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Abstract: For this study, we investigated efficient strategies for the recovery of individual links in
power grids governed by the direct current (DC) power flow model, under random link failures. Our
primary objective was to explore the efficacy of recovering failed links based solely on topological
network metrics. In total, we considered 13 recovery strategies, which encompassed 2 strategies
based on link centrality values (link betweenness and link flow betweenness), 8 strategies based on
the products of node centrality values at link endpoints (degree, eigenvector, weighted eigenvector,
closeness, electrical closeness, weighted electrical closeness, zeta vector, and weighted zeta vector),
and 2 heuristic strategies (greedy recovery and two-step greedy recovery), in addition to the random
recovery strategy. To evaluate the performance of these proposed strategies, we conducted simula-
tions on three distinct power systems: the IEEE 30, IEEE 39, and IEEE 118 systems. Our findings
revealed several key insights: Firstly, there were notable variations in the performance of the recovery
strategies based on topological network metrics across different power systems. Secondly, all such
strategies exhibited inferior performance when compared to the heuristic recovery strategies. Thirdly,
the two-step greedy recovery strategy consistently outperformed the others, with the greedy recovery
strategy ranking second. Based on our results, we conclude that relying solely on a single metric
for the development of a recovery strategy is insufficient when restoring power grids following
link failures. By comparison, recovery strategies employing greedy algorithms prove to be more
effective choices.

Keywords: power grids; network resilience; network recoverability

1. Introduction

The power grid system is vulnerable to disruptions caused by manufacturing defects,
natural disasters, and human actions, such as terrorist attacks [1–3]. Even minor initial dis-
turbances can lead to severe consequences, including economic and social instability [4–6].
To reduce the costs associated with the disruptions, one research direction is to enhance the
robustness of the power grid to withstand perturbations. The other direction is to propose
efficient restoration strategies.

The power grid can be represented as a complex network, where nodes represent
generators and loads, and where links represent transmission lines and transformers. Ana-
lyzing the power grid’s robustness from a network perspective has attracted significant
attention. Network robustness is typically evaluated by assessing changes in network
performance due to fluctuations such as node removals or link removals [7]. Identifying
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critical nodes and links within the power grid can inform strategies for enhancing robust-
ness by protecting the vital components [8–10]. Furthermore, robust failure responses, like
partitioning grids into islands, can mitigate the effects of components disruptions [11,12]

Numerous studies have focused on strategies for power grid recovery [13], from black
start [14]—like an optimal generator start-up strategy by solving a mixed integer linear
programming (MILP) problem [15]—to a method that partitions the network to restore
parts of the power grid separately and then interconnects them afterward [16]. Additionally,
research has been conducted on recovering power grids after partial component failures.
Machine learning methods, specifically reinforcement learning, have been developed for
restoring networks after node failures [17] and link failures [18]. The machine learning
methods demonstrated better performance for node recovery strategies based on node
degrees or node loads and link recovery strategies based on link betweenness. Li et al. [19]
developed the Q-learning method, to find an optimal method to recover power grids with
link failures. From a network perspective, Wu et al. [20] developed an effective tool for the
sequential recovery graph, to recover nodes in power grids, which performed better than
recovery strategies based on node degree and node loads. Forming microgrids can improve
the resilience of the system after blackouts. Igder et al. [21] applied deep reinforcement
learning, to establish microgrids from black start after blackouts, so as to restore service
in distribution networks. Yeh et al. [22] developed an enhanced genetic algorithm, to
minimize costs while optimizing dispatch in stand-alone microgrid systems.

Despite extensive research on power grid recovery, there is still a lack of investigation
into the effectiveness of recovery strategies that rely solely on different network metrics
following transmission line failures. From this study, our main contributions are as follows:

1. We examined recovery strategies based on various network metrics, including degree,
betweenness, flow betweenness, eigenvector centrality, weighted eigenvector central-
ity, closeness, electrical closeness, electrical weighted closeness, zeta vector centrality,
and weighted zeta vector centrality. Additionally, we compared these strategies to the
random recovery, greedy, and two-step greedy strategies.

2. To assess the effectiveness of recovery methods, we utilized the general recoverability
framework proposed by He et al. [23], to measure power grid recoverability in the
context of random link removals, where recoverability signifies a network’s ability to
return to a predefined desired performance level.

3. Our study did not consider cascading failures after the recovery or removal of a single
transmission line. Instead, we used the direct current (DC) power flow model to
maximize power flow satisfaction for loads after a link removal or addition.

The paper is structured as follows: Section 2 provides an overview of network robustness,
laying the foundation for the subsequent analyses. Section 3 details the modeling of power
grids, including how to transfer a power grid into a network and optimize the DC power flow
model. Section 4 presents the attack and recovery processes, with a focus on the strategies
employed. The results and conclusion are presented in Sections 5 and 6, respectively.

