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Abstract. We analyse the number of votes, called the digg value, which measures the impact or popularity
of submitted information in the Online Social Network Digg. Experiments over five years indicate that
the digg value of a story on the first frontpage follows closely a lognormal distribution. While the law of
proportionate effect explains lognormal behavior, the proportionality factor a in that law is assumed to
have a constant mean, whereas experiments show that a decreases linearly with time. Our hypothesis, the
probability that a user diggs (votes) on a story given that he observes a certain digg value m equals a×m,
can explain observations, provided that the population of users that can digg on that story is close to a
Gaussian.

1 Introduction

In recent years, online social networks (OSNs) have expe-
rienced an explosive growth. With hundreds of such ser-
vices available and a subscribed user base of several hun-
dred million people, they have significantly altered the way
how people spend their time [1] and how they search for
content [2].

One specific kind of OSNs addressed in this paper are
social bookmarking services and, in particular, social news
aggregators such as digg.com, delicious.com or reddit.com.
In this type of OSN, users are sharing and commenting on
information (such as bookmarks, opinions, news, etc.), fur-
ther called “stories”. The community will vote (an activity
referred to as “to digg”) on the submitted stories, where
the sum of all votes on a story, which is called the “digg
value” of a story, is publicly displayed as some ranking in-
formation and therefore reflects the impact of a story. The
life-time of a story is also studied and used in [3] to “pre-
dict the popularity of online content”. Collaborative tag-
ging in social media, as in digg.com, has been overviewed
in [4] from a statistical physics point of view.

Empirical data (see e.g. [5,6]) illustrate that the digg
value of an arbitrary story follows a lognormal distribu-
tion as shown in Figure 1. For over hundred years, lognor-
mal distributions have been observed in many different
areas [7–9], from economy to biology and now in OSNs.
Recent work [10] further demonstrated that a lognormal
distribution may further universally characterize datasets
which have previously been thought of as typical instances
of a power-law. The fascinating underlying process that
asymptotically generates a lognormal distribution is the
law of proportionate effect, which is briefly reviewed in
Appendix A. Earlier, Wu and Huberman [11] have argued
that the digg value is, indeed, generated by the law of
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proportionate effect when ageing effects are taken into ac-
count. However, Section 6 questions their arguments.

In this article, we propose another process in Section 3
that leads to a lognormal distribution: our counting pro-
cess avoids asymptotic limits, but in return requires that
the user population is approximately a Gaussian. The new
insight is the probabilistic relation (12) in Section 3.2 of
whether a user will digg on a story, given that he observes
the digg value. The remainder of the paper tries to relate
both governing processes with experiments. The mechan-
ics of Digg and the data extraction method from the Digg
OSN, observed over a period of five years, are described
in [6,12]. Section 7 concludes our exploration: the law of
proportionate effect alone seems insufficient to explain the
experimental evidence, while our counting process is able
to explain most findings, provided the user population is
normally distributed. The key quantity is the proportion-
ality factor a. Experiments exhibit a roughly linearly de-
creasing a with time. The average of the proportionality
factor a in the law of proportionate effect (Appendix A)
is, however, constant. Our finite counting process and the
hypothesis (12) agree with experiments: a decreases lin-
early in the number of users that could digg on a story
and approximately linearly with time.

Our results may have broader applicability, as [13] for
example also find a log-normal behavior in the popular-
ity of movies at various levels, and hypothesize a self-
reinforcing process from explicit social recommendations
as a potential cause.

2 The digg value of a story
Let Ds denote the digg value, the number of diggs, on
story s. If we assume that a user can only digg once on a
story, then

Ds =
Ns∑

j=1

1{user j diggs on s} (1)
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Fig. 1. (Color online) The probability density function (pdf) of the digg value Xd of stories on the first five frontpages in Digg.
Each pdf is fitted by a lognormal (2) and the corresponding parameters µ and σ are shown in the legend.

where Ns is the total number of users that have the op-
portunity to digg on story s. The indicator function 1x

equals one if the event x is true, else it is zero.

