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Abstract – By making only one approximation of a mean-field type, we determine the nature
of the SIS type of epidemic phase transition in any network: the steady-state fraction of infected
nodes y∞ is linear in (τ

−1
c − τ

−1) for effective infection rates τ ↓ τc, the derivative of y∞ at the
epidemic threshold τc =

1
λ1
is exactly computed and depends on the largest eigenvalue λ1 of the

adjacency matrix and on the first- and third-order moments of the corresponding eigenvector.
Since coupled oscillators in a network synchonize at a coupling strength proportional to 1

λ1
, a

similar characterization of the phase transition is suggested. The behavior of y∞ around τc was
the missing part in the general steady-state theory of a SIS-type epidemic on a network.

Copyright c© EPLA, 2012

Introduction. – The increasing threats from cyber-
crime and the expected outbreak of a new lethal virus in
our increasing human population justify studies on virus
spread in networks. In particular, the role of the network in
the virus contamination process, which is still insufficiently
well understood, is the scope of this paper. A remarkable
property of the susceptible-infected-susceptible (SIS) virus
model [1,2] is the appearance of a phase transition when
the effective infection rate τ = β

δ
approaches the epidemic

threshold τc =
1
λ1
, where λ1 is the largest eigenvalue of the

adjacency matrix A, also called the spectral radius1. Below
the epidemic threshold τc, the network is virus free in the
steady-state, while above τc, there is always a fraction of
nodes that remains infected.
Our analysis, based on the N -intertwined SIS virus

spread model [4], specifies, for the first time, the precise
behavior of the phase transition for values of the effective
infection rate at τ = τc+ ǫ, where ǫ > 0 is arbitrarily small.
In earlier work (see ref. [5]), only the position of the
epidemic threshold, i.e. τc =

1
λ1
, has been determined and

most analyses were only able to describe the region τ � τc.
Our method illustrates the power of an algebraic and
spectral analysis of graphs (see, e.g., [3]). The first and
third moments of the normalized eigenvector x1 belonging
to λ1 appear in the main result, Theorem 1 below.

(a)Present address: Faculty of Electrical Engineering, Mathematics
and Computer Science - P.O. Box 5031, 2600 GA Delft, The
Netherlands, EU; E-mail: P.F.A.VanMieghem@tudelft.nl.
1In a graph G with N nodes and L links, the spectral radius is

bounded [3] by 2L
N

√

1+
Var[D]
E[D]

� λ1 � dmax, where D is the degree

of an arbitrary node and dmax is the maximum degree in G. Equality
is attained for regular graphs.

In the Kuramoto model of coupled oscillators in a
network, which is as basic [6] as the SIS virus model, the
onset of synchronization [7] occurs at a coupling strength
that is also inversely proportional to λ1. Since these two
dynamic processes on a network possess the same 1

λ1
type

of critical threshold between two phases, we speculate
that first and third moments of x1 also determine the
synchronized state as estimated below.

The fraction y∞ of infected nodes in the steady-
state. –

The N-intertwined SIS model in brief. A network
is represented by an undirected graph G(N,L) with N
nodes and L links. The network topology is described by
a symmetric adjacency matrix A, in which the element
aij = aji = 1 if there is a link between nodes i and j,
otherwise aij = 0. The state of a node i is specified by a
Bernoulli random variableXi ∈ {0, 1}:Xi = 0 for a healthy
node and Xi = 1 for an infected node. A node i at time t
can be in one of the two states: infected, with probability
vi(t) = Pr[Xi(t) = 1] or healthy, with probability 1− vi(t).
We assume that the curing process per node i is a Poisson
process with rate δ, and that the infection rate per link is a
Poisson process with rate β. This is the general description
of the simplest type of a SIS virus spread model in a
network. This SIS model can be expressed exactly in terms
of a continuous-time Markov model with 2N states as
shown in [4]. Unfortunately, the exponentially increasing
state space with N prevents the determination of the set
of {vi(t)}1�i�N in realistic networks, which has triggered
a spur of research to find good approximate solutions.
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In contrast to all published SIS type of models, the
N -intertwined model, proposed and investigated in depth
in [4] and reviewed in [8], only makes one approximation
in the exact SIS model and is applicable to all graphs. In
particular, the actual infection rate of node i due its
infected neighbors, β

