativity condi-

tion (8). Of course, ρregular graph = 1, since all degrees are
equal and thus perfectly correlated.

2 The complete bipartite graph Km,n consists of two sets
M and N with m = |M| and n = |N | nodes respectively,
where each node of one set is connected to all other nodes of
the other set. There are no links between nodes of a same set.
More properties are deduced in [9].
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such that (7) becomes ρD = −1, provided m '= n. Hence,
any complete bipartite graph Km,n (irrespective of its size
and structure (m, n) , except for the regular graph variant
where m = n) is perfectly disassortative. The perfect dis-
assortativity of complete bipartite graphs is in line with
the definition of disassortativity, because each node has
only links to nodes of a different set with different prop-
erties. Nevertheless, the fact that all complete bipartite
graphs Km,n with m '= n have ρD = −1, even those with
nearly the same degrees m = n± 1 and thus close to reg-
ular graphs typified by ρD = 1, shows that assortativity
and disassortativity of a graph is not easy to predict. It
remains to be shown that the complete bipartite graphs
Km,n with m '= n are the only perfect disassortative class
of graphs.

There is an interesting relation between the linear de-
gree correlation coefficient ρD of the graph G and the vari-
ance of the degree of a node in the corresponding line
graph l (G). The line graph l (G) of the graph G (N, L)
has as set of nodes the links of G and two nodes in l (G)
are adjacent if and only if they have, as links in G, ex-
actly one node of G in common. The l-th component of
the L × 1 degree vector in the line graph l (G) (see [9]) is(
dl(G)

)
l
= di + dj − 2, where nodes i and j are connected

by link l = i ∼ j. The variance of the degree Dl(G) of a
random node in the line graph equals

Var
[
Dl(G)

]
= E

[
(Di + Dj)2

]
− (E [Di + Dj ])2

which we rewrite as

Var
[
Dl(G)

]
= 2

(
E

[
D2

i

]
− µ2

Di
+ E [DiDj ] − µ2

Di

)
.

Using (3), we arrive at

Var
[
Dl(G)

]
= 2 (1 + ρD)

(
E

[
D2

i

]
− µ2

Di

)

= 2 (1 + ρD)Var [Di]

= 2 (1 + ρD)

(
1

N1

N∑

i=1

d3
i −

(
N2

N1

)2
)

. (10)

Curiously, the expression (10) shows for perfect disassor-
tative graphs (ρD = −1) that Var

[
Dl(G)

]
= 0. The latter

means that l (G) is then a regular graph, but this does not
imply that the original graph G is regular. Indeed, if G is
regular, then l (G) is also regular as follows from the l-th
component of the degree vector,

(
dl(G)

)
l

= di + dj − 2.
However, the reverse is not necessarily true: it is possible
that l (G) is regular, while G is not, as shown above, for
complete bipartite graphs Km,n with m '= n that are not
regular. In summary, in both extreme cases ρD = −1 and
ρD = 1, the corresponding line graph l (G) is a regular
graph.

4 Relation between graph spectra and ρD

The largest eigenvalue λ1 of the adjacency matrix A of a
graph as well as the algebraic connectivity µN−1, intro-

duced by Fiedler [16], are important characterizers of a
graph. Here, we present a new lower bound for λ1 and up-
per bound of µN−1 in terms of the linear degree coefficient
ρD.