2.1 Experiments

Empirical data illustrated in Figure 1 show that only the
digg value of stories on the first frontpage is well fitted by
a lognormal density function [14], p. 57

flognormal (u) =
1

uσ
√

2π
exp

[
− (log u − µ)2

2σ2

]
. (2)

The probability density function (pdf) of the other front-
pages decays in the left- and right tail faster than a log-
normal distribution. The decrease faster than a lognor-
mal is likely due to the ageing of the story (explained
in Sect. 2.2), the decreasing number of users that visit
subsequential frontpages and the convolution effect (that
forces any distribution towards a Gaussian distribution).
The latter is a consequence of the definition Ds = Ds0 +
Ds1 + Ds2 + . . ., where Dsk is the sum of the diggs on
story s while on frontpage k = 1, 2, . . . and Ds0 is the digg
value of story s just before it is promoted from the upcom-
ing section to the first frontpage. Although Dsk and Dsm

are not independent, we infer that they are only weakly
dependent.

2.2 Users digg dependently

It is conceivable that the probability that the j-th user,
further called user j, diggs on story s is dependent on

the digg value that he observes, when his eye catches the
story s. The digg value that user j sees when first encoun-
tering the story s is, for j > 1, the sum of all digg values
of users that dugg on the story before him/her

Xs (j) =
j−1∑

k=1

1{user k diggs on s}. (3)

The eventual digg value of story s is Ds = Xs (Ns + 1),
while Xs (1) = 0 and E [Xs (2)] = p1, the probability that
the first user diggs on story s. We may argue that the
digging probability of a user is influenced by the story’s
digg value: if the number of diggs is low, a user has an
a priori feeling that the story is not so attractive and his
motivation to digg is lowered, while the opposite occurs
when a high number of diggs is observed.

Another phenomenon is ageing: after some time, the
novelty of the story may diminish, especially if the story
contains news or temporary information. In that case, the
overall motivation to digg on the story, independent of the
digg value, decreases. Wu and Huberman [11] explain that
the story’s growing attraction, measured via its increasing
digg value, is counterbalanced by the ageing of the story.
As discussed in Section 6, the analysis and assumptions
of ageing effects in [11] are debatable. Moreover, the user
population that visits the k-th frontpage for k > 4 is de-
creasing so quickly that data is scarce. Therefore, in the
sequel, ageing is not considered, nor time-dependent ef-
fects that affect the digg value. We also ignore primacy
and recency effects [15] that would predict that the top
most and bottom most elements would attract larger at-
tention, simply because of their position in a long list. For
example, the Digg feature, “Top Stories in All Topics”,
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displays 10 stories in an abbreviated format on each front-
page, so that the list can be seen in one scan by any visitor
(15 items on a VGA screen require one scrolling action).
Due to their special placement alone (irrespective of their
content), Top Stories are likely to receive a higher than
“normal” number of diggs. In the sequel, we do not dis-
tinguish between stories.

Our main interest is to figure out whether the moti-
vation to digg on a story is linearly dependent on that
story’s diggvalue. If a linear dependence holds, a lognor-
mal distribution is the natural consequence by the law of
proportionate effect (Appendix A). In order to keep ex-
ternal factors as constant as possible and guided by the
experiments in Figure 1, we mainly concentrate on the
number of digg values of a story as long as it is on the first
frontpage.

3 A general description for the average digg
value

We take advantage of the fact that the digg value,
both Xs (j) as Ds, is a sum of indicators: Bernoulli
random variables that are either zero or one. Since
E

[
1{user k diggs on s}

]
= Pr [user k diggs on s] and since

the expectation operator is linear (irrespective of depen-
dencies between random variables in the sum), taking the
expectation of (3) yields

E [Xs (j)] =
j−1∑

k=1

Pr [user k diggs on s] .

By the law of total probability [14], we have that

Pr [user k diggs on s] =

k−1∑

m=0

Pr [user k diggs on s|Xs (k) = m] Pr [Xs (k) = m] .

When writing the conditional probability as

Pr [user k diggs on s|Xs (k) = m] = gk (m) (4)

where gk (x) is a non-negative function that maps x to the
interval [0, 1], we obtain

Pr [user k diggs on s] =
k−1∑

m=0

gk (m) Pr [Xs (k) = m]

= E [gk (Xs (k))] (5)

where we have used the definition of the expectation of a
function of a random variable [14], p. 17. Thus, we arrive
at the general relation for the average number of diggs
that the jth user sees

E [Xs (j)] =
j−1∑

k=1

E [gk (Xs (k))] (6)

from which we obtain the difference equation

E [Xs (j)] − E [Xs (j − 1)] = E [gj−1 (Xs (j − 1))] . (7)

The average total number Ds = Xs (Ns + 1) of diggs on
story s by a population of Ns users is

E [Ds] =
Ns∑

k=1

E [gk (Xs (k))] .