∑N
j=1 aij1{Xj(t)=1}, is replaced by

its mean2 β
∑N
j=1 aijvj(t). This “mean-field” type of

approximation transforms the exact set of 2N linear
differential equations into a set of N non-linear differential
equations (see (1) and (2) below) and introduces both the
epidemic phase transition and the “meta-stable state”3.
The steady-state in the non-linear N -intertwined virus
spread model refers to the meta-stable state, which is
reached exponentially rapidly and which reflects real
epidemics more closely. Simulations in [4] indicate that
the accuracy of the N -intertwined model (compared to
the exact SIS Markov model) increases with N . In [10], we
show that the mean-field approximation upper bounds the
exact Pr[Xi(t) = 1] (which is useful to guarantee epidemic
safety bounds in real networks) and that it implies that the
random variables Xj and Xi are implicitly assumed to be
independent. Since this basic assumption is increasingly
good for large N , we expect that the deductions from
the N -intertwined model are asymptotically (for N →∞)
almost exact for real-world networks. The homogenous
N -intertwined model, where the infection and curing rate
is the same for each link and node in the network, has
been extended to a heterogeneous setting in [5].
The governing differential equation in theN -intertwined

model for a node i is

dvi(t)

dt
= β(1− vi(t))

N
∑

j=1

aijvj(t)− δvi(t). (1)

In words, the time derivative of the infection probability
of a node i consists of two competing processes: 1) while
healthy with probability (1− vi(t)), all infected neighbors,
an event with probability

∑N
j=1 aijvj(t), try to infect the

node i with rate β and 2) while infected with probability
vi(t), the node i is cured at rate δ. Defining the vector
V (t) = [v1(t)v2(t) · · · vN (t)]T , the matrix representation
based on (1) becomes

dV (t)

dt
= (βA− δI)V (t)−β diag(vi(t))AV (t), (2)

where diag(vi(t)) is the diagonal matrix with elements
v1(t), v2(t), . . . , vN (t). The mean-field model of Kephart
and White [11], that is identitical to the “small degree
variance” model of Pastor-Satorras and Vespignani [12],
is found from the set (1) by assuming that each node

2The expectation of the indicator function 1X , where X is a
random variable, equals E[1X ] = Pr[X].
3In the exact SIS model, the steady-state is the healthy state,

which is the only absorbing state in the Markov process. However,
in networks of realistic size N , this steady-state is only reached after
an unrealistically long time [9].

experiences a same infection. That uniform-homogeneous-
local assumption reduces the set of N equations to one
and replaces the actual number of neighbors

∑N
j=1 aij

of node i, by an average r, resulting in dv(t)
dt = βr(1−

v(t))v(t)− δv(t). When the variance of the degree distrib-
ution is large, Pastor-Satorras and Vespignani [12] propose

a heterogeneous variant, dv(t|k)dt = βk(1− v(t|k))Θ{v(t)}−
δv(t|k), where v(t|k) is the probability of infection of a
node with degree k and Θ{v(t)} is the probability that
a link points to an infected node. The latter Θ{v(t)} is
a function of v(t|k) and solved self-consistently in [12].
Unfortunately, the relation between this “heterogeneous”
variant and the N -intertwined model is less obvious.
In the sequel, we focus on the steady-state, where vi∞ =

limt→∞vi(t) and limt→∞
dvi(t)
dt = 0. From (1), we obtain

vi∞ =
β
∑N
j=1 aijvj∞

β
∑N
j=1 aijvj∞+ δ

= 1− 1

1+ τ
∑N
j=1 aijvj∞

. (3)

Beside the trivial solution vi∞ = 0, (3) illustrates that
there is another positive solution reflecting the meta-stable
state in which we are interested here. For regular graphs,
where each node has degree d, symmetry in the steady-
state implies that vi∞ = v∞ for all nodes i and it follows
from (3) with the definition of the degree di =

∑N
j=1 aij

that

v∞;regular = y∞;regular(τ) = 1−
1

τd
(4)

where y∞ =
1
N

∑N
i=1 vi∞ is the fraction of infected nodes

in the steady-state.

General relations. After left-multiplication of the
steady-state version of (2) by the vector

V T∞ diag
(

vk−1i∞
)

=
[

vk1∞ v
k
2∞ · · · vkN∞

]

which we denote by (V k∞)
T , we obtain the scalar equation

(

V k∞
)T
V∞ =

N
∑

j=1

vk+1j∞ = τ
(

(

V k∞
)T
AV∞−

(

V k+1∞
)T
AV∞

)

.