In [9], Chapter 3, we show, for all integers k ≥ 1, that

λ1 ≥
(

N2k

N

)1/(2k)

≥
(

Nk

N

)1/k

from which limk→∞
(

Nk
N

)1/k
= λ1. We obtain the classical

lower bound for k = 1,

λ1 ≥ N1

N
=

2L

N
= E [D] (11)

and for k = 2,

λ1 ≥
√

N2

N
=

√√√√ 1
N

N∑

k=1

d2
k

=
2L

N

√

1 +
Var [D]
(E [D])2

. (12)

For k = 3 and using (4), we obtain

λ3
1 ≥ N3

N
=

1
N

(
ρD

(
N∑

i=1

d3
i −

N2
2

N1

)
+

N2
2

N1

)
. (13)

The inequality (13) with (5) shows that the lower bound
for the largest eigenvalue λ1 of the adjacency matrix A
is strictly increasing in the linear degree correlation co-
efficient ρD (except for regular graphs). Given the degree
vector d is constant, inequality (13) shows that the largest
eigenvalue λ1 is obtained in case we succeed to increase the
assortativity of the graph by degree-preserving rewiring,
which is discussed in Section 5.

A related bound, deduced from Rayleigh’s inequality
λ1 ≥ yT Ay

yT y by choosing the vector y = Amu, where u is
the all-one vector and m is a non-zero integer, is

λ1 ≥ uT A2m+1u

uT A2mu
=

N2m+1

N2m
. (14)

The case m = 1 in (14), λ1 ≥ N3
N2

, already appeared as an
approximation in [17] of the largest adjacency eigenvalue
λ1, which, again in view of (4), is a perfect linear func-
tion of ρD. Finally, we present the new, optimized bound,
derived in [9], Chapter 3,

λ1 ≥ N0N3 − N1N2 + R

2 (N0N2 − N2
1 )

(15)

where

R =
√

N2
0 N2

3 − 6N0N1N2N3 − 3N2
1 N2

2 + 4 (N3
1 N3 + N0N3

2 ).
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Fig. 1. (Color online) The largest eigenvalue λ1 of the
Barabási-Albert power-law graph with N = 500 nodes and
L = 1960 links versus the linear degree correlation coefficient
ρD. Various lower bounds are plotted: bound (13), bound (15)
and bound (14) for m = 1. The corresponding classical lower
bound (11) is 7.84, while the lower bound (12) is 10.548.

Figure 1 illustrates how the largest eigenvalue λ1 of
the Barabási-Albert power-law graph evolves as a func-
tion of the linear degree correlation coefficient ρD, that
can be changed by degree-preserving rewiring. The lower
bound (15) clearly outperforms the lower bound3 (13). Es-
pecially in degree-preserving rewiring, where N0, N1 and
N2 are constant, the complex looking, but superior for-
mula (15) becomes manageable, because only N3 changes
with ρD.

The Rayleigh principle (see e.g. [9,16]) provides an up-
per bound for the second-smallest eigenvalue µN−1 of the
Laplacian Q = diag(dj) − A as

µN−1 ≤
∑

l∈L (g (l+) − g (l−))2
∑

n∈N g2 (n) − 1
N

(∑
u∈N g (u)

)2

where g (n) is any non-constant function. Let g (n) = dn,
the degree of a node n, then

µN−1 ≤
∑

l∈L (dl+ − dl−)2

∑N
j=1 d2

j − 1
N

(∑N
j=1 dj

)2

=
∑

l∈L (dl+ − dl−)2

NVar [D]
.

After introducing (7), we find for any non-regular graph

µN−1 ≤ (1 − ρD)

N∑
i=1

d3
i − 1

2L

(
N∑

i=1
d2

i

)2

∑N
j=1 d2

j − 1
N

(∑N
j=1 dj

)2 (16)

= (1 − ρD)
E [D] E

[
D3

]
−

(
E

[
D2

])2

E [D] Var [D]
(17)

3 Especially for strong negative ρD, we found – very rarely
though – that (15) can be slightly worse than (12).

which is an upper bound for the algebraic connectiv-
ity µN−1 in terms of the linear correlation coefficient of
the degree ρD. In degree-preserving rewiring, the fraction
in (16), that is always positive, is unchanged and we ob-
serve that the upper bound decreases linearly in ρD.