We illustrate in Appendix B that, for positively correlated
users as in Digg, the variance Var[Xs (j)] can be small. In
fact, the stronger the correlation in the digging behavior
between users, the smaller the variance. A small variance
Var[Xs (j)] implies that the mean E [Xs (j)] is a good ap-
proximation for the random variable Xs (j).

So far, we have implicitly assumed that Ns is a con-
stant. However, Ns is, in fact, also a random variable,
denoting the number of users that has discovered story s
within a certain time interval. If Ns is a random variable,
then the above computation is valid for the conditional
expectation Ys = E [Ds| Ns], which is the random vari-
able equal to the average number of diggs on a story s
given that the total number of users equals Ns.

We believe that the r.v. Ys is approximately mea-
sured. Each story s has a number Ds of diggs that are
recorded, while the total population of potential diggers
is Ns. Hence, we have a sequence of stories with their cor-
responding diggs and population {(Ds,Ns)}s≥1. Clearly,
it follows from the definition (1) that Ds ≤ Ns. If the
information about the population is omitted, intuitively
one feels that D1 cannot be compared to D2, because it is
obvious that if n2 = n1

2 , then the number of diggs D2 can-
not be higher than D1

2 . Yet, all digg values of the different
stories, the sequence {Ds}s≥1, are placed in 1 histogram.
In fact, by doing so, we compare different processes, while
a histogram should only record the outcomes of a same
stochastic process and each outcome should be indepen-
dent of all others. Therefore, we believe that the histogram
approximates the conditional random variable Ds|Ns by
its best guess, the estimated value E [Ds| Ns] = Ys.

The remainder consists of choosing the function gk (x),
defined in (4).

3.1 A simple case: proportionality

A simple mathematical choice is the linear function
gk (x) = akx + bk and the general difference (7) becomes

E [Xs (j)] = (1 + aj−1)E [Xs (j − 1)] + bj−1.

After m iterations of this difference equation, we obtain

E [Xs (j)] = E [Xs (j − m)]
m∏

k=1

(1 + aj−k)

+
m∑

l=1

bj−l

l−1∏

k=1

(1 + aj−k) (8)
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and for j = Ns + 1 since Ds = Xs (Ns + 1),

E [Ds] = E [Xs (Ns + 1 − m)]
Ns∏

k=Ns+1−m

(1 + ak)

+
Ns∑

l=Ns+1−m

bl

Ns∏

k=l+1

(1 + ak) .

With the initial condition E [Xs (2)] = p1, we have

E [Ds] = p1

Ns∏

k=2

(1 + ak) +
Ns∑

l=2

bl

Ns∏

k=l+1

(1 + ak) . (9)

When choosing all ak = a and all bk = b, then expres-
sion (8) simplifies to

E [Xs (j)] = E [Xs (j − m)] (1 + a)m + b
m∑

l=1

(1 + a)l−1

=
(

E [Xs (j − m)] +
b

a

)
(1 + a)m − b

a
(10)

such that, for j = Ns + 1,

E [Ds] =
(

E [Xs (Ns + 1 − m)] +
b

a

)
(1 + a)m− b

a
. (11)

Hence, the average digg value E [Ds] = E [Ds1] of a
story just before it disappears from the frontpage can
be expressed as a function of the average digg value
E [Xs (Ns + 1 − m)] = E [Ds0] just after the story ap-
pears on the frontpage1. During the time on the front-
page, precisely m users have had the opportunity to digg
on that story.

Suppose that the number of users m in (11) is a
Gaussian N

(
µ̃, σ̃2

)
, then the random variable Ys1 =

E [Ds1|m] is a lognormal, provided E [Xs (Ns + 1 − m)] =
E [Ds0] is a known constant. Indeed,

Pr [Ys1 ≤ x] = Pr
[(

E [Ds0] +
b

a

)
(1 + a)m − b

a
≤ x

]

= Pr



m ≤
log x+ b

a

E[Ds0]+ b
a

log (1 + a)





=
1

σ
√

2π

∫
log

x+ b
a

E[Ds0]+ b
a

log(1+a)

−∞
exp

[
− (t − µ̃)2

2σ̃2

]
dt.

