

What is a network?

A graph $G(N, L)$ specifies how items, called nodes, are interconnected or related to other nodes by links.

$L=N-1$
$L=N$
$L=N(N-1) / 2$

Network Science

- Are there properties common to all complex networks?
- if so, why?
- Can we formulate a general theory of the structure (topology), evolution and dynamics of complex networks?
- How do complex networks give rise to "adaptive", "living", "intelligent" behavior?
- How can we learn from nature to design robust, efficient, self-adaptive "man-made" networks ?

graph metric: degree

degree d_{j} of node j : number of neighbors of j

$$
\sum_{j=1}^{N} d_{j}=2 L
$$

average degree in G equals $E[D]=\frac{1}{N} \sum_{j=1}^{N} d_{j}=\frac{2 L}{N}$
bounds : $2-\frac{2}{N} \leq E[D] \leq N-1$ TUDelft

Adjacency matrix A

$$
A_{N \times N}=\left[\begin{array}{cccccc}
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

For an undirected graph: $A=A^{\top}$ is symmetric
Number of neighbors of node i is the degree: $\quad d_{i}=\sum_{k=1}^{N} a_{i k}$

Ajacency matrix A

Degree vector d: $A u=d$ and $u=(1,1, \ldots, 1)$
Walk of length \mathbf{k} from node \mathbf{i} to \mathbf{j} : succession of k links(arcs) $\left(n_{0} \rightarrow n_{1}\right)\left(n_{1} \rightarrow n_{2}\right) \ldots\left(n_{k-1} \rightarrow n_{k}\right)$ where $n_{0}=i$ and $n_{k}=j$

Path: a walk in which all nodes/vertices are different

Number of \boldsymbol{k}-hop walks between node i and $j: \quad\left(A^{k}\right)_{\mathrm{ij}}$
Open: Number of \boldsymbol{k}-hop paths between node i and j in terms of adjacency elements

TUUDelft

graph metric: degree

Airline transportation network

$\operatorname{Pr}\left[D_{\text {Air }}=k\right] \sim k^{-1.21}$

Internet: $\operatorname{Pr}\left[D_{\text {Internet }}=k\right] \sim k^{-\tau}, \quad \tau \in(2.2,2.5)$

Graph Metric: Clustering coefficient

The clustering coefficient of node v is $c_{G}(v)=\frac{2 y}{d_{v}\left(d_{v}-1\right)}$
where y is the number of links between neighbors. If $d_{v}=1, c_{G}(v)=0$.

The clustering coefficient of a graph G: $\quad c_{G}=\frac{1}{N} \sum_{v=1}^{N} c_{G}(v)$

Graph Metric: Hopcount

hopcount H : number of links in a shortest path in G

$$
\mathrm{H}_{14}=2
$$

diameter of G : hopcount of the longest shortest path in G average hopcount $\mathrm{E}[\mathrm{H}]$ reflects "efficiency" of transport in G

Graph Metric: Betweenness

The betweenness B, of a link $/$ is the number of shortest paths between all possible node pairs in G that traverse the link.
$H_{G}=\sum_{i-1}^{N} \sum_{j-i+1}^{N} H_{i-j}=\sum_{l-1}^{L} B$, and $E[B]=\frac{\binom{N}{2}}{L} E\left[H_{N}\right] \geq E\left[H_{N}\right]$
H_{i-j} is the hopcount of the shortest path between i and j.