2. Preliminary for Network Robustness
2.1. R-Value and Challenges

In a framework for computing network robustness [7], network robustness is inter-
preted as a measure of the network’s response to perturbations, such as failures or attacks.
The robustness value R was proposed to measure the performance of a network at a certain
time, which is related to the function of the network, i.e., the type of service the network is
supposed to support, such as road transport, neuron transport or the spreading of news on
a social network. The R-value is normalized in the range [0, 1]. Here, R = 0 corresponds
to a network completely lacking robustness, while R = 1 corresponds to an optimally
robust network.

We assume that perturbations are imposed on a network through a number of elemen-
tary changes [7,23,24]. We denote the total number of the changes by K. An elementary
change in a network is defined as an event that changes the topology of a network, such as
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a link addition, a link removal or a change in the link weight. An elementary change in the
network may result in a change of the R-value. For this paper, we considered elementary
changes as the random removal of a link during the attack phase and the recovery of a
link previously removed in the attack phase. Additionally, we denoted the number of
challenges in the attack process as Ka and in the recovery process as Kr.

2.2. Recoverability Indicator of a Recovery Strategy

The performance of a power grid at any time can be captured by a specific R-value,
which possibly changes when an elementary change occurs. The R-value at challenge k
is denoted as R[k]. The areas under the R-value line during the processes can reflect the
effectiveness of the attack strategy or the recovery strategy [25], which is shown in Figure 1.
We define the attack strength Sa and the recovery strength Sr, which satisfy the following
relations:

Sa =
Ka

∑
k=0

R[k] (1)

and

Sr =
Ka+Kr

∑
k=Ka

R[k], (2)

where Ka is the total number of challenges in the attack process and Kr is the total number
of challenges in the recovery process. Furthermore, we define the recoverability energy
ratio η, as follows:

η =
Sr

Sa
. (3)

The recoverability energy ratio η presents the efficiency of the recovery strategy, with
respect to the attack strategy. The larger the recoverability energy ratio η is, the more
efficient the recovery strategy is.
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Figure 1. Illustration of the attack process and the recovery process in a power grid: one realization
with a threshold equal to 0.8.

3. Modeling Power Grids
3.1. Network Model of Power Grids

A power grid can be represented by a graph G, where the set of N nodes is denoted
as N and the set of L links is denoted as L. For an unweighted and undirected graph,
the symmetric adjacency matrix A has elements aij = 1 if the nodes i and j are connected
by a link lij ∈ L, otherwise, aij = 0. Alternatively, we can also model a power grid as a
weighted graph. The link weight is related to the impedance of transmission line lij, which
will be denoted as yij. The weighted symmetric adjacency matrix Ã has elements ãij =

1
yij

if a link lij ∈ L exists, otherwise, ãij = 0 [26].
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For this study, we chose three power grids [27]: IEEE 30, IEEE 39, and IEEE 118. We
present the number of nodes N, the number of links L, and the average degree dav of the
unweighted power grids in Table 1.

Table 1. Properties of three power grids.

Name N L dav

IEEE 30 30 41 2.73

IEEE 39 39 46 2.36

IEEE 118 118 179 3.03

3.2. Performance of Power Grids

As proposed by Cetinay et al. [28], we employ an R-value in a power grid: the ratio
of the total satisfied demand to the total initial demand, called the yields. At challenge k,
we denote the amount of satisfied demand at bus i by Li[k] and the amount of supply at
bus i by Gi[k]. Therefore, the injected power Pi at node i satisfies Pi[k] = Gi[k]− Li[k]. As
the total demand matches the supply in a power grid, it holds that ∑N

i=1 Li[k] = ∑N
i=1 Gi[k].

At challenge k = 0, the power grid has not been attacked and the initial demand of bus i is
Li[0]. Then, the yields—an R-value at a challenge k—can be calculated by

R[k] = ∑N
i=1 Li[k]

∑N
i=1 Li[0]

. (4)

3.3. Optimizing the DC Power Flow Model

Compared to cascading failure models in power grids, we propose a power flow
redistribution mechanism to achieve a steady state by optimizing the total satisfied demand
value. The mechanism adjusts the supply and demand of buses, using a linear program-
ming method to ensure that line flows are below the line capacity. Specifically, the objective
of the proposed model is to optimize the total satisfied demand while satisfying several
constraints, including: (1) the power grid satisfies Kirchhoff’s Law and Ohm’s Law; (2) the
total supply matches the total demand at each challenge; (3) the supply and demand of a
bus are not beyond its initial values; (4) the absolute value of a line flow is not beyond the
line capacity. The DC power flow model [28] at challenge k obeys the optimization situation:

minimize −
N
∑

i=1
Gi[k]

subject to G[k]− L[k] = Q̃[k]Θ[k],

F[k] = B̃T [k]Θ[k],

N
∑
i

Gi[k]−
N
∑
i

Li[k] = 0,

0 ≤ G[k] ≤ G[0],

0 ≤ L[k] ≤ L[0],

−C ≤ F[k] ≤ C.