1 Similarly, we can express the average number on
the k-th frontpage by considering E [Ds] = E [Dsk],
E [Xs (Ns + 1 − m)] = E [Ds,k−1] and m is the number of users
that had the opportunity to digg on the story during its stay
on the k-th frontpage.

such that

fYs1 (x) =
d Pr [Ys1 ≤ x]

dx

=
1(

x + b
a

)
σ̃ log (1 + a)

√
2π

× exp

[
−

(log
(
x+ b

a

)
−log

(
E [Ds0]+ b

a

)
−µ̃ log (1+a))2

2σ̃2 log2 (1 + a)

]

which is recognized from (2) as a lognormal distribution
in u = x + b

a with parameters µ = log
(
E [Ds0] + b

a

)
+

µ̃ log (1 + a) and σ = σ̃ log (1 + a). Hence, assuming a
Gaussian population, the digg value Dsk of the story on
frontpage k can be described by a lognormal distribution,
possibly with different parameters a and b when ageing is
taken into account.

Clearly, the expressions simplify considerably if b = 0.
In the case b = 0, our derivation is in line with the law of
proportionate effect as shown in Section 4. However, the
parameters of the lognormal distribution are different.

3.2 Interpretation

The choice gj (x) = ajx + bj implies, as follows from (4),
that

Pr [user j diggs on s|Xs (j) = m] = ajm + bj .

This general linear form dependent on user j can be useful
to specify the digging behavior of friends and non-friends
of the originator of the story s. In case that user j is a
friend of the originator of the story s, he/she may be insen-
sitive to the digg value Xs (j) = m that he/she observes
when first encountering the story, because his/her friend-
ship relation with the originator outweighs the judgements
of other diggers. Hence, aj = 0 and bj = b ≤ 1, a constant
value that expresses the faith or depth of the friendship
relation of friends in the originator. On the other hand,
non-friends have almost no faith in the originator, but in
their peers, such that aj = a ≤ 1 and bj = 0. Conse-
quently, the general linear relation (9) becomes

E [Ds] = p1 (1 + a)(Nnon-friends−2) + b (Nfriends − 2)

where Nfriends is the number of friends of the origi-
nator of the story s and Ns = Nnon-friends + Nfriends.
Assuming that both populations of friends and non-
friends are Gaussian-like distributed (with possibly dif-
ferent mean and variance), this expression shows that
E [Ds| Nfriends,Nnon-friends] is the sum of a Gaussian and
a lognormal, which is again heavy-tailed. Since Nfriends is
usually smaller than Nnon-friends, a lognormal distribution
is expected to dominate [6].

When returning to the simplest linear case for gk (x) =
ajx + bj , where aj = a and bj = 0, then

Pr [user j diggs on s|Xs (j) = m] = am (12)
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implying that a > 0 is assumed to be constant for each
user j. Thus, a ≤ 1

Ns
in order that all conditional proba-

bilities, for each j ≤ Ns, are smaller than or equal to 1.
Thus, (12) illustrates that a decreases with Ns, which is
in line with Figure 4. Furthermore, relation (5) reduces to

Pr [user k diggs on s] = aE [Xs (k)] .

If the user is the k-th user, counted since the story is on
the j-th frontpage, then, with (10), we have that

Pr [user k diggs on s] = aE [Ds,j−1] (1 + a)k

which shows an exponentially increasing digging probabil-
ity in k.

4 Application of the law of proportionate
effect to the digg value

The law of proportionate effect, explained in Appendix A,
is more general than the analysis in Section 2.2: it ap-
plies to the random variable Xs (n) instead of the mean
E [Xs (n)]. On the other hand, it is an asymptotic result
(n → ∞), which implicitly assumes a rapid convergence
towards a Gaussian in order to observe for finite n al-
ready the lognormal distribution. In our case, where the
digg value Xj = Xs (j + 1) is a sum of indicators as de-
fined in (3), we have that

Xs (j + 1) − Xs (j) = 1{user j diggs on s}.

According to the law of proportionate effect Xj =
(1 + αj)Xj−1, we deduce that

1{user j diggs on s} = αjXs (j) . (13)

Since αj and Xs (j) are independent as assumed in the
law of proportionate effect, taking the expectation leads
to

Pr [user j diggs on s] = E [αj ] E [Xs (j)]

and we conclude from (5) with gk (x) = ajx that E [αj ] =
aj . The law of proportionate effect assumes that all ran-
dom variables αj are i.i.d. with mean E [α], such that
E [αj ] = E [α] and aj = a for each j. Hence, the con-
ditional probability (12) is a manifestation of the law of
proportionate effect and provides another way to verify
proportional behavior.