Assortativity

A network is (degree) assortative if $\rho_{D}>0$
A network is (degree) disassortative if $\rho_{D}<0$

(dis)assortativity

Reformulation of Newman's definition into algebraic graph theory

$$
\rho_{D}=\frac{E\left[D_{l^{+}} D_{l^{-}}\right]-E\left[D_{l^{+}}\right] E\left[D_{l^{-}}\right]}{\sqrt{\operatorname{Var}\left[D_{l^{+}}\right] \operatorname{Var}\left[D_{l^{+}}\right]}}=\frac{N_{1} N_{3}-N_{2}^{2}}{N_{1} \sum_{j=1}^{N} d_{j}^{3}-N_{2}^{2}}
$$

where $N_{k}=u^{T} A^{k} u$ is the total number of walks with k hops:
$N_{0}=\sum_{j=1}^{N} d_{j}^{0}=N$
$N_{1}=\sum_{j=1}^{N} d_{j}^{1}=2 L$
$N_{2}=\sum_{j=1}^{N} d_{j}^{2}=d^{T} d$
$N_{k} \leq \sum_{j=1}^{N} d_{j}^{k}$

Degree-preserving rewiring

$$
\rho_{D}=1-\frac{\sum_{i \sim j}\left(d_{i}-d_{j}\right)^{2}}{\sum_{j=1}^{N} d_{j}^{3}-\frac{1}{2 L}\left(\sum_{j=1}^{N} d_{j}^{2}\right)^{2}} \text { only two terms change }
$$

Connectivity of a Graph

$\lambda(\mathrm{G})$ (or $\kappa(\mathrm{G})$) : the minimum number of links (nodes) whose removal disconnects G

TUWDelft

Menger's Theorem

Menger's Theorem:

The maximum number of link(node)-disjoint paths between A and B is equal to the minimum number of links(nodes) seperating A and B.

There are at least $\lambda(\mathrm{G})$ link-disjoint and at least $\kappa(\mathrm{G})$ node-disjoint paths between any pair of nodes in G

List of topological metrics

 (undirected, unweighted graphs)- hopcount
- closeness
- eccentricity
- diameter
- radius
- girth
- expansion
- distortion
- degree
- entropy
- joint degree
- assortativity
- modularity
- coreness
- clique number
- clustering coefficient
- rich club coefficient
- size giant component
- (node/link) connectivity
- coloring
- effective graph resistance
- and many more

Outline

Introduction

Graph metrics

Spectrum

Network models
Attacks \& failures
Framework for robustness

Eigenvalues and eigenvectors

$$
\begin{gathered}
A x=\lambda x \\
A\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{N}
\end{array}\right]=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{N}
\end{array}\right]\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{N}
\end{array}\right] \\
A X=X \Lambda \\
A=A^{T}=X \Lambda X^{T}=\sum_{k=1}^{N} \lambda_{k} x_{k} x_{k}^{T}
\end{gathered}
$$

Basic theorem for symmetric matrices

Any real symmetric matrix \boldsymbol{S} can be written as $S=X \Lambda X^{T}$, where X is the orthogonal matrix with real eigenvectors in the columns and $\Lambda=\operatorname{diag}\left(\lambda_{l}, \ldots, \lambda_{N}\right)$, where λ_{j} is the j-th real eigenvalue.

The real eigenvalues can be ordered as

$$
\lambda_{N} \leq \lambda_{N-1} \leq \cdots \leq \lambda_{2} \leq \lambda_{1}
$$

The eigenvalues are the zeros of the characteristic polynomial

$$
\operatorname{det}(A-\lambda I)=0
$$

Algebraic graph theory

Any graph G with N nodes and L links can be represented by an adjacency matrix A and an incidence matrix B, and a Laplacian Q

$$
A_{N \times N}=\left[\begin{array}{cccccc}
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & Q & 1 & 0 \\
0 & 1 & 0 & 1 & Q & 1 \\
1 & 1 & 0 & 0 & 1 & Q
\end{array}\right]=A^{T}
$$

$B_{N \times L}=\left[\begin{array}{ccccc}1 & 1 & -1 & \ldots & 0 \\ -1 & 0 & 0 & & 0 \\ 0 & -1 & 0 & & 0 \\ 0 & 0 & 0 & & 0 \\ 0 & 0 & 0 & & -1 \\ 0 & 0 & 1 & & 1\end{array}\right] \quad \begin{aligned} & Q=B B^{T}=\Delta-A \\ & \Delta=\operatorname{diag}\left(\begin{array}{llll}d_{1} & d_{2} & \ldots & d_{N}\end{array}\right) \\ & \end{aligned}$