(5)

For k= 0 in (5), and introducing the all one vector
u= limk→0V k∞, we arrive at the fundamental relation for
y∞ ∈ [0, 1] in terms of the vector V∞:

Ny∞ = u
TV∞ = τ (u−V∞)T AV∞. (6)

For k= 1 in (5), the norm ‖V∞‖22 = V T∞V∞ =
∑N
j=1 v

2
j∞

obeys

V T∞V∞ = τ
(

V T∞AV∞−V T∞ diag(vi∞)AV∞
)

. (7)
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An eigenvector approach. Since the eigenvectors
x1, x2, . . . , xN belonging to the eigenvalues λ1 � λ2 �
· · ·� λN of the adjacency matrix A span the
N -dimensional vector space, we can write the steady-state
infection probability vector V∞(τ) as a linear combination
of the eigenvectors of A,

V∞(τ) =
N
∑

k=1

γk(τ)xk, (8)

where the coefficient γk(τ) = x
T
k V∞(τ) is the scalar prod-

uct of V∞(τ) and the eigenvector xk and where the eigen-
vector xk obeys the normalization x

T
k xk = 1. Physically,

(8) maps the dynamics V∞(τ) of the process onto the
eigenstructure of the network, where γk(τ) determines the
importance of the process in a certain eigendirection of
the graph. The definition y∞(τ) =

1
N
uTV∞(τ) shows that

y∞(τ) =
1

N

N
∑

k=1

γk(τ)u
Txk. (9)

Substitution of (8) into (6) yields

y∞(τ) =
τ

N

N
∑

k=1

λkγk(τ)
(

uTxk − γk(τ)
)

. (10)

For irregular graphs, generally, γm(τ) = x
T
mV∞(τ) �= 0 for

m> 1 and all eigenvalues and eigenvectors in (10) play
a role. Moreover, γm(τ) can be negative, as well as

λm, while
∑N
k=1 λk = 0 (see [3], p. 30). The larger the

spectral gap λ1−λ2 and the smaller |λN |, the more y∞
is determined by the dominant k= 1 term in (10), and the
more its viral behavior approaches that of a regular graph.
Graphs with large spectral gap possess strong topological
robustness [3], in the sense that it is difficult to tear that
network apart.

Just above the epidemic threshold. – The Perron-
Frobenius Theorem [3] states that all components of x1
are non-negative (and strictly positive when the graph
G is connected). Moreover, all components of V∞(τ) are
positive as well for τ > τc so that γ1(τ)> 0 and γ1(τ)>
γm(τ) for all m> 1. The fact that the epidemic threshold
occurs at τ = τc =

1
λ1
has been proved in several papers,

see, e.g., [4,13]. Here, we recall the fundamental lemma for
the N -intertwined SIS model, proved in [4].

Lemma 1. There exists a value τc =
1
λ1
> 0 and for τ <

τc, there is only the trivial steady-state solution V∞ =
0. Beside the V∞ = 0 solution, there is a second, non-
zero solution for all τ > τc. For τ = τc+ ε, it holds that
V∞ = αx1, where ε, α > 0 are arbitrarily small constants
and where x1 is the eigenvector belonging to the largest

eigenvalue λ1 of the adjacency matrix A.

Lemma 1 shows that, for all graphs, V∞ = αx1+ ξy,
where y is a vector orthogonal to x1, α tends to zero as

τ ↓ τc, while ξ tends faster to zero in that limit than α.
The following theorem is our fundamental result:

Theorem 1. For any graph, the steady-state fraction of
infected nodes y∞ obeys

y∞(τ) =
1

N

uTx1

λ1
∑N
j=1 (x1)

3
j

(

τ−1c − τ−1
)

+O
(

τ−1c − τ−1
)2

(11)
when τ approaches the epidemic threshold τc from above.

Proof: The proof of Lemma 1 suggests when
τ ↓ τc that α= α0(τ−1c − τ−1)q + o((τ−1c − τ−1)q) and
ξ = ξ0(τ

−1
c − τ−1)κ+ o((τ−1c − τ−1)κ), where κ> q > 0.

Comparing to the definition (8) in the limit that τ
approaches the epidemic threshold τc from above, we
have that γ1(τ) = c1(τ

−1
c − τ−1)q + o((τ−1c − τ−1)q) and

γk(τ) = ck(τ
−1
c − τ−1)κ+ o((τ−1c − τ−1)κ), where c1 > 0

because all components of V∞ must be non-negative.
When combining both expressions (9) and (10) for y∞,

we obtain
N
∑

k=1

(

λk − τ−1
)

γk(τ)u
Txk =

N
∑

k=1

λkγ
2
k(τ). (12)

Substitution of (8) into (7) yields

V T∞V∞=
N
∑

m=1

N
∑

k=1

γk(τ)γm(τ)x
T
mxk

= τ

(

N
∑

m=1

N
∑

k=1

λkγk(τ)γm(τ)x
T
mxk

−
N
∑

k=1

N
∑

q=1

N
∑

k=1

λkγq(τ)γm(τ)γk(τ)x
T
mdiag((xq)i)xk

)

.