(5)

The weighted Laplacian matrix is Q̃[k] = ∆̃[k]− Ã[k], where ∆̃[k] is the weighted degree
matrix and Ã[k] is the weighted adjacency matrix; Θ is the N × 1 vector with elements
θi, which presents the phase angle of bus i; B̃[k] is the N × L weighted incidence matrix
with elements

b̃il =


ãij if link el = i→ j,

−ãij if link el = i← j,

0 otherwise,

(6)
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and Q̃[k] = B̃[k]B̃[k]T .
The supply and demand vectors G[k] and L[k] include the supply Gi[k] and demand

Li[k] of each bus i, respectively. The initial supply and demand values of all buses are stored
in the vectors G[0] and L[0] at challenge k = 0. The active power flow vector F[k] has L
elements, each representing the power flow fij[k] of a transmission line lij connecting buses
i and j. The capacity vector C is a vector with L elements and each element cij representing
the capacity of each transmission line lij.

For the power grid, the line capacity cij is defined as α fij[0], where flow vector F[0]
is the active power flow of each line at the initial stage (at challenge k = 0) and α is the
tolerance level [29].

4. The Attack and Recovery Process
4.1. The Attack Process

In the attack process, we select links uniformly at random, to be removed iteratively
until the R value of the power grid falls below a predetermined threshold. The flowchart
of the attack process is shown in Figure 2a:

Start
Randomly 
remove a 

link

Run the 
optimal 

power flow 
model

Calculate R 
value

R value < 
threshold ?

No

Yes End

(a)

Start
Recover a link 
based on the 

recovery strategy

Run the 
optimal 

power flow 
model

Calculate R 
value

Recover all 
links?

No

Yes End

(b)

Figure 2. The flowcharts of the attack process and the recovery process: (a) the attack process; (b) the
recovery process.

4.2. The Recovery Process

In the recovery process, links previously removed from the power grid are gradually
added back individually, with the order of additions determined by a chosen recovery
strategy. The flowchart of the recovery process is presented in Figure 2b. We explore
the efficiency of 13 different recovery strategies introduced in the following section. It is
important to note that strategies based on topological network metrics are calculated based
on the original network configuration before the attack process. The flow chart of recovery
strategies based on network metrics is presented in Figure 3.

Start
Calculate the metric 

values of all links in the 
initial graph

Sort the metric values of 
the removed links in 

descending order

Choose the link with 
metric value at the first 

rank to be recovered 
End

Figure 3. The flow chart of recovery strategies based on topological network metrics.

4.2.1. Random Recovery Strategy (Rand)

A link is randomly selected, to add to the power grid one by one from the set of links
that were removed during the attack process.

4.2.2. Greedy and Two-Step Greedy Recovery Strategies (Greedy and TwoGreedy)

The greedy recovery strategy is to optimize the performance of the power grid at each
stage of the recovery process. The strategy selects the link that yields the largest R-value
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of the power grid in each step and adds the link to the grid. The greedy recovery strategy
flow chart is depicted in Figure 4a.

In contrast to the greedy recovery strategy, which focuses on identifying a single
link that significantly improves the R-value in one step, an improved approach involves
selecting n links that collectively maximize the summation of the R-value in n steps, which
can be achieved by exhaustively enumerating all permutations of n links from the set of
potential links to be added. By considering multiple steps, more information is incorporated,
resulting in potentially better solutions for the n-step greedy recovery strategy. However,
if the value of n becomes excessively large, the computational cost becomes prohibitive.
Therefore, in this study, we chose to investigate the performance of the two-step greedy
recovery strategy. Specifically, the two-step greedy strategy aims to determine two links to
be added sequentially, optimizing the sum of the R-values achieved in the two steps. We
present the flowchart of the two-step greedy strategy in Figure 4b.

Yes 

Start
Recover one link 

from the 
removed link set

Run the 
optimal 

power flow 
model

Calculate R 
value 

Iterate all 
removed 

links ?

No

End Sort R values  in 
descending order

Choose the link with R value at 
the first rank to be recovered

(a)

Yes 

Start

Recover the first link 
of a two-link 

permutation from 
the removed link set

Run the 
optimal 

power flow 
model

Calculate R 
value 

denoted as 
R1

Iterate all two-link 
permutations?

No

End
Sort R1+R2 values  

in descending 
order

Choose the two links with 
R1+R2 value at the first rank to 

be recovered one by one

Recover the 
other link from 

the two-link 
permutation

Run the 
optimal 

power flow 
model

Calculate 
R1+R2

Calculate R 
value 

denoted as 
R2 

(b)

Figure 4. The flowcharts of the greedy and two-step greedy strategies: (a) greedy recovery strategy;
(b) two-step greedy recovery strategy.