Basic properties of graph spectra

Spectrum of $\boldsymbol{A}: 1)$ all eigenvalues lie in the interval $\left(-\mathrm{d}_{\max }, \mathrm{d}_{\max }\right]$
2) $\sum_{j=1}^{N} \lambda_{j}=0 \quad \sum_{j=1}^{N} \lambda_{j}^{2}=2 L \quad \sum_{j=1}^{N} \lambda_{j}^{k}=\operatorname{Trace}\left(A^{k}\right)=\sum_{j=1}^{N}\left(A^{k}\right)_{j j}$
3) Perron-Frobenius Theorem: λ_{1} non-negative and components eigenvector are non-negative. (irreducible $=$ connected: positive)

Spectrum of $\boldsymbol{Q}: 1$) any eigenvalue μ_{k} is non-negative and the smallest $\mu_{\mathrm{N}}=0$
2) complexity (number of spanning trees) is $\xi(G)=\frac{1}{N} \prod_{k=1}^{N-1} \mu_{k}$
3) the second smallest eigenvalue,
algebraic connectivity $a(G)=\mu_{N-1}$,
is related to how strongly a graph is connected

Refreshing your knowledge (1/2)

- Adjacency matrix

$$
A=\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

- $\lambda_{1}=$ spectral radius $=$ largest eigenvalue of A

Refreshing your knowledge (2/2)

- Laplacian matrix

$$
\left.\left.\begin{array}{rl}
Q & Q=\Delta-A \\
\Delta=\operatorname{diag}\left(d_{1}\right. & d_{2}
\end{array} \cdots c d_{N}\right) \quad \begin{array}{ccccc}
2 & -1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
-1 & -1 & 3 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right) .
$$

- $\mathrm{a}(\mathrm{G})=$ algebraic connectivity $=$ second smallest eigenvalue of Q

Connectivity of graphs

$$
a\left(G_{1}\right)=0
$$

$$
a\left(G_{2}\right)=0.29
$$

Difficulty to disconnect
G_{3}

$$
a\left(G_{3}\right)=0.59
$$

TWDelft

Largest eigenvalue of a symmetric matrix

if $A x=\lambda x$ then $A^{k} x=\lambda^{k} x \quad$ for nonnegative integers k
Power method: $A^{k} w=\alpha_{1} \lambda_{1}^{k} x_{1}\left(1+O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}\right)\right)$
Gerschgorin' s theorem: $\quad \lambda_{1} \leq d_{\max }$
Rayleigh principle: $\quad \lambda_{1} \geq \frac{w^{T} A w}{w^{T} w} \quad$ with equality only if $w=x_{1}$
There are many variations possible on the Rayleigh principle:

1) find suitable vector w
2) apply to powers of A recalling that $N_{k}=u^{T} A^{k} u$ is the total number of walks with k hops

Bounds largest eigenvalue adjacency matrix

Classical bounds:

$$
d_{\max } \geq \lambda_{1}(A) \geq \frac{2 L}{N}=E[D]
$$

Walks based:

$$
\lambda_{1}(A) \geq\left(\frac{N_{2 k}}{N}\right)^{1 /(2 k)} \geq\left(\frac{N_{k}}{N}\right)^{1 / k}
$$

$$
k=2: \lambda_{1}(A) \geq\left(\frac{d^{T} d}{N}\right)^{1 / 2}=\frac{2 L}{N} \sqrt{1+\frac{\operatorname{Var}[D]}{(E[D])^{2}}}
$$

$$
k=3: \lambda_{1}^{3}(A) \geq \frac{N_{3}}{N}=\frac{1}{N}\left(\rho_{D}\left(\sum_{j=1}^{N} d_{j}^{3}-\frac{N_{2}^{2}}{N_{1}}\right)+\frac{N_{2}^{2}}{N_{1}}\right)
$$