We will now compute the parameter µ =
E [log (1 + α)] in the lognormal limit law for
Xn = Xs (n + 1) for large n (see Appendix A). Taking
the m-th power of (13) yields

1{user j diggs on s} = αm
j Xm

s (j)

from which it follows that

Pr [user j diggs on s] = E
[
αm

j

]
E [Xm

s (j)]

= E [αm]E [Xm
s (j)] .

Since E [Xs (j)] > 1 for not too small j, we may conclude
that E [αm] < 1 for all m ≥ 1. Hence, the series

E [log (1 + α)] = E

[ ∞∑

m=1

(−1)m−1 αm

m

]

=
∞∑

m=1

(−1)m−1 E [αm]
m

= Pr [user j diggs on s]
∞∑

m=1

(−1)m−1

mE [Xm
s (j)]

converges and the parameter µ = E [log (1 + α)] equals

µ = Pr [user j diggs on s]
∞∑

m=1

(−1)m−1

mE [Xm
s (j)]

.

The latter alternating series with decreasing terms is
bounded by

1
E [Xs (j)]

− 1
2E [X2

s (j)]
<

∞∑

m=1

(−1)m−1

mE [Xm
s (j)]

<
1

E [Xs (j)]
.

Invoking the bounds yields

Pr [user j diggs on s]
E [Xs (j)]

(
1 − E [Xs (j)]

2E [X2
s (j)]

)
< µ

<
Pr [user j diggs on s]

E [Xs (j)]

and

µE [Xs (j)] < Pr [user j diggs on s] <
E [Xs (j)] µ(
1 − E[Xs(j)]

2E[X2
s (j)]

) .

Hence, we find that µE [Xs (j)] < 1. However, experi-
mental results (Fig. 1) indicate that both µ ( 5.2 and
E [Xs (j)] are larger than 1, contradicting µE [Xs (j)] < 1.
The analysis indicates that the law of proportionate effect
only sets in when a certain value of Xs (j), or equiva-
lently j, is reached.

This conclusion is supported by the analysis in Sec-
tion 3.1 (and Fig. 3 below). Using (11), assuming that
E [Xs (Ns + 1 − m)] = Ds0, the digg value of a story s
just before it is promoted to the frontpage, is a known
constant and m is normally distributed as N

(
µ̃, σ̃2

)
, we

obtain a lognormal with mean

µ = log
(

Ds0 +
b

a

)
+ µ̃ log (1 + a)

and a ≤ 1
m . Confining to the case where b = 0 and using

the average µ̃ as a good estimate for m such that a = 1
µ̃ ,

then

µ̃ log (1 + a) ≈ µ̃ log
(

1 +
1
µ̃

)

= µ̃

(
1
µ̃
− 1

2µ̃2
+ O

(
1
µ̃3

))

= 1 − 1
2µ̃

+ O

(
1
µ̃2

)
< 1
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Fig. 2. (Color online) The time t of a story s on which a user has dug on that story. Five typical stories are shown. The
horizontal lines indicate the duration when the story was on the frontpage and the time t seems to be approximately linear with
the the number of digging users while the story is on the frontpage. A story stays, on average, 2.4 h on the first frontpage, on
which most Digg users are active.

and
µ − log (Ds0) ! 1.

Since µ ( 5.2 in Figure 1, we deduce that Ds0 " e4.2,
which agrees with experiments [6].

5 The incremental increase of the digg value
with time

If the law of proportionate effect is correct, then it follows
from (A.2) that

Xn − Xm = Xm




n∏

j=m+1

(1 + αj) − 1



 .

For not too small m, (13) shows that αj ∼ 1
Xj

< 1. Mul-
tiplying out and neglecting terms with products yields

Xn − Xm ≈ Xm

n∑

j=m+1

αj ∼ Xm (n − m)E [α]

and we arrive, with a = E [α] as shown in Section 4, at

Xn − Xm ≈ a (n − m)Xm.