4.2.3. Degree Recovery Strategy (Degree)

The degree di is the number of neighboring nodes of node i, which can be used to
measure the node’s importance. By using the adjacency matrix A, the calculation of the
degree is di = ∑N

j=1 aij. To evaluate the significance of a link, we can use the product dij of
the degrees of the nodes connected by the link lij [30], denoted as dij = didj.

The degree recovery strategy involves a sequence of link additions, based on the
descending order of the product of the degrees of the end points of each removed link.
Consequently, the first link to be added possesses the largest product of the degrees of its
end points in the removed link set.

4.2.4. Betweenness and Flow Betweenness Recovery Strategies (Bet and FlowBet)

The betweenness of a link is widely used to measure the importance of a link lij in the
network. It is defined as the ratio of the shortest paths through the link lij to the number of
all shortest paths in the network [31]. If we denote the number of shortest paths from node
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s to node t as Ps→t and the number of the shortest paths from node s to node t through the
link lij as Ps→t(lij), the betweenness bij of link lij can be calculated by

bij = ∑
s,t∈N

Ps→t(lij)
Ps→t

. (7)

The shortest paths are the most efficient ways for a flow in a network to travel from one
node to another node if the traveling cost of every link is the same and there are no other
limitations in the network, like link capacity. However, in a power grid, the distribution of
the power flow is determined by the Kirchhoff and Ohm laws, not by the shortest paths.
Therefore, Newman [32] proposed flow betweenness to measure the link importance in a
power grid. The flow betweenness b̄ij of link lij is defined as the sum of the power flow
through link lij for any node pair s and t if one unit of power is injected to node s and
one unit of power is extracted from node t. The flow betweenness b̄ij of link lij can be
calculated by

b̄ij = ∑
s,t∈N

| fs→t(lij)|, (8)

where | fs→t(lij)| is the magnitude of flow through the link lij according to DC flow equa-
tions and Ohm’s law when we inject one unit of active power to node s and extract one
unit of active power from node t.

The sequence of added links in the betweenness or flow betweenness recovery strate-
gies assumes a descending order of betweenness or flow betweenness of links.

4.2.5. Eigenvector and Weighted Eigenvector Recovery Strategies (Eigen and WeiEigen)

The eigenvector centrality measures the importance of a node by not only taking
into account the number of its connected nodes but also considering the importance of
its connected nodes [30,33]. The eigenvector centrality xi of node i is the i-th element
of the eigenvector with the largest eigenvalue of the adjacency matrix A. Compared to
the eigenvector centrality, the weighted eigenvector centrality x̄i of node i is the i-th
element of the eigenvector with the largest eigenvalue of the weighted adjacency matrix Ã.
The products eij and ēij of the eigenvector centrality and the weighted eigenvector centrality
of link lij’s end points are calculated by eij = xixj, ēij = x̄i x̄j.

The sequences of links are added in the descending order of the products eij or ēij of
the links in the eigenvector or the weighted eigenvector recovery strategies.

4.2.6. Closeness, Electrical Closeness, and Electrical Weighted Closeness Recovery
Strategies (Close, EleClose, and EleWeiClose)

The closeness centrality of a node relates to the node’s distance from all other nodes [34].
If the distance of the shortest path between node i and node j is denoted byHij, then the
closeness c̄i of node i is defined as

c̄i =
1

∑N
j=1Hij

. (9)

We calculate the product c̄ij of the closeness of link lij’s end points, c̄ij = c̄i c̄j, which is
used in the closeness recovery strategy, to measure the importance of a link.

As the flow in a power grid follows the Kirchhoff law—not only the shortest path—
using so-called effective resistance is a more appropriate way to quantify the distance
between a pair of nodes in a power grid [35]. The effective resistance between node i and
node j is denoted as Ωij, which can be calculated by using the pseudo-inverse matrix Q†

of the Laplacian matrix Q of the adjacency matrix A: Ωij = (Q†)ii + (Q†)jj − 2(Q†)ij [36].
By analogy with closeness, the electrical closeness c̃i of node i is given by

c̃i =
1

∑N
j=1 Ωij

. (10)
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We use the product c̃ij of the electrical closeness values of the end points of link lij in
the electrical closeness recovery strategy, where c̃ij = c̃i c̃j.

Compared to the electrical closeness of a link, the difference in calculating the electrical
weighted closeness of a link is that we use the Laplacian matrix Q̃ of the weighted adjacency
matrix Ã. Analogously, we firstly obtain the effective resistance Ω̃ using Ω̃ij = (Q̃†)ii +

(Q̃†)jj − 2(Q̃†)ij, where Q̃† is the pseudo-inverse matrix of the Laplacian matrix Q̃. Then,
the electrical weighted closeness wi of node i is calculated by

wi =
1

∑N
j=1 Ω̃ij

. (11)

The product wij of the electrical weighted closeness values of the end points of link lij,
wij = wiwj, is the measurement of a link in the electrical weighted closeness strategy.

In the closeness, electrical closeness, and electrical weighted closeness recovery strate-
gies, we prioritize the recovery of links based on the descending order of the products c̄ij,
c̃ij or wij.