Optimized: $\quad \lambda_{1}(A) \geq \frac{N N_{3}-N_{1} N_{2}+\sqrt{\left(N N_{3}\right)^{2}-6 N N_{1} N_{2} N_{3}+\text { others }}}{2\left(N N_{2}-N_{1}^{2}\right)}$

Optimization

- Remove m nodes in G such that each removal decreases $\lambda_{1}(\mathrm{~A})$ maximally.
- Remove / links in G such that each link removal decreases $\lambda_{1}(\mathrm{~A})$ maximally.
- What are the optimal strategies?
- Unfortunately, these problems are NP-complete...

The Interlacing Theorem

For a real symmetric $n \times n$ matrix A and any principal $m \times m$ submatrix B of A obtained by deleting $n-m$ same rows and columns in A, the eigenvalues of B interlace with those of A as

$$
\lambda_{n-m+i}(A) \leq \lambda_{i}(B) \leq \lambda_{i}(A) \text { for any } 1 \leq i \leq m
$$

Degree-preserving rewiring USA air transport network: adjacency eig.

Complex network models

Network Model: Erdös-Rényi random graph

It is a class of graphs with N nodes and each node pair is connected independently with probability p.
$E[L]=\frac{N(N-1)}{2} p$
The average clustering coefficient follows
$E\left[c_{G_{p}(N)}\right]=p$

Network Model: Erdös-Rényi random graph

Degree distribution: Binomial distribution

$$
\operatorname{Pr}\left[D_{r g}=k\right]=\binom{N-1}{k} p^{k}(1-p)^{N-1-k}
$$

For large N and $\mathrm{p}=\lambda / \mathrm{N}$ approaches a Poisson distribution

$$
\operatorname{Pr}\left[D_{r g}=k\right] \simeq \frac{(p N)^{k}}{k!} e^{-N p}
$$

Simplest proof via pgf:

$$
E\left[z^{D_{r s}}\right]=(1-p+p z)^{N-1}=\left(1+\frac{\lambda(z-1)}{N}\right)^{N-1} \rightarrow e^{\lambda(z-1)}
$$

Network Model: Small-world graph

Collective dynamics of

letters to nature

'small-world' networks

Duncan J. Watts* \& Steven H. Strogatz
Department of Theoretical and Applied Mechanics, Kimball Hall,
Cornell University, Ithaca, New York 14853, USA

Table 1 Empirical examples of small-world networks

	$L_{\text {actual }}$	$L_{\text {random }}$	$C_{\text {actual }}$	$C_{\text {random }}$
Film actors	3.65	2.99	0.79	0.00027
Power grid	18.7	12.4	0.080	0.005
C. elegans	2.65	2.25	0.28	0.05

TGUDelft

Network Model: Small-world graph

Spectrum small world graph

Power law graphs

Measurements of the degree of nodes in (subgraphs of) the Internet topology indicate that

$$
\operatorname{Pr}[D=k] \approx c k^{-\tau}
$$

A power law degree distribution is also called scale-free:

$$
\operatorname{Pr}[D=a k]=c a^{-\tau} k^{-\tau}=a^{-\tau} \operatorname{Pr}[D=k]
$$

Any number a just multiplies the probability density; there is no characteristic length
Moreover,

$$
\begin{aligned}
& E[D]=\frac{\zeta(\tau-1)}{\zeta(\tau)} \text { provided } \tau>2, \text { where } \zeta(\tau)=\frac{1}{\tau-1}+\gamma+\mathrm{O}(\tau-1) \\
& \mathrm{E}\left[\mathrm{D}^{\mathrm{k}}\right]=\frac{\zeta(\tau-k)}{\zeta(\tau)} \text { provided } \tau>\mathrm{k}+1
\end{aligned}
$$

The simplest family of "power law" graphs have been proposed by Barbasi-Albert:

1) start with n nodes
2) attach a new node with m links to a node proportionally to its degree

3) repeat 2) until size N is reached
This construction of "preferential attachment", "rich get richer", is observed in many large complex networks (webgraph, proteins, social relations, etc...)