Figure 2 shows the age t of a story as a function of the
number of users that dugg on the story s. In other words,

each data point reflects the time at which a user diggs
on the story s. The remarkable observation is that the
number of digging users on stories, when stories are on the
frontpage (time interval between two horizontal lines in
Fig. 2), seem to be linear in time t. Figure 2 illustrates five
stories with different eventual digg value. Hence, Figure 2
suggests that the user’s increment n−m for stories on the
frontpage is proportional with time t, i.e. the n-th user
and his appearance are related as

n = βtn + δ.

In that case (and assuming that also non-digging users
arrive according to the linear law), we have approximately

Xn − Xm ≈ aXmβ (tn − tm) . (14)

Figure 3 shows four five minute intervals in which the
increment f (x) = Xn−Xm is drawn versus the digg value
x = Xm. When the time interval is short, hardly any linear
correlation as suggested by (14) is observed.

When the time interval is longer, for example 1 h in-
stead of 5 min, Figure 4 starts revealing the law in (14):
the increments are proportional to the digg value at the
beginning of the time interval. Hence, Figure 4 supports
the claim that the digg values of a story are dependent and
obey the law of proportionate effect, when the digg value is
“sufficiently” high. The later condition is mathematically
not precisely determined, because the law of proportionate
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Fig. 3. (Color online) The increments during 5 min of stories on the frontpage versus their diggvalue at the beginning of the
5 min interval. Four 5 min intervals are shown and the linear fit of the increments f (x) versus the digg value x. Notice that the
linear fit y = ax on a log-log scale is a line with slope 1 (or 45 degrees) and at x = 1 equal to log a.

Fig. 4. (Color online) The increments of a story s versus its digg value x during 1 h. The only difference with Figure 3 is the
duration of the interval (1 h versus 5 min).
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Fig. 5. (Color online) The slope, fitted from the increments during one hour versus the digg value, versus the sequential time
intervals of 1 h. The fit of the first hours is also included.

effect is an asymptotic law (see Appendix A), yet observ-
able in reality, i.e. when the digg values are finite. Figure 4
indicates that the tendency towards the asymptotic regime
is rather slow. In view of the rather slow tendency towards
the asymptotic regime, it is surprising that the distribu-
tion Pr [Xd = k] in Figure 1 is close to a lognormal. These
observations question that the underlying process respon-
sible for the nice lognormal on the front page is generated
by the law of proportionate effect, because the time scales
do not match. Rather, they suggest that the user popula-
tion must be Gaussian-like distributed (as needed for finite
digg values in Sect. 3.1) and that collective dependence,
in a proportional fashion according to the hypothesis (12)
constitutes the generating process.

Figure 5 shows the fits aβ (tn − tm) in (14), where
tn − tm = 1 hour such that aβ ∼ ctγn. Additionally ap-
proximating γ ≈ −1 and using n = βtn + δ, we deduce
that

a ∼ c

βtn
≈ c

n

and this result (with c ≈ 0.3 < 1) agrees with a ≤ 1
Ns

de-
rived in Section 3.2, but disagrees with the law of propor-
tionate effect. For longer time intervals (exceeding 17 h),
we observe in Figure 5 deviations in the fit of the slopes.
For these long times, other effects (mainly due to ageing,
the role of the user interface and the principles of human
attention) start dominating.

6 Analysis of Wu and Huberman in [11]

After an initially fast increase, the digg value of a story
flattens with time because the novelty of the story has

passed. Wu and Huberman [11] have taken the age-
ing of a story into account. The effect of ageing means
that the set {αk}k≥1 in (A.1) starts decreasing after
some time threshold kc. Based on fitting experiments,
Wu and Huberman [11] propose αk = rkbk, where
rk = exp

(
−0.4k0.4

)
is the ageing factor and the set

{bk}k≥1 of random variables is i.i.d. and with finite mean
and variance. The Lindeberg conditions in [16] for the
CLT state that σ2

k = Var[αk] should be small compared
to

∑Ns

j=1 σ
2
k and the latter sum should tend to infinity

when Ns → ∞. The decrease in αk is so fast, that
limn→∞

∑n
j=1 σ

2
k is finite, in which case the limiting dis-

tribution is not a Gaussian and, consequently, a lognormal
cannot be explained from the law of proportionate effect!
In that case, the function gk (x) in (4) cannot be a lin-
ear function. Nevertheless, Wu and Huberman [11] claim
convergence to a Gaussian (lognormal) by referring to
Embrechts and Maejima [17], Theorem 2, who show that
Z =

∑∞
j=1 cj (λ) Xj converges to a Gaussian with rate of

the order of O
(
λ−αβ

)
, where α > 0 and where {Xj}j≥0 is

a set of i.i.d random variables with mean 0 and variance 1,
and where cj (λ) = O

(
λ−β

)
with β > 0. Yet, it is not clear

whether this theorem applies to demonstrate convergence
to a Gaussian (lognormal), because rj = exp

(
−0.4j0.4

)

is compared to cj (λ) and the rj ’s depend on j, while
the convergence in Embrechts and Maejima assumes that
cj (λ) = O

(
λ−β

)
, for all j.