4.2.7. Zeta Vector and Weighted Zeta Recovery Strategies (Zeta and WeiZeta)

The zeta vector ζ, inspired by the electrical flow in a resistant network, serves as a
representation of nodal spread capacity. The minimization of the zeta vector leads to the
identification of the best spreader [26]. Specifically, the zeta vector consists of the diagonal
elements of the pseudo-inverse matrix Q†, derived from the Laplacian matrix Q. Thus,
ζ = ((Q†)11, (Q†)22, . . . , (Q†)ii), where (Q†)ii represents the zeta vector value ζi associated
with node i.

When employing the weighted adjacency matrix Ã, the weighted zeta vector ζ̃ is
the diagonal elements of the pseudo-inverse matrix of the weighted Laplacian matrix
Q̃, denoted as ζ̃ = ((Q̃†)11, (Q̃†)22, . . . , (Q̃†)ii). Here, (Q̃†)ii represents the weighted zeta
vector value ζ̃i associated with node i.

To assess the significance of a link based on the zeta vector values of its end points, we
introduce the zeta vector metric ζij = ζiζ j and the weighted zeta vector metric ζ̃ij = ζ̃i ζ̃ j
for a given link lij. The metrics are calculated by multiplying the zeta vector values or the
weighted zeta vector values of the link end points.

To restore the removed links in the zeta vector and weighted zeta vector recovery
strategies, we adopt a ranking scheme based on the descending order of the links’ zeta
vector metric values or weighted zeta vector metric values.

5. Results

To investigate the effectiveness of recovery strategies in power grids, we conducted
simulations on three different power grids: the IEEE 30 bus system, the IEEE 39 bus system,
and the IEEE 118 bus system. In each realization, we randomly removed links until the
R-value of the system fell below a specified threshold. We then used various strategies
to restore the system until all the removed links were added. Finally, we computed
the recoverability energy ratio of each recovery strategy, given the same random removal
process. To explore the impact of thresholds and tolerance levels, we selected two thresholds
(0.8 and 0.5) and four tolerance levels (1, 2, 2.5, and 3) and performed 1000 realizations
for a power grid with each setting. In Figure 5, we demonstrate how the R-value varied
in a realization with different recovery strategies for the IEEE 39 bus system and the
abbreviations of the strategies used in the following figures and tables in Table 2.
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Figure 5. An example of R values during one random attack realization and of different recovery
processes, with a threshold equal to 0.5 and a tolerance level equal to 2, for the IEEE 39 bus system.
The results of the random recovery strategy are the average values of 100 realizations.

We present the recoverability energy ratios of various recovery strategies concerning
two thresholds and a tolerance level equal to 1 for the considered power grids, as shown
in Tables 3–5. The tables illustrate that the greedy two-step method exhibited the highest
mean value of recoverability energy ratio and the lowest standard deviation value for all
three power grids in both threshold cases. Additionally, the greedy method consistently
maintained the second-best performance, in terms of the recoverability energy ratio mean
value for all three power grids, albeit its performance was slightly inferior to that of the
greedy two-step method. Notably, the difference in performance between the greedy
two-step method and the greedy method was more pronounced when the threshold was
equal to 0.5, compared to the case when the threshold was 0.8. This observation suggests
that the greedy two-step method outperforms the greedy method when the removal link
set is relatively large. Another noteworthy finding concerned the results of the random
recovery method. The mean recoverability energy ratios of all the power grids with different
thresholds of the random recovery method were less than 1, indicating that the cost of
recovery outweighed the cost of attacks.

Table 2. The abbreviations of the strategies used in figures and tables in the paper.

Abbreviation Full Name

TwoGreedy Two-step greedy recovery strategy

Greedy Greedy recovery strategy

Bet Betweenness recovery strategy

FlowBet Flow betweenness recovery strategy

EleWeiClose Electrical weighted closeness recovery strategy

WeiEigen Weighted eigenvector recovery strategy

Close Closeness recovery strategy

EleClose Electrical closeness recovery strategy

Rand Random recovery strategy

Degree Degree recovery strategy

Zeta Zeta vector recovery strategy

WeiZeta Weighted zeta vector recovery strategy

Degree Degree recovery strategy

Eigen Eigenvector recovery strategy
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Table 3. The mean value and standard deviation values of the different recovery strategies for the
IEEE 30 bus system, with the tolerance level α equal to 1, while we set the threshold values as 0.8
and 0.5.