5 Degree-preserving rewiring

In degree-preserving rewiring, links in a graph are rewired
while maintaining the node degrees unchanged. This
means that the degree vector d is constant and, conse-

quently, that N1 =
N∑

i=1
di, N2 =

N∑
i=1

d2
i and

N∑
i=1

d3
i do not

change during degree-preserving rewiring, only N3 does,
and by (4), also the (dis)assortativity ρD.

A degree-preserving rewiring changes only the term∑
i∼j (di − dj)

2 in (7), which allows us to understand how
a degree-preserving rewiring operation changes the linear
degree correlation ρD. Each step in a degree-preserving
random rewiring consists of first randomly selecting two
links i ∼ j and k ∼ l associated with the four nodes
i, j, k, l. Next, the links can be rewired either into i ∼ k
and j ∼ l or into i ∼ l and j ∼ k.

Lemma 1. Given a graph in which two links are degree-
preservingly rewired. We order the degree of the four in-
volved nodes as d(1) ≥ d(2) ≥ d(3) ≥ d(4). The two links
are associated with the 4 nodes nd(1) , nd(2) , nd(3) and nd(4)

only in one of the following three ways: a) nd(1) ∼ nd(2) ,
nd(3) ∼ nd(4) , b) nd(1) ∼ nd(3) , nd(2) ∼ nd(4) , and c)
nd(1) ∼ nd(4) , nd(2) ∼ nd(3) . The corresponding linear de-
gree correlation introduced by these three possibilities obeys
ρa ≥ ρb ≥ ρc.

Proof. In these three ways of placing the two links, the
degree of each node remains the same. According to defi-
nition (7), the linear degree correlation is determined only
by ε = −

∑
i∼j (di − dj)

2. Thus, the relative degree corre-
lation difference between (a) and (b) is

εa − εb = −
(
d(1) − d(2)

)2 −
(
d(3) − d(4)

)2

+
(
d(1) − d(3)

)2 +
(
d(2) − d(4)

)2

= 2(d(2) − d(3))(d(1) − d(4)) ≥ 0

since the rest of the graph remains the same in all three
cases. Similarly,

εa − εc = 2(d(2) − d(4))(d(1) − d(3)) ≥ 0

εb − εc = 2(d(1) − d(2))(d(3) − d(4)) ≥ 0.

These three inequalities complete the proof. !
A direct consequence of Lemma 1 is that we can now

design a rewiring rule that increases or decreases the lin-
ear degree correlation ρD of a graph. We define degree-
preserving assortative random rewiring as follows: ran-
domly select two links associated with four nodes and then
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rewire the two links such that as in (a) the two nodes with
the highest degree and the two lowest-degree nodes are
connected. If any of the new links exists before rewiring,
discard this step and a new pair of links is randomly se-
lected. Alternatively, we could select two links for which∑

i∼j (di − dj)
2 is highest and rewire them such that the

highest-degree nodes are connected and the lowest-degree
nodes are connected. Similarly, the procedure for degree-
preserving disassortative random rewiring is: randomly se-
lect two links associated with four nodes and then rewire
the two links such that as in (c) the highest-degree node
and the lowest-degree node are connected, while also the
remaining two nodes are linked provided the new links do
not exist before rewiring. Lemma 1 shows that the degree-
preserving assortative (disassortative) rewiring operations
increase (decrease) the degree correlation of a graph.

Degree-preserving rewiring is an interesting tool to
modify a graph in which resources of the nodes are con-
strained. For example, the number of outgoing links in a
router [18] as well as the number of flights at many air-
ports per day are almost fixed. Random degree-preserving
rewiring may be considered as an evolutionary process in
nature.

5.1 Algorithmic considerations

In this subsection, we concentrate on the following prob-
lem:

Problem 1. Given a degree vector d consisting of N el-
ements, find a (not necessarily connected) simple4 graph
such that the assortativity ρD is maximum (minimum).