While we have shown in Section 5 that the law of
proportionate effect cannot explain the experiments, the
arguments of Wu and Huberman at least lack rigor, as
sketched above. Apart from mathematical rigor, since age-
ing does not play a dominant role on the first frontpage,
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their approach is essentially equal to the law of propor-
tionate effect, which cannot explain the nice lognormal on
the first frontpage.

7 Conclusion

We have investigated two different analyses that lead to a
lognormal distribution, observed (see Fig. 1) for the digg
value of a story, while on the first few frontpages. Usually,
the lognormal distribution is the characteristic fingerprint
of the law of proportionate effect. However, we found that
the law of proportionate effect only seems to hold when
a certain digg value of the story is reached, and not from
the beginning of the digg counting. Moreover, the propor-
tionality factor a is not constant as required by the law
of proportionate effect, but dependent on the number of
users as shown in our analysis of Section 3 and experimen-
tially verified in Section 5. Finally, the governing difference
equation (A.1) of the law of proportionate effect is not ex-
perimentally observed at times the story is on the first
frontpage. Hence, the law of proportionate effect cannot
explain the fast convergence towards the lognormal distri-
bution of digg values on the first frontpage.

The second analysis just sums dependent Bernoulli
random variables. We show that the dependence among
users is reflected by (12),

Pr [user j diggs on s|Xs (j) = m] = am.

This conditional probability (12) is a manifestation of pro-
portionate effect and provides another way to verify pro-
portional behavior. The conditional probability (12) illus-
trates how individual human behavior is affected by that
of others, given that the individual can observe how the
others react, e.g. via the digg value Xs (j) = m. Also,
the above conditional probability shows that a ≤ 1

m for
each user m. At last, our analysis of Section 3 demon-
strates that a lognormal distribution of the digg value Ds

is obtained when the population Ns of potential diggers is
normally distributed. Gaussian user populations are ap-
proximately measured2.

At last, our analysis underlines the importance of the
user population specifics, which are, by its asymptotic na-
ture (Ns → ∞), not relevant in the law of proportionate
effect.

We are grateful to Siyu Tang for her useful comments. Nobert
Blenn is funded by TRANS (www.trans-research.nl).

Appendix A: The law of proportionate effect

As mentioned in [7] and in [18], Kapteyn considered in
1903 the equation

Xj − Xj−1 = αjf (Xj−1)
2 See e.g. http://www.alexa.com, Alexa the Web Information

Company, Alexa Internet, Inc., 2010.

where the set {αj}1≤j≤n of random variables is mutu-
ally independent and identically distributed, equal to the
distribution of the random variable α with mean E [α]
and variance Var[α]. Moreover, the set {αj}1≤j≤n of ran-
dom variables is also independent of the random vari-
ables X1, X2, . . . , Xn. The special case where f (x) = x
reduces to

Xj = (1 + αj)Xj−1 (A.1)

and the process that determines the sequence X1,
X2, . . . , Xn, given X0, is said to obey the law of
proportionate effect, which was first introduced by
Gibrat [19].

After iterating the equation (A.1), we obtain

Xn = X0

n∏

j=1

(1 + αj) . (A.2)

By the Central Limit Theorem [14] and assuming that
any αj > −1, the sum Sn =

∑n
j=1 log (1 + αj) of the

i.i.d. random variables {log (1 + αj)}j≥1, each with distri-
bution identical to that of log (1 + α) with (finite) mean
E [log (1 + α)] = µ and variance σ2 = Var[log (1 + α)],
converges to

Sn − nµ

σ
√

n
d→ N (0, 1)

which implies that Sn = log(
∏n

j=1 (1 + αj))
d→

N
(
nµ, nσ2

)
. Equivalently, eSn =

∏n
j=1 (1 + αj) tends, for

large n, to a lognormal distribution with parameters nµ
and nσ2. Hence, we have shown that, for large n, Xn is
asymptotically lognormally distributed with parameters
nµ and nσ2, that are linear in n.