Invoking orthogonality of eigenvectors, xTmxk = δkm, yields

N
∑

k=1

(

λk− τ−1
)

γ2k(τ) =

N
∑

k=1

N
∑

q=1

N
∑

k=1

λkγq(τ)γm(τ)γk(τ)

×
N
∑

j=1

(xm)j (xq)j (xk)j . (13)

When τ ↓ τc, (12) reveals that the left-hand side is of the
order

c1u
Tx1
(

τ−1c − τ−1
)q+1

+
N
∑

k=2

(λk −λ1) ckuTxk
(

τ−1c − τ−1
)κ

+o
(

(

τ−1c − τ−1
)min(q+1,κ)

)

,

whereas, due to κ> q, the right-hand side is of the order

λ1c
2
1

(

τ−1c − τ−1
)2q
+
N
∑

k=2

λkc
2
k

(

τ−1c − τ−1
)2κ

+o
(

(

τ−1c − τ−1
)min(2κ,2q)

)

=

λ1c
2
1

(

τ−1c − τ−1
)2q
+ o
(

(

τ−1c − τ−1
)2q
)

.
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Suppose that a) κ< q+1, then equating corresponding
powers in τ−1c − τ−1 at both left- and right-hand side
yields that κ= 2q. The other alternative b) is that κ�
q+1, which leads to q+1= 2q or q= 1 and κ� 2.
Similarly, the left-hand side of (13) is of the order

N
∑

k=1

(

λk − τ−1
)

γ2k(τ) = c
2
1

(

τ−1c − τ−1
)1+2q

+

N
∑

k=2

(

λk− τ−1
)

c2k
(

τ−1c − τ−1
)2κ

+o
(

(

τ−1c − τ−1
)min(2q+1,2κ)

)

,

while the right-hand side of (13) is of the order

N
∑

k=1

N
∑

q=1

N
∑

k=1

λkγq(τ)γm(τ)γk(τ)

N
∑

j=1

(xm)j (xq)j (xk)j =

c31
(

τ−1c − τ−1
)3q
λ1

N
∑

j=1

(x1)
3
j +O

(

(

τ−1c − τ−1
)2q+κ

)

.

Equating corresponding powers in τ−1c − τ−1 again leads
to two cases for the exponents: c) if 2κ< 2q+1, then
2κ= 3q and the second-order term shows that 1+2q=
2q+κ or κ= 1, so that q= 23 , while d) if 2κ� 2q+1,
then 1+2q= 3q, thus q= 1 and 2κ� 3. But the second-
order term shows that 2κ= 2q+κ, or κ= 2q= 2. Case c)
is inconsistent with either case a) and b), while case d) is
consistent with case b). Thus, we conclude that q= 1 and
κ= 2. Equating corresponding powers in τ−1c − τ−1 yields
that

c1 =

⎛

⎝λ1

N
∑

j=1

(x1)
3
j

⎞

⎠

−1

.

After substituting the order terms into the fraction of
infected nodes (9), we arrive at (11). �

After transforming s= 1
τ
, the slope at the epidemic

threshold follows from (11) as

dy∞(s)

ds

∣

∣

∣

∣

s=λ1

=− 1
N

uTx1

λ1
∑N
j=1(x1)

3
j

=− 1

λ1N

∑N
j=1(x1)j

∑N
j=1(x1)

3
j

.

(14)

For example, for τ ↓ τc or s ↑ λ1, the steady-state fraction
of infected nodes y∞ in the complete bipartite graph Knm
has the slope

dy∞ (s)

ds

∣

∣

∣

∣

s=λ1

=− 1
N

uTx1

λ1
∑N
j=1 (x1)

3
j

=− 2
N

which agrees with the exact formula [4]

y∞(s) =

(

mn− s2
)

N

{

1

s+m
+
1

s+n

}

, (15)

while, for regular graphs, where λ1 = d and
uT x1∑
N
j=1
(x1)3j

=N ,

(11) without higher-order terms coincides with (4).

The appearance of the three first moments of the largest
eigenvector in Theorem 1 is intriguing. In [3], we show that
1� uTx1 �

√
N and that the upper bound is reached in

regular graphs. Invoking the Hölder inequality ([3], p. 309)
using the normalization xT1 x1 = 1 shows that

N

⎛

⎝

N
∑

j=1

(x1)
3
j

⎞

⎠

2

� 1.