Before presenting the solution, we evaluate two intu-
itive approaches. The first method, used in [19] and coined
the stochastic approach, consists of repeating degree-
preserving assortative random rewiring long enough. The
stochastic approach stabilizes, after long enough rewiring,
to some level ρ̃D. Next we check all possible

(
L
2

)
pairs of

links whether we still can rewire a pair to increase ρD.
If we cannot rewire any pair of links to increase ρD, we
have definitely found a local maximum. However, this lo-
cal maximum is not guaranteed to be the overall or global
maximum. This can be verified by executing the stochas-
tic approach on a same graph a number of times: each
realization (including the check over all possible

(
L
2

)
pairs

of links) does not necessarily achieve the same maxρD.
The second deterministic approach attempts to find

an N × N matrix A that maximizes N3 = dT Ad, while
maintaining the degree vector d unchanged. Without loss
of generality we can assume that the components of the
degree vector d are ordered as d1 ≥ . . . ≥ dN . The el-
ements aij of A should be determined such that N3 =∑N

j=1

∑N
i=1 aijdidj is maximum under the condition that

∑N
j=1 aij = di, aij = aji, and aii = 0 for all i. Let

4 A simple graph is an unweighted, undirected graph con-
taining no self-loops (links starting and ending at the same
node) nor multiple links between the same pair of nodes.

us denote the vector c = Ad, which has non-negative
components. Recall that d = Au, then N3 = dT c and
uT c =

∑N
i=1 ci = dT d is constant (because d must be

unchanged). Due to the ordering d1 ≥ . . . ≥ dN , dT c =∑N
i=1 cidi is maximum if c1 ≥ . . . ≥ cN . We should there-

fore shift as much weight as possible (of the total
∑N

i=1 ci)
to the left side of the vector cT . The graph construction
method in [4] that tries to optimize

∑N
i=1

∑N
j=1 aijdidj ,

belongs to the second class. This method ranks all possible
links 1 ≤ l ≤

(N
2

)
according to dl+dl− from the highest to

the lowest resulting in l(1), l(2), . . . , l((N
2 )). Next, the graph

is constructed by including sequentially links with increas-
ing index, but links that violate the degree vector, are
excluded. Both the stochastic and deterministic approach
(as deployed by Li et al. [4]) are, however, heuristic, while
the problem is polynomially solvable.

Problem 1 is, in fact, an instance of the maximum-
weight degree-constrained subgraph problem5, which is
polynomially solvable (e.g., see [20] and [21]). The degree-
constrained subgraph problem is defined as follows:

Definition 1. Degree-constrained subgraph problem:
given a graph G(N ,L) with N nodes and L links, and a
degree vector d = d1, ..., dN , find a subgraph H(N ,LH),
where LH ⊆ L, and each node i has precisely di neighbors
(adjacent nodes).

The problem instance that we need to solve is to find
a maximum-weight degree-constrained subgraph in the
complete graph KN , where each link from a node i to a
node j is assigned a weight didj . By finding a maximum-
weight degree-constrained subgraph H , where each node
i ∈ N has precisely di neighbors, we obtain a subgraph
of the complete graph for which all nodes obey the de-
gree sequence, and for which N3 =

∑N
j=1

∑N
i=1 aijdidj is

maximum (corresponding to a graph with highest N3 and
hence assortativity).

We end the section by considering two additional
and related problems. The first problem considers the
difference max ρD − min ρD that may be regarded as
a metric of a given degree vector d and that reflects
the adaptivity in (dis)assortativity under degree-preserved
rewiring. As shown earlier, for some graphs like regu-
lar graphs, that difference maxρD− minρD = 0, while
max ρD − min ρD ≤ 2. Let Amax be the matrix corre-
sponding to max ρD and Amin is the matrix corresponding
to min ρD, then max ρD − min ρD = N1(d

T (Amax−Amin)d)
N1

∑ N
i=1 d3

i−N2
2

.
Now, R = Amax−Amin is an N ×N matrix with elements
rij ∈ {0, 1,−1}. The 1’s (or equivalently −1’s) indicate