Mystery of "power laws"

Power law of a "property" appear if the "system" grows exponentially:

- if X grows exponentially with Y and Y has an exponential distribution, then X will have a power-law distribution (Proof PA, p. 324)

The exponential function $f(t)$ has a linear differential equation

$$
\frac{d f(t)}{d t}=a f(t)
$$

which essentially means "growing proportional to its size"
At phase transitions, quantities of interest also change in a "power law" fashion

Observed common properties

- small-world property
- average length of a path is short compared to the size N of the network $(E[H]=O(\log N)$)
- scale-free degree distribution
- heavy tails (non-Gaussian behavior)
- clustering and community structure
- network of networks
- robustness to random node failure
- vulnerability to targeted hub attacks and cascading failures

TWDelft

Cause: somewhere in Ohio

58
TUDelft

Cause: somewhere in Ohio

59
TWDelft

Cause: somewhere in Ohio

60
TUDelft

A few days earlier...

- "Alarm systems failed due to infection with Blaster Worm"

TUDelft

Introduction (1/2)

- Society is critically depending on complex networks
- Internet
- Transportation networks
- Energy networks
- Communication networks
- Severe consequences if networks are disrupted
- Robustness is defined as the extent to which the complex network is able to cope with perturbations imposed on it

Introduction (2/2)

- Examples of perturbations
- Failures
- Broken fibre cables
- Malfunctioning switches
- ..
- Attacks
- Denial-of-Service
- Physical attack on Internet Exchange
- ...
- Aim of this lecture: discuss examples of how graphtheoretic metrics can be used to quanity robustness

TUDelft

Motivation for virus spread in networks

- Computer viruses
- security threat to Internet
- annoyance
- very costly
- Code Red worm: several billion \$\$ in damage
- Why do we care?
- Understanding the spread of a virus is the first step in preventing it
- How fast do we need to disinfect nodes so that the virus dies quickly? Which nodes?

Applications of virus spread models

- Computer virus and worms modelling
- Epidemic algorithms
- Error propagation in networks
- Any self-replicating object on a dynamic network
- Emotions as infectious diseases in social networks

Simple SIS model (1)

- Homogeneous birth (infection) rate β on all edges between infected and susceptible nodes
- Homogeneous death (curing) rate δ for infected nodes
$\tau=\beta / \delta$: effective spreading rate

Simple SIS model (2)

- Each node j can be in either of the two states:
- "0": healthy
- "1": infected

- Markov continuous time:
- infection rate β
- curing rate δ
- Mathematically:
- X_{j} is the state of node j
- X_{j} is the state of node $\left.\mathrm{j}, \begin{array}{cc}-q_{1 j} & q_{1 j} \\ q_{2 j} & -q_{2 j}\end{array}\right]=\left[\begin{array}{cc}-q_{1 j} & q_{1 j} \\ \delta & -\delta\end{array}\right]$

Simple SIS model (3)

- Nodes are interconnected in graph:

$$
Q_{j}(t)=\left[\begin{array}{cc}
-q_{1 j} & q_{1 j} \\
\delta & -\delta
\end{array}\right]
$$

where the infection rate is due all infected neighbors of node j :

$$
q_{1 j}(t)=\beta \sum_{k=1}^{N} a_{j k} 1_{\left\{X_{k}(t)=1\right\}}
$$

and where the adjacency matrix of the graph is
$A=\left[\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 N} \\ a_{21} & a_{22} & \ldots & a_{2 N} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N 1} & a_{N 2} & \ldots & a_{N N}\end{array}\right]$

Simple SIS model (4)

- Markov theory requires that the infinitesimal generator is a matrix whose elements are NOT random variables
- However, this is not the case in our simple model:

$$
q_{1 j}(t)=\beta \sum_{k=1}^{N} a_{j k} 1_{\left\{X_{k}(t)=1\right\}}
$$

- By conditioning to each possible combination of infected states, we finally arrive to the exact Markov continuous SIS model
- Drawback: this exact model has 2^{N} states, where N is the number of nodes in the network.