An upper bound follows from

N
∑

j=1

(x1)
3
j � max1�j�N

(x1)j

N
∑

j=1

(x1)
2
j = max1�j�N

(x1)j � 1.

For a connected graph, the Perron-Frobenius theorem
implies that max1�j�N (x1)j < 1, because all vector
components are positive and xT1 x1 = 1. Hence, we find
that

1√
N
�

N
∑

j=1

(x1)
3
j � max1�j�N

(x1)j . (16)

Since equality (at both sides) in (16) is reached for the
regular graph, where (x1)i =

1√
N
, these bounds are the

best possible among all graphs. With these bounds,
the slope in (14) at the epidemic threshold lies in between

1

λ1N max1�j�N (x1)j
�− dy∞(s)

ds

∣

∣

∣

∣

s=λ1

�
1

λ1
,

where the upper bound is again reached for regular graphs.
The more irregular a graph is, the smaller the slope, which
agrees with simulations in [14]. Further, the inequality
shows that slope decreases at least as fast as τc =

1
λ1

when the network size N increases. Since most real-world
networks possess an irregular degree distribution close to a
power law, both τc and the slope at the epidemic threshold
τc are small so that simulations in large networks might
suggest that y∞(τ)≃ ξ(τ − τc)γ with γ > 1.
Discussion. – Critical parameters at a phase transi-

tion [15] often follow power laws. Applied to the virus
spread problem, the general form can be written as
y∞(τ) = ξ(τ − τc)γ , where ξ, γ and τc reflect physical prop-
erties of the virus spread process and of the graph. Here,

the critical exponent equals γ = 1 and ξ =−λ21 dy∞ds
∣

∣

∣

s↑λ1
specified in (14). In contrast to thermodynamics or Gibbs
measures, such as the magnetization, the phase transition
in virus spread on networks is entirely different in nature:
there are no infinite slopes, nor jumps. Restrepo et al. [7]
approximately derived the behavior of the order parame-
ter r (instead of the fraction of synchronized oscillators)
around the critical threshold gc =

g0
λ1
as a function of the

coupling strength g as

r2(g)≃ r0
λ21

(

∑N
j=1 (x1)j

)2

N (dav)
2∑N

j=1 (x1)
4
j

(

g

gc
− 1
)(

g

gc

)−3
,

where g0 and r0 are constants and dav is the aver-
age degree. Heuristically combining the inequalities
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(
∑N
j=1(x1)

4
j )
−1�(

∑N
j=1(x1)

3
j )
−2 and λ1

dav
�1 may suggest

that

r2(g)≃ r0
N

(

∑N
j=1 (x1)j

∑N
j=1 (x1)

3
j

)2
(

g

gc
− 1
)(

g

gc

)−3
,

where only first- and third-order moments appear as in
Theorem 1.
Expression (11) illustrates that, among all graphs with

N nodes and L links, the regular graph with degree d= 2L
N

has the largest epidemic threshold τc =
1
d
, but also the

largest (in absolute value) derivative dy∞ds

∣

∣

∣

s↑λ1
because of

equality in the general relation λ1 �
2L
N
and in the bounds

in (16). This means that a higher effective infection rate
τ is needed to cause a non-zero steady-state fraction of
nodes in the regular graph to be permanently infected, but
that, slightly above that critical rate τc, a higher relative
fraction of nodes is infected than in other graphs. In other
words, the change in virus conductivity [14] at τ = τc+ ǫ
is highest in regular graphs.
The behavior around τ = τc was the missing part in the

general steady-state theory, because an accurate contin-
ued fraction expansion around τ →∞ exists [4], whose
convergence is, unfortunately, the worst for values of τ
just above and at τc. In other words, a few convergents in
the continued fraction are insufficient to approximate the
behavior of y∞(τ) around τc accurately, and just the onset
of permanent infection in a network is of practical impor-
tance because heavy infection τ →∞ hardly occurs due
to our knowledge of several immunization strategies [16].
Concavity of y∞(τ) for τ � τc, proved in [5] bridges the gap
between the regime around τ = τc and τ →∞. Finally, as
in [17], we propose as future work an accurate comparison4

between the N -intertwined virus model and the exact SIS
Markov chain to assess the relative error of the mean-field
approximation around τ = τc.

∗ ∗ ∗
This research was supported by Next Generation

Infrastructures (Bsik) and the EU FP7 project ResumeNet
(project No. 224619).

4The last section in [4] gives a comparison for small networks for
which the exact Markov chain with 2N states can still be evaluated.
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