Rank
Threshold = 0.8 Threshold = 0.5

Strategy Mean Std Strategy Mean Std

1 TwoGreedy 1.0292 0.0241 TwoGreedy 1.1710 0.0656

2 Greedy 1.0285 0.0240 Greedy 1.1595 0.0654

3 Eigen 0.9877 0.0400 Zeta 0.9854 0.0679

4 EleWeiClose 0.9852 0.0420 Eigen 0.9837 0.0714

5 Close 0.9823 0.0427 WeiZeta 0.9796 0.0676

6 Rand 0.9808 0.0265 Rand 0.9733 0.0526

7 EleClose 0.9807 0.0429 EleWeiClose 0.9687 0.0762

8 Degree 0.9804 0.0423 Close 0.9629 0.0722

9 Zeta 0.9803 0.0358 EleClose 0.9576 0.0713

10 WeiEigen 0.9772 0.0440 Degree 0.9571 0.0727

11 WeiZeta 0.9772 0.0354 WeiEigen 0.9509 0.0761

12 Bet 0.9765 0.0404 Bet 0.9442 0.0667

13 FlowBet 0.9709 0.0447 FlowBet 0.9126 0.0693

Table 4. The mean value and standard deviation values of the different recovery strategies’ recover-
ability energy ratios for the IEEE 39 bus system, with the tolerance level α equal to 1, while we set the
threshold values as 0.8 and 0.5.

Rank
Threshold = 0.8 Threshold = 0.5

Strategy Mean Std Strategy Mean Std

1 TwoGreedy 1.0299 0.0221 TwoGreedy 1.1665 0.0605

2 Greedy 1.0292 0.0219 Greedy 1.1543 0.0585

3 Zeta 1.0065 0.0240 Zeta 1.0709 0.0571

4 WeiZeta 1.0000 0.0260 WeiZeta 1.0582 0.0594

5 Rand 0.9858 0.0217 Rand 0.9741 0.0474

6 WeiEigen 0.9800 0.0347 WeiEigen 0.9430 0.0618

7 Bet 0.9794 0.0333 Bet 0.9384 0.0673

8 EleWeiClose 0.9730 0.0347 EleWeiClose 0.8945 0.0625

9 Eigen 0.9703 0.0351 Eigen 0.8871 0.0653

10 Degree 0.9701 0.0363 Degree 0.8848 0.0706

11 FlowBet 0.9697 0.0331 FlowBet 0.8827 0.0618

12 Close 0.9675 0.0358 Close 0.8809 0.0629

13 EleClose 0.9646 0.0348 EleClose 0.8639 0.0621



Entropy 2023, 25, 1455 11 of 18

Table 5. The mean value and standard deviation values of the different recovery strategies’ recover-
ability energy ratios for the IEEE 118 bus system, with the tolerance level α equal to 1, while we set
the threshold values as 0.8 and 0.5.

Rank
Threshold = 0.8 Threshold = 0.5

Strategy Mean Std Strategy Mean Std

1 TwoGreedy 1.0458 0.0270 TwoGreedy 1.2611 0.0715

2 Greedy 1.0441 0.0266 Greedy 1.2294 0.0717

3 Bet 0.9959 0.0409 Bet 1.0855 0.0683

4 FlowBet 0.9824 0.0685 WeiEigen 1.0225 0.0782

5 EleWeiClose 0.9759 0.0639 EleWeiClose 1.0206 0.0732

6 WeiEigen 0.9726 0.0648 Close 1.0051 0.0734

7 Zeta 0.9705 0.0388 FlowBet 0.9989 0.0988

8 Close 0.9703 0.0677 Zeta 0.9961 0.0735

9 Rand 0.9666 0.0400 Eigen 0.9909 0.0701

10 EleClose 0.9649 0.0799 Rand 0.9819 0.0545

11 WeiZeta 0.9611 0.0435 Degree 0.9646 0.0846

12 Degree 0.9599 0.0774 WeiZeta 0.9624 0.0715

13 Eigen 0.9523 0.0731 EleClose 0.9589 0.0855

For the recovery strategies utilizing link metrics or the product of node centralities
of link end points, we observed noteworthy variations in performance across different
power grids. Specifically, the recovery method based on link betweenness exhibited diverse
rankings of mean recoverability energy ratio when applied to the three power grids under
consideration. In the IEEE 30 bus system, the mean recoverability energy ratio rank of the
betweenness recovery method fell within the bottom two. Conversely, within the IEEE
39 bus system, the betweenness recovery method achieved an intermediate rank among
all the methods based on the mean recoverability energy ratio. Remarkably, the recovery
method based on betweenness centrality yielded the highest mean recoverability energy
ratio among all the recovery strategies based on ink metrics or the product of the node
centrality values of link end points in the IEEE 118 bus system.

In addition to the betweenness recovery strategy, the zeta vector recovery strategy
exhibited a similar performance pattern. The strategy demonstrated effectiveness in the
IEEE 30 bus system, with a threshold value of 0.5, as well as in the IEEE 39 bus system.
However, the efficiency diminished when applied to the IEEE 118 bus system. The results
indicate that the efficacy of recovery methods based on link metrics or the product of node
centralities of link end points is contingent upon the underlying network topology and
dynamics of the networks.