5 The degree-constrained subgraph problem on its turn falls
under the umbrella of b-matching. A perfect b-matching is a set
of links (subgraph) that span all nodes and for which each node
i has (precisely or at most) b(i) adjacent links in the matching.
If links are assigned weights, then the maximum-weight perfect
b-matching problem is to find a perfect b-matching, for which
the sum of the link weights in the matching is highest among
all possible perfect b-matchings. The problem is also known as
f -matching or b/f -factor and has many variations.
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Fig. 2. (Color online) USA air transportation network, with
N = 2179 and L = 31326.

where a link is present in Amax and not in Amin (or vice
versa for −1 ’s). Consequently, given that for an undi-
rected graph R = RT is symmetric, the maximum num-
ber of links that would need to be rewired in Amin to get
Amax equals the total amount of 1’s (or equivalently −1’s)
divided by 2. The rewiring of a link in Amin to a link in
Amax corresponds to rewiring an element in R with a −1
and with a 1 (in the same row or column due to symmetry
of R). Through appropriate relabeling of nodes, the num-
ber of rewirings may decrease. Unfortunately, finding the
minimum number of rewirings is an NP-complete prob-
lem [18].

The problem of finding a connected graph of mini-
mum (or maximum) weight given a degree sequence is
NP-complete, since by setting all degrees to 2, the prob-
lem reduces to the NP-complete Traveling Salesman Prob-
lem [22]. However, Bienstock and Günlük have proved that
“If two connected graphs have the same degree sequence,
then there exists a sequence of connected intermediate
graphs transforming one of them to the other” [18]. Even
though we cannot efficiently compute a connected graph of
highest (dis)assortativity, we can use a rewiring approach
to increase (dis)assortativity, while maintaining connec-
tivity. Hence, we would like to possess a criterion to check
if a rewiring will lead to disconnectivity. In the field of
dynamic graph algorithms, Eppstein et al. [23] have pro-
posed a technique to check for connectivity in O(

√
N)

time for each link update (four updates per rewiring),
which naturally beats any standard way of checking for
graph connectivity.

5.2 Application to the USA air transport network

As an example, we consider degree-preserving rewiring in
the USA air transportation network displayed in Figure 2,
where each node is an airport and each link is a flight con-
nection between two American airports. We are interested
in an infection process, where viruses are spread via air-
planes from one city to another. From a topological point
of view, the infection threshold τc = 1

λ1
is the critical de-
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Fig. 3. (Color online) The ten largest and five smallest eigen-
values of the adjacency matrix of the USA airport transport
network versus the percentage of rewired links. The insert
shows the linear degree correlation coefficient ρD as function
of the assortative degree-preserving rewiring.

sign parameter that we would like to have as high as pos-
sible, because an effective infection rate τ > τc translates
into a certain percentage of people that remains infected
after sufficiently long time (see for details [11]). Since most
airports operate near to full capacity, the number of flights
per airport should hardly change during the re-engineering
to modify the largest eigenvalue λ1. Hence, the degree vec-
tor d should not change, which makes degree-preserving
rewiring a desirable tool. Figure 3 shows how the adja-
cency eigenvalues of the USA air transport network change
with degree-preserving assortative rewiring. In each step
of the rewiring process, only four one elements (i.e., two
links) in the adjacency matrix change position. If we rela-
bel the nodes in such a way that the link between 1 and
2 and between 3 and 4 (case (a) in Lemma 1) is rewired
to either case (b) or (c), then only a 4 × 4 submatrix A4

of the adjacency matrix A in

A =
[

A4 C
CT Ac

]