Simple SIS model (5): mean field

- The infinitesimal generator $Q_{j}(t)=\left\lfloor\begin{array}{cc}-q_{1 j} & q_{1 j} \\ \delta & -\delta\end{array}\right]$

$$
q_{1 j}(t)=\beta \sum_{k=1}^{N} a_{j k} 1_{\left\{X_{k}(t)=1\right\}}
$$

is replaced by its mean (the only approximation!)
$Q_{j}=\left[\begin{array}{cc}-E\left[q_{1 j}\right] & E\left[q_{1 j}\right] \\ \delta & -\delta\end{array}\right] \quad E\left[q_{1 j}(t)\right]=\beta \sum_{k=1}^{N} a_{j k} \operatorname{Pr}\left[\left\{X_{k}(t)=1\right\}\right]$

- Being able now to apply ordinary Markov theory, we arrive at our \boldsymbol{N}-intertwined model for virus spread
$\left\{\begin{array}{r}\frac{d v_{1}}{d t}=\left(1-v_{1}\right) \beta \sum_{k=1}^{N} a_{1 k} v_{k}-\delta v_{1} \\ \frac{d v_{2}}{d t}=\left(1-v_{2}\right) \beta \sum_{k=1}^{N} a_{2 k} v_{k}-\delta v_{2} \\ \vdots \\ \frac{d v_{N}}{d t}=\left(1-v_{N}\right) \beta \sum_{k=1}^{N} a_{N k} v_{k}-\delta v_{N}\end{array} \quad\right.$ where $v_{k}(t)=\operatorname{Pr}\left[X_{k}(t)=1\right]$

N-intertwined virus spread model

- Non-linear matrix equation:

$$
\frac{d V(t)}{d t}=\beta A \cdot V(t)-\operatorname{diag}\left(v_{i}(t)\right)(\beta A \cdot V(t)+\delta u)
$$

where the vector $\mathrm{u}^{\top}=\left[\begin{array}{lll}1 & 1 & \ldots\end{array}\right]$ and $\mathrm{V}^{\top}=\left[\begin{array}{lll}\mathrm{v}_{1} & \mathrm{v}_{2} & \ldots\end{array} \mathrm{v}_{\mathrm{N}}\right]$

- Results:
- Probability of infection v_{k} for each node k separately
- Number of infected nodes in the steady state
- Phase transition phenomena for any network (largest eigenvalue of the adjacency matrix A)
- Analytic computations feasible:
- expansions of v_{k} as a function of the effective infection rate around the epidemic threshold and around infinity

Simulations

Kephart-White model

Assume perfect homogeneity \& symmetry: a graph of degree r
$\int \frac{d v_{1}}{d t}=\left(1-v_{1}\right) \beta \sum_{k=1}^{N} a_{1 k} v_{k}-\delta v_{1}$

$$
\begin{aligned}
& \frac{d v}{d t}=(1-v) \beta r v-\delta v \\
& v=1-\frac{1}{r \tau} \quad \text { steady-state } \\
& \quad \tau=\frac{\beta}{\delta}
\end{aligned}
$$

$\frac{d v_{2}}{d t}=\left(1-v_{2}\right) \beta \sum_{k=1}^{N} a_{2 k} v_{k}-\delta v_{2}$
$\frac{d v_{N}}{d t}=\left(1-v_{N}\right) \beta \sum_{k=1}^{N} a_{N k} v_{k}-\delta v_{N}$

$$
\tau \geq \tau_{c}=\frac{1}{r} \quad \text { then } \quad v \geq 0
$$

J. O. Kephart and S. R. White, "Directed-graph epidemiological modelsof computer viruses," Proc. IEEE Comput. Soc. Symp, Research in Security and Privacy, May 1991, pp. 343-359.