The observation can be attributed to the distinct allocation of generators in the IEEE 39
bus system, as illustrated in Figure 6. Specifically, the majority of the generators in the IEEE
39 bus system had only one neighbor, and the proportion of links attached to generators
was 22.74%, which was significantly higher than the corresponding proportions in the
other two systems. By contrast, the IEEE 30 bus system had only one generator with a
neighbor, and the proportion of links connected to generators was 14.63%, while the IEEE
118 bus system had three generators with a neighbor, and the proportion of links connected
to generators was 10.62%. Therefore, the location of generators in the IEEE 39 system
made the links connected to generators more susceptible to attacks and less likely to be
recovered than the other two systems. Based on calculating the average values of the link
metrics used for the different recovery strategies of two kinds of links—links connecting
generators and loads, and links connecting loads and loads in Appendix A Table A2—we
found that in the IEEE 39 system, the link metrics of the links connecting generators and
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loads were larger than the link metrics of the links connecting loads and loads in the zeta
recovery strategy and weighted zeta recovery strategy, indicating that recovering the links
connecting generators and loads matters in the recovery process.

(a) (b) (c)

Figure 6. Three power grids. The red nodes represent loads and the blue nodes represent generators:
(a) IEEE 30; (b) IEEE 39; (c) IEEE 118.

Compared to the IEEE 30 bus system and the IEEE 39 bus system, the recovery methods
based on link metrics and the product of node centrality values of link end points in the
IEEE 118 system demonstrated substantially better performance. Specifically, most recovery
strategies based on link metrics and the product of node centrality values of link end points
exhibited higher average recoverability energy ratios than the random recovery strategy
for both thresholds.

Link capacity is a crucial factor in causing blackouts in power grids. Although our
method did not employ the cascading failure model, we investigated the impact of link
capacity on recovery strategies. To this end, we conducted simulations with different
tolerance levels (α = 1, α = 2, α = 2.5, α = 3), and we analyzed the results, which are
presented in Figure 7 for the IEEE 30 bus system, the IEEE 39 bus system, and the IEEE 118
bus system. The simulation results show that the mean values of the recoverability energy
ratio with respect to different tolerance levels did not change monotonically for the same
recovery method, which could inspire study of the optimal tolerance level. The ranking
of recovery strategies based on network metrics may have varied slightly, but the two-
step greedy recovery strategy consistently performed the best, with the greedy recovery
strategy following closely behind. Moreover, the results indicate that the recovery strategy
based on betweenness outperformed the recovery strategy based on flow betweenness,
while the electrical weighted closeness recovery strategy was the best among the electrical
closeness recovery strategy, closeness recovery strategy, and electrical weighted closeness
recovery strategy.
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Figure 7. Bar graph of the different recovery strategies’ recoverability energy ratios, with thresholds
equal to 0.8 and 0.5 for three bus systems with different tolerance levels. The number of realizations
was 1000: (a) IEEE 30 threshold = 0.8; (b) IEEE 30 threshold = 0.5; (c) IEEE 39 threshold = 0.8; (d) IEEE
39 threshold = 0.5; (e) IEEE 118 threshold = 0.8; (f) IEEE 118 threshold = 0.5.

6. Conclusions and Discussion

Based on our study, we observed significant variations in the performances of different
recovery strategies. Firstly, the recovery strategies based on link metrics and the product
of the node centrality values of link endpoints did not achieve the highest performance.
Secondly, the performance of those recovery strategies varied notably across different power
systems, emphasizing the significance of network topology and generator placements in
power grids. Thirdly, the two-step greedy recovery strategy consistently outperformed
all other network metric-based recovery methods across all power systems, thresholds,
and tolerance levels. The greedy recovery strategy, which was slightly less effective than the
two-step greedy recovery strategy, also showed promising results. The findings confirm that
implementing an effective recovery strategy can significantly improve the recoverability of
power grids and that the two-step greedy strategy is particularly efficient, while relying
solely on one network metric for recovery is less effective.

For future research directions, several avenues are worth exploring. Firstly, we can
develop hierarchical recovery strategies, by classifying links into two groups—those con-
nected to generators and those not connected to generators—and then prioritizing restoring
links connected to generators. Secondly, we can investigate whether allowing cascading
failures after link recovery or removal impacts the conclusions of this study. Thirdly, we can
introduce additional constraints—such as generator costs—and incorporate cost minimiza-
tion as an objective within the DC power flow model. Finally, given that distributed energy
systems enhance power system resilience, it is promising to research how to establish and
integrate such systems after a blackout, using the discussed strategies.
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Abbreviations
The following abbreviations are used in this manuscript:

