

Ajacency matrix A

Degree vector d: $A \ u = d$ and u = (1,1,...,1)Walk of length k from node i to j: succession of k links(arcs) $(n_0 \rightarrow n_1)(n_1 \rightarrow n_2)...(n_{k-1} \rightarrow n_k)$ where $n_0 = i$ and $n_k = j$ Path: a walk in which all nodes/vertices are different Number of k-hop walks between node i and j: $(A^k)_{ij}$ *Open*: Number of k-hop paths between node i and j in terms of adjacency elements

List of topological metrics (undirected, unweighted graphs)

•

•

•

•

•

- hopcount •
- closeness
- eccentricity
- diameter
- radius
- girth
- expansion

degree

entropy

joint degree

- size giant component ٠ distortion
 - (node/link) connectivity
 - coloring
 - effective graph resistance

21

TUDelft

clustering coefficient

rich club coefficient

and many more •

assortativity

clique number

modularity

coreness

Outline Introduction Graph metrics Spectrum Network models Attacks & failures Framework for robustness **T**UDelft

Basic theorem for symmetric matrices

Any **real symmetric matrix** *S* can be written as $S = X \Lambda X^T$, where *X* is the orthogonal matrix with real eigenvectors in the columns and $\Lambda = diag(\lambda_1, ..., \lambda_N)$, where λ_j is the *j*-th real eigenvalue.

The real eigenvalues can be ordered as

$$\lambda_N \leq \lambda_{N-1} \leq \cdots \leq \lambda_2 \leq \lambda_1$$

The eigenvalues are the zeros of the characteristic polynomial

$$\det(A - \lambda I) = 0$$

TUDelft

Largest eigenvalue of a symmetric matrix

if $Ax = \lambda x$ then $A^k x = \lambda^k x$ for nonnegative integers k Power method: $A^k w = \alpha_1 \lambda_1^k x_1 \left(1 + O\left(\left| \frac{\lambda_2}{\lambda_1} \right|^k \right) \right)$ Gerschgorin's theorem: $\lambda_1 \le d_{\max}$ Rayleigh principle: $\lambda_1 \ge \frac{w^T A w}{w^T w}$ with equality only if $w = x_1$ There are many variations possible on the Rayleigh principle: 1) find suitable vector w 2) apply to powers of A recalling that $N_k = u^T A^k u$ is the total number of walks with k hops P Van Mieghem, Graph Spectra for Complex Networks, Cambridge University Press, 2011

Network Model: Erdös-Rényi random graph

Degree distribution: Binomial distribution

$$\Pr[D_{rg} = k] = \begin{pmatrix} N-1 \\ k \end{pmatrix} p^{k} (1-p)^{N-1-k}$$

For large *N* and $p = \lambda/N$ approaches a Poisson distribution

TUDelft

$$\Pr[D_{rg} = k] \simeq \frac{(pN)^k}{k!} e^{-Nt}$$

Simplest proof via pgf:

$$E\left[z^{D_{rg}}\right] = \left(1 - p + pz\right)^{N-1} = \left(1 + \frac{\lambda(z-1)}{N}\right)^{N-1} \longrightarrow e^{\lambda(z-1)}$$

P. Van Mieghem, Performance Analysis of Communications Networks and Systems, Cambridge University Press, 2011

Network Model: Small-world graph					
Collective dynamics of 'small-world' networks				letters to nature	
Duncan J. Watts* & Steven H. Strogatz Department of Theoretical and Applied Mechanics, Kimball Hall, Cornell University, Ithaca, New York 14853, USA					
		Lactual	Lrandom	Cactual	Crandom
	Film actors Power grid <i>C. elegans</i>	3.65 18.7 2.65	2.99 12.4 2.25	0.79 0.080 0.28	0.00027 0.005 0.05
					TU Delft

Introduction (2/2)

- · Examples of perturbations
 - Failures
 - Broken fibre cables
 - Malfunctioning switches
 - ...
 - Attacks
 - Denial-of-Service
 - Physical attack on Internet Exchange
 - ...
- Aim of this lecture: discuss examples of how graphtheoretic metrics can be used to quanity robustness

63

TUDelft

Simple SIS model (4)

- Markov theory requires that the infinitesimal generator is a matrix whose elements are NOT random variables
- However, this is not the case in our simple model:

$$q_{1j}(t) = \beta \sum_{k=1}^{N} a_{jk} \mathbf{1}_{\{X_k(t)=1\}}$$

- By conditioning to each possible combination of infected states, we finally arrive to the exact Markov continuous SIS model
- *Drawback*: this exact model has 2^N states, where *N* is the number of nodes in the network.

69

TUDelft

R-model

$$R = \sum_{k=1}^{m} s_k t_k = s.t \qquad (0 \le R \le 1)$$

83

TUDelft

- s: the service vector with *m* components (interpreted as weights)
- *t*: the topology vector where each component is a metric
- (e.g. average degree, clustering coefficient, algebraic connectivity, minimum degree, diameter/hopcount, betweenness, etc...)
- Normalization: R = 0 (absense of network robustness) R = 1 (perfect robustness)
- Linear:
 - simplest *m*-dim expression & geometric interpretation (vector)
 expectation E[R] easy
- no constraints on component values (else linear programming model)

P. Van Mieghem, C. Doerr, H. Wang, J. Martin Hernandez, D. Hutchison, M. Karaliopoulos and R. E. Kooij, 2010, <u>"A Framework for Computing</u> <u>Topological Network Robustness</u>", Delft University of Technology, report20101218.