is altered. The Interlacing Theorem [9], Chapter 3 states
that λj+4 (A) ≤ λj (Ac) ≤ λj (A) for 1 ≤ j ≤ N − 4,
which holds as well for Ar just after one degree-preserving
rewiring step. Thus, apart from a few largest and small-
est eigenvalues, most of the eigenvalues of A and Ar are
interlaced, as observed from Figure 3. The large bulk
of the 2179 eigenvalues (not shown in Fig. 3 nor in
Fig. 6) remains centered around zero and confined to
the almost constant white strip between λ10 and λN−5.
As shown above, assortative rewiring increases λ1. Fig-
ure 3 illustrates, in addition, that the spectral width or
range λ1 − λN increases as well, while the spectral gap
λ1 − λ2 remains high, in spite of the fact that the alge-
braic connectivity µN−1 is small. In fact, Figure 4 shows
that µN−1 decreases, in agreement with (16), and van-
ishes after about 10% of the link rewirings, which indi-
cates [9], Chapter 3 that the graph is then disconnected.
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Fig. 4. (Color online) The twenty smallest eigenvalues of the
Laplacian matrix of the USA airport transport network ver-
sus the percentage of rewired links. The insert shows the de-
gree distribution that is maintained in each degree-preserving
rewiring step.
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Fig. 5. (Color online) The twenty smallest eigenvalues of the
Laplacian versus the percentage of rewired links. The insert
shows the disassortative degree-preserving rewiring.

Figure 4 further shows that by rewiring all links on av-
erage once (100 %), assortative degree-preserved rewiring
has dissected the USA airport network into 20 discon-
nected clusters. Increasing the assortativity implies that
high-degree and low-degree nodes are linked increasingly
more to each other, which, intuitively, explains why dis-
connectivity in more and more clusters starts occurring
during the rewiring process.

The opposite happens in disassortative rewiring as
shown in Figure 5: the algebraic connectivity µN−1

increases during degree-preserving rewiring (up to roughly
150% rewired links) from about 0.25 to almost 1, which is
the maximum possible due to µN−1 ≤ dmin, the minimum
degree, and dmin = 1 as follows from the insert in Figure 4.
Finally, Figure 6 plots the disassortative counter part of
Figure 3: the spectral gap λ1 − λ2 reduces with the per-
centage of rewired links, while the spectral range λ1 −λN

does not significantly change. The maximum difference
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Fig. 6. (Color online) The disassortative counterpart of Fig-
ure 3.

maxρD−minρD is deduced from the inserts in Figures 6
and 3 and appears to be slightly more than one, such
that the adaptivity ratio in assortativity, maxρD−minρD

2 , is
about 50%.

Summarizing, in order to suppress virus propagation
via air transport while guaranteeing connectivity, disas-
sortative degree-preserving rewiring is advocated, which,
in return, enhances the topological robustness.

5.3 Generalizing the observations

Degree-preserving rewirings on various other real-world
complex networks confirm the above observations: (a) as-
sortative degree-preserving rewiring increases λ1, (b) but
also decreases the algebraic connectivity µN−1, even lead-
ing to disconnectivity of the network into many clusters.
(c) Disassortative degree-preserving rewiring decreases λ1,
but (d) increases the algebraic connectivity µN−1 initially
(roughly up to 100%) and thus strengthens the topological
connectivity structure of the network.

Often, the value of a network lies in the number of
its links L (relations between items), which grows as L =
O

(
N2

)
in terms of the nodes at most, and in its connectiv-

ity, the ability that each node can reach each other node. A
second value pillar of networking lies in positive synergetic
coupling: when two nodes interact, their total impact on
the network’s functioning is larger than the sum of their
individual functioning. Sometimes, even additional func-
tionality is created. In order to establish positive synergy,
the properties in the nodes often complement each other,
which reflects disassortativity. We have shown that disas-
sortativity decreases λ1, implying that dynamic processes
such as epidemic information spread and synchronization
of coupled oscillators are “slowed-down” (as their phase-
transition threshold increases). In return, disassortativity
increases the algebraic connectivity µN−1, thus the ease
to tear the network apart is lowered. Consequently, we
argue that in most biological, infrastructural, or collab-
orative complex networks, disassortativity is the natural
mode, because nodes with different properties connect to
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each other to create a network with “win-win” proper-
ties. Moreover, disassortativity favors good connectivity.
Assortative networks, where nodes of the same type seek
to interconnect, are less natural: either these networks are
very regular and regularity is their distinguishing strength,
or the nodes are selfish and only exchange with those that
reward them equally, thereby excluding the lesser ones to
participate in the networking.