Ka the number of challenges in the attack process;
Kr the number of challenges in the recovery process;
R[k] the value of R at challenge k;
Sa the attack strength;
Sr the recovery strength;
η the recoverability energy ratio;
G a graph;
N the number of nodes in a graph;
N the set of N nodes;
L the number of links in a graph;
L the set of L links;
A the adjacency matrix;
aij the element of the adjacency matrix;
lij the link connecting node i and node j;
yij the impedance of transmission line lij;
Ã the weighted adjacency matrix;
ãij the element of the weighted adjacency matrix;
dav the average degree;
Li[k] the amount of satisfied demand at bus i at challenge k;
Gi[k] the amount of supply at bus i at challenge k;
Pi the injected power at node i;
Q̃ the weighted Laplacian matrix;
∆̃ the weighted degree matrix;
θi the phase angle of bus i;
Θ the N × 1 vector with elements θ;
B̃ the weighted incidence matrix;
b̃ij the element of the weighted incidence matrix;
G[k] the supply vector, including the supply Gi[k] of each bus i at challenge k;
L[k] the demand vector, including the demand Li[k] of each bus i at challenge k;
F[k] the active power flow vector at challenge k;
fij[k] the power flow of line lij at challenge k;
C the capacity vector, including the capacity of all transmission lines;
cij the capacity of each transmission line lij;
α the tolerance level;
di the degree of node i;
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dij the degree of link lij;
bij the betweenness of link lij;
Ps→t the number of shortest paths from node s to node t;
Ps→t(lij) the number of shortest paths from node s to node t through link lij;
b̄ij the flow betweenness;

| fs→t(lij)|
the magnitude of flow through the link lij when we inject one unit of active
power to node s and extract one unit of active power from node t;

xi the eigenvector centrality of node i;
eij the product of the eigenvector centrality values of the end points of link lij;
x̄i the weighted eigenvector centrality of node i;
ēij the product of the weighted eigenvector centrality values of the end points of link lij;
Hij the distance of the shortest path between node i and node j;
c̄i the closeness of node i;
c̄ij the product of the closeness values of the end points of link lij;
Q the Laplacian matrix of adjacency matrix A;
Q† the pseudo-inverse Laplacian matrix of the Laplacian matrix Q;

Ωij
the effective resistance between node i and node j, calculated by
using the pseudo-inverse matrix Q†;

c̃i the electrical closeness of node i;
c̃ij the product of the electrical closeness values of the end points of link lij;
Q̃† the pseudo-inverse matrix of the weighted Laplacian matrix Q̃;

Ω̃ij
the effective resistance between node i and node j, calculated by
using the pseudo-inverse matrix Q̃†;

wi the electrical weighted closeness of node i;
wij the product of the electrical weighted closeness values of the end points of link lij;
ζ the zeta vector;
ζ̃ the weighted vector;
ζij the product of the zeta vector values of the end points of link lij;
ζ̃ij the product of the weighted zeta vector values of the end points of link lij.

Appendix A. Link Measurements Based on Whether Links Are Connected
to Generators

Table A1. IEEE 30 bus system.

Metrics
Connected to Generators Not Connected to Generators

Mean Std Mean Std

FlowBet 94.770551 44.594022 114.742752 47.264862

Degree 10.400000 6.231258 12.269231 9.101902

Zeta 0.528584 0.296456 0.492346 0.434582

Bet 0.081226 0.044353 0.080283 0.063794

Eigen 0.032307 0.042318 0.050533 0.055398

WeiZeta 0.025984 0.031659 0.024918 0.050187

EleWeiClose 0.012889 0.004615 0.014670 0.005090

WeiEigen 0.045759 0.122430 0.009824 0.037966

EleClose 0.000488 0.000132 0.000535 0.000167

Close 0.000123 0.000029 0.000136 0.000038
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Table A2. IEEE 39 bus system.

Metrics
Connected to Generators Not Connected to Generators

Mean Std Mean Std

FlowBet 96.370201 45.321198 240.779292 107.181289

Degree 3.272727 0.646670 8.800000 2.654630

Zeta 3.114607 1.747125 1.138656 0.685581

EleWeiClose 0.229349 0.068645 0.437775 0.126349

Bet 0.050301 0.005854 0.119877 0.072109

Eigen 0.008464 0.004923 0.037058 0.016150

WeiEigen 0.003469 0.010297 0.030148 0.074798

WeiZeta 0.001033 0.000709 0.000310 0.000363

EleClose 0.000070 0.000018 0.000115 0.000027

Close 0.000026 0.000005 0.000039 0.000010

Table A3. IEEE 118 bus system.

Metrics
Connected to Generators Not Connected to Generators

Mean Std Mean Std

FlowBet 832.375534 764.6106 778.816749 542.1641

Degree 19.189189 10.90265 10.761905 5.989612

Zeta 1.091884 1.30306 1.338246 0.9381184

Bet 0.046504 0.0607467 0.027309 0.0374265

WeiZeta 0.009382 0.0138922 0.011388 0.0088103

WeiEigen 0.002517 0.0154307 0.005404 0.0468745

Eigen 0.020586 0.022895 0.005041 0.008672

EleWeiClose 0.002065 0.0006941 0.001772 0.0005885

EleClose 0.000017 0.0000051 0.000014 0.0000038

Close 0.000002 0.0000008 0.000002 0.0000006
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