There is a continuous variant of the law of proportion-
ate effect. In biology, the growth in the number n (t) of
items of a same species over time t can be modelled by
the following first order differential equation

dn (t)
dt

= r (t)n (t) .

which relates the growth (change in the population) as
proportional to the population n (t) and the proportion-
ality factor r (t) is time dependent. The general solution
is, for t > a,

log n (t) = log n (a) +
∫ t

a
r (u) du.

When we additionally assume that r (t) changes at some
times a = t0 < t1 < t2 < . . . < tm = t, where tj are
random time moments, then

∫ t

a
r (u) du =

m∑

j=1

∫ tj

tj−1

r (u) du =
m∑

j=1

Rj

where

Rj =
∫ tj

tj−1

r (u) du = r (ξj) (tj − tj−1) and ξj ∈ [tj−1, tj ]
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ρ =
{Pr [user k diggs on s|user l diggs on s] − Pr [user k diggs on s]}Pr [user l diggs on s]√

Pr [user k diggs on s] (1 − Pr [user k diggs on s]) Pr [user l diggs on s] (1 − Pr [user l diggs on s])
.

is a random variable with mean µj = E [r (ξj) (tj − tj−1)].
Assuming that the Central Limit Theorem can be ap-
plied, the set of random variables {Rj}1≤j≤m tends to
a Gaussian N

(
mµ, mσ2

)
, and the lognormal distribution

of n (t) for large t then follows in the usual way. Again,
the mean is linear in the time t because t−a

m = E [∆t], the
average time-spacing.

Appendix B: The variance of Xs (j)

In order to compute the variance Var[Xs (j)] =
E

[
X2

s (j)
]
− (E [Xs (j)])2, we first rewrite X2

s (j) using
the definition (3) as

X2
s (j) =

j−1∑

k=1

j−1∑

l=1

1{user k diggs on s}1{user l diggs on s}

=
j−1∑

k=1

1{user k diggs on s}

+ 2
j−1∑

k=1

k−1∑

l=1

1{user k diggs on s}1{user l diggs on s}

and

X2
s (j) = Xs (j)

+ 2
j−1∑

k=1

k−1∑

l=1

1{(user k diggs on s)∩(user l diggs on s)}.

Taking the expectation gives

E
[
X2

s (j)
]

= E [Xs (j)]

+2
j−1∑

k=1

k−1∑

l=1

Pr [(user k diggs on s) ∩ (user l diggs on s)]

where user l proceeds user k. Invoking the conditional
probability, finally results in

E
[
X2

s (j)
]

= E [Xs (j)]

+ 2
j−1∑

k=1

k−1∑

l=1

Pr [user k diggs on s| user l diggs on s]

× Pr [user l diggs on s] . (B.1)

In general, we can upper bound E
[
X2

s (j)
]

as

E
[
X2

s (j)
]
≤ E [Xs (j)] + 2

j−1∑

k=1

k−1∑

l=1

Pr [user l diggs on s]

= E [Xs (j)] + 2
j−1∑

k=1

E [Xs (k)] ≤ (j − 1)2

from which we obtain an upper bound of the variance

Var [Xs (j)] ≤ E [Xs (j)]+2
j−1∑

k=1

E [Xs (k)]− (E [Xs (j)])2 .

If users were to digg independently so that

Pr [user k diggs on s| user l diggs on s] =

Pr [user k diggs on s]

then the conditional probability in (B.1) would reduce to

E
[
X2

s (j)
]

= E [Xs (j)]

+ 2
j−1∑

k=1

Pr [user k diggs on s] E [Xs (k)] .

In Digg, users are positively correlated3 such that

Pr [user k diggs on s| user l diggs on s] ≥

Pr [user k diggs on s]

which leads to a higher second moment E
[
X2

s (j)
]

in
(B.1) than for independent users. However, the mean
E [Xs (j)] ≤ j−1 in Digg is also larger. Since Var[Xs (j)] ≤
(j − 1)2 − (E [Xs (j)])2, the mean decreases the variance
quadratically, which may lead to a relatively small vari-
ance. In other words, the stronger the proportionate effect
(measured via the proportionality factor a in (12)), the
smaller the variance Var[Xs (j)] and the better the mean
E [Xs (j)] approximates the random variable Xs (j).
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