What is so interesting about epidemics?

β : infection rate per link
δ : curing rate per node
$\tau=\beta / \delta$: effective spreading
rate

Affecting the epidemic threshold

- Degree-preserving rewiring
- Changing the assortativity of the graph
- Van Mieghem, P., H. Wang, X. Ge, S. Tang and F. A. Kuipers, 2010, "Influence of Assortativity and Degree-preserving Rewiring on the Spectra of Networks", The European Physical Journal B, vol. 76, No. 4, pp. 643-652.
- Removing links/nodes (optimal way is NP-complete)
- Van Mieghem, P., D. Stevanovic, F. A. Kuipers, C. Li, R. van de Bovenkamp, D. Liu and H. Wang, 2011,
"Decreasing the spectral radius of a graph by link removals", Physical Review E, Vol. 84, No. 1, July, p. 016101.
- Quarantining: Removing inter-module links
- Omic, J., J. Martin Hernandez and P. Van Mieghem, 2010, "

Network protection against worms and cascading failures using modularity partitioning", 22nd International Teletraffic Congress (ITC 22), September 7-9, Amsterdam, Netherlands.

ResumeNet
A framework for network robustness:
the R -model

Network: topology + service(s)

- Topology (or network infrastructure):
- graph G with N nodes and L links
- link weights
- "hardware"
- Service:
- more abstract and less clearly defined
- uses the network infrastructure to transport items (e.g. email service, telephony, video, cars on roads, neurons in brain, etc.)
- "software"
- Topology and service
- own specifications
- service is often designed independently of the topology
- often more than 1 service on a same topology

High-Level Goal: Express Network Resilience in a Number \boldsymbol{R}

TGD ${ }^{3}$ Ift

Simple framework

Goals:

1. define " R-value" that characterizes the level of robustness in any network
2. compute the R-value
3. robustness classes (understanding): which R is desirable and what is $R_{\text {threshold }}$

R-model

$$
R=\sum_{k=1}^{m} s_{k} t_{k}=s . t \quad(0 \leq R \leq 1)
$$

s : the service vector with m components (interpreted as weights)
t : the topology vector where each component is a metric
(e.g. average degree, clustering coefficient, algebraic connectivity, minimum degree, diameter/hopcount, betweenness, etc...)

- Normalization: $\quad \mathrm{R}=0$ (absense of network robustness)
$\mathrm{R}=1$ (perfect robustness)
- Linear:
- simplest m-dim expression \& geometric interpretation (vector)
- expectation $E[R]$ easy
- no constraints on component values (else linear programming model)

Issues with R-model

- dimension m : trade-off between accuracy and computational complexity (not problematic, consensus)
- orthogonality of the metrics (fundamental problem)
- each metric should ideally be a basis vector in m-dim space
- almost all topology metrics are dependent
- degree of dependence depends on the graph
- Solution: no metrics, but matrices (adjacency A, incidence B, Laplacian Q) or spectra (graph theory)?
- Normalization of graphs: how to compare graphs with different number of nodes and links?
- unclear how to map a service onto a service vector (recall s_{k} is projection of s on k-th metric)

Which metrics to choose?

- Which metrics to choose is still an open question
- Decomposition problem
- Dependency problem
- Normalization problem

TUDelft

R as a function of "challenges"

- resilience is related to the network' s capability to withstand perturbations from the outside during a given time interval

Computational Approach to a Measuring Resilience

89

THDelft

Show case for:
Regional Challenges
Fine-Grained, Intuitive Failures
TUDelft

W-GEANT2:
 Where are the weak points?

- Risk map indicates which areas are most vulnerable to challenges

Impact map visualizes the effect of a particular failure on the network as a whole

Let' s take a deeper look:
What concretely would happen?

IWSOS 2012 in Delft: March 15-16