It is interesting to mention that these inferences agree
with Newman’s observations [1]: most of the biological
and technical networks are disassortative, while social net-
works are found to be assortative.

6 Conclusions

We have reformulated the linear degree correlation coef-
ficient ρD, introduced by Newman [1], equation (21) as
a measure for assortativity, in terms of the total num-
ber Nk of walks in the graph with k hops. This refor-
mulation allows us to derive a new formula from which a
degree-preserving rewiring algorithm is deduced, that, in
each rewiring step, either increases or decreases ρD. We
have investigated the degree-preserving rewiring problem
in networks with a same degree vector, and presented a
solution that finds the maximum assortativity ρD. Var-
ious lower bounds for the largest eigenvalue λ1 of the
adjacency matrix have been presented that all increase
with ρD. The largest eigenvalue λ1 characterizes the ef-
fect of the topology on dynamic processes on graphs.
The degree-preserving rewiring algorithm is applied to a
real-world network, the USA air transportation network,
with the aim to make this network more robust against
virus spread, given that resources, the number of flights
in each airport, are constant. A general observation is
that, increasing λ1 by increasing the assortativity, rela-
tively rapidly leads to disconnectivity, while increasing
disassortativity seems to increase the algebraic connec-
tivity µN−1, thus the topological robustness. The latter
agrees with the upper bound (16) on µN−1, that indeed
decreases with ρD.

Appendix A: Erdős-Rényi random graph

As mentioned in Section 2, we need to compute
ρ (Dl+ , Dl−), where Dl+ = Di − 1 and node i is con-
nected to node j. The fact that Gp (N) is connected
restricts p > pc ∼ log N

N , where pc is the disconnec-
tivity threshold. We first compute the joint probabil-
ity Pr[Di (N) = k, Dj (N) = m|aij = 1], where node i and
node j are random nodes in Gp (N). Given the existence
of the direct link aij = 1, the direct link is counted both
in Di and in Dj such that

Pr [Di (N) = k, Dj (N) = m|aij = 1]

=Pr [Di (N − 1) = k − 1]Pr [Dj (N − 1) = m − 1] .

Introducing the binomial density of Pr[Di (N) = k], we
obtain

Pr [Di (N) = k, Dj (N) = m|aij = 1]

=
(

N − 2
k − 1

)
pk−1 (1 − p)N−1−k

×
(

N − 2
m − 1

)
pm−1 (1 − p)N−1−k .

The joint expectation is

E [Di (N)Dj (N) |aij = 1]

=
N−1∑

k=0

N−1∑

m=0

mkPr [Di (N) = k, Dj (N) = m|aij = 1]

=
N−1∑

k=0

(
k

(
N − 2
k − 1

)
pk−1 (1 − p)N−1−k

×
N−1∑

m=0

m

(
N − 2
m − 1

)
pm−1 (1 − p)N−1−k

)

= (1 + (N − 2)p)2 .

Next,
E [Di (N) |aij = 1] = 1 + (N − 2)p

such that, for all N and p > pc,

Cov [Di (N) , Dj (N) |aij = 1] = E [Di (N)Dj (N)]

− E [Di (N)] E [Dj (N)] = 0

and, hence, ρD = 0: the connected Erdős-Rényi random
graph Gp (N) is zero-assortative.

References

1. M.E.J. Newman, Phys. Rev. E 67, 026126 (2003)
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