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Birth of graph theory: the Königsberg 
bridge problem (Euler, 1736) 

Leonhard	  Euler	  

Can one walk across the seven 
bridges and never traverse the 
same bridge twice? 

A D 

C 

B 

Eulerian walk: zero or two nodes with odd degree 

What is a network? 

A graph G(N, L) specifies how items, called nodes, are 
interconnected or related to other nodes by links.  

Trees	  

L	  =	  N -‐	  1	  

ring	  

L = N 

Complete	  graph	  

L = N (N-1)/2 
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Fractal Nature of the Internet 

The average human cerebral 
cortex contains 

N = 1011 neurons 

L = 1014 connections 

500,000 km of wiring 

Our Brain network 

moon-earth: 384 405 km 
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Network Science 
 •  Are there properties common to all complex networks? 

•  if so, why? 

•  Can we formulate a general theory of the structure 
(topology), evolution and dynamics of complex 
networks? 

•  How do complex networks give rise to “adaptive”, 
“living”, “intelligent” behavior? 

•  How can we learn from nature to design robust, 
efficient, self-adaptive “man-made” networks ? 
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graph metric: degree 

1 

4 2 

6 5 

3 
N = 6 
L = 9 

d1 = 3 
 d2 = 4 
 d3 = 3 
 d4 = 2 
 d5 = 3 
 d6 = 3 
 

d1+d2+d3 +d4+d5+d6 = 18 
 

! 

d j = 2L
j=1

N

"

degree dj of node j: number of neighbors of j 

average degree in G equals 

! 

E D[ ] =
1
N

d j =
2L
Nj=1

N
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Adjacency matrix A 

1 

4 2 

6 5 

3 
N = 6 
L = 9 

For an undirected graph: A = AT is symmetric 

di = aik
k=1

N

!Number of neighbors of node i is the degree: 
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Ajacency matrix A 

11 

Number of k-hop walks between node i and j:   (Ak)ij 

Walk of length k from node i to j: succession of k links(arcs) 

 n0 ! n1( ) n1 ! n2( )… nk"1 ! nk( )  where n0 = i and nk = j

Path: a walk in which all nodes/vertices are different 

Open: Number of k-hop paths between node i and j 
in terms of adjacency elements 

Degree vector d:  A u = d and u = (1,1,...,1)  

graph metric: degree 

  Internet: Pr[DInternet = k] ~ k !" ,    " #(2.2,2.5)

Airline transportation network 

  Pr[DAir = k] ~ k !1.21
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Graph Metric: Clustering coefficient 

A B H

I	  

J

K

D
G

E
C

F

  
cG ( A) =

2
4(4 !1)

=
1
6

,   cG (C) = 1

The clustering coefficient of a graph G: cG =
1
N

cG v( )
v=1

N

!

where y is the number of links between neighbors.  
If dv = 1, cG(v) = 0. 
 

  
cG (v) =

2y
dv (dv !1)

The clustering coefficient of node v is 

14 

Graph Metric: Hopcount 

1 

4 2 

6 5 

3 
N = 6 
L = 9 

hopcount H: number of links in a shortest path in G 

H14 = 2 

diameter of G : hopcount of the longest shortest path in G 

average hopcount E[H] reflects “efficiency” of transport in G 
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Graph Metric: Betweenness 

H
G
= H

i ! j
= B

l =1

L
"j =i +1

N
"i =1

N
"

l
 and E [B ] =

N
2

#

$
%%

&

'
((

L
E [H

N
] ) E [H

N
]

  
H

i ! j
 is the hopcount of the shortest path between i  and j.

E	  

A	  

C	  

  H A!C = 3B = 8 
D	   F	  

  

The betweenness B
l
 of a link l  is the number of shortest paths

between all possible node pairs in G  that traverse the link.

Assortativity 

16 

How are Di and Dj (cor)related? 

! 

"D =
E Dl +Dl #[ ] # E Dl +[ ]E Dl #[ ]

Var Dl +[ ]Var Dl +[ ]

i = l+ link l j = l- 

! 

Dl + "1

! 

Dl " "1

A network is (degree) assortative if ρD > 0 
A network is (degree) disassortative if ρD < 0 

 
 



9	


(dis)assortativity 

17 ! 

N0 = d j
0

j=1

N

" = N! 

"D =
E Dl +Dl #[ ] # E Dl +[ ]E Dl #[ ]

Var Dl +[ ]Var Dl +[ ]
=

N1N3 # N2
2

N1 d j
3

j=1

N

$ # N2
2

Reformulation of Newman’s definition into algebraic graph theory 

where Nk = uT Ak u is the total number of walks with k hops: 

! 

Nk " d j
k

j=1

N

#
! 

N1 = d j
1

j=1

N

" = 2L

! 

N2 = d j
2

j=1

N

" = dTd

P. Van Mieghem, H. Wang, X. Ge, S. Tang and F. A. Kuipers, 2010, 
"Influence of Assortativity and Degree-preserving Rewiring on the Spectra 
of Networks", The European Physical Journal B, vol. 76, No. 4, pp. 643-652 

Degree-preserving rewiring 

18 

a c 

b d 

a c 

b d 

a c 

b d 

! 

"D =1#
di # d j( )

2

i~ j
$

d j
3

j=1

N

$ #
1
2L

d j
2

j=1

N

$
% 

& 
' ' 

( 

) 
* * 

2

only two terms change 

degree-preserving rewiring 
algorithm 

How many graphs do there exist with given N and d? 

Open question (see B. McKay) 
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λ(G) (or κ(G)) : the minimum number of links (nodes) whose 
                           removal disconnects G 

Connectivity of a Graph 

G 

E 
D 

A 

F 

C B 
G 

E 
D 

A 

F 

C B 

E 
D 

A 

F 

C B 

edge connectivity 

vertex connectivity 

λ(G) = 1	


κ(G) = 1	


Menger’s Theorem 

Important inequality: ! (G) " #(G) " dmin (G) "
2L
N

da = 4 
dmin(G) = 3 
λ(G) = 2 
κ(G) = 1 

G1 
G2 

A B 

C 

Menger’s Theorem: 
The maximum number of link(node)-disjoint paths between A and 
B is equal to the minimum number of links(nodes) seperating A 
and B. 

There are at least λ(G) link-disjoint and at least κ(G) node-disjoint  
paths between any pair of nodes in G 
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List of topological metrics  
(undirected, unweighted graphs) 

21 

•  hopcount 
•  closeness 
•  eccentricity 
•  diameter 
•  radius 
•  girth 
•  expansion 
•  distortion 
•  degree 
•  entropy 
•  joint degree 

•  assortativity 
•  modularity 
•  coreness 
•  clique number 
•  clustering coefficient 
•  rich club coefficient 
•  size giant component 
•  (node/link) connectivity 
•  coloring 
•  effective graph resistance 
•  and many more 

Introduction 

Graph metrics 

Spectrum 

Network models 

Attacks & failures 

Framework for robustness 
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Eigenvalues and eigenvectors 

23 

Ax = !x

 

A x1 x2 ! xN!
"

#
$ =

x1 x2 ! xN!
"

#
$

%1
%2
"

%N

!

"

&
&
&
&
&

#

$

'
'
'
'
'

AX = X!

A = AT = X!XT = "k xkxk
T

k=1

N

#

A = X!X "1

24 

Basic theorem for symmetric matrices 

Any real symmetric matrix S can be written as  S = X Λ XT ,  
where  X is the orthogonal matrix with real eigenvectors in the 
columns and Λ = diag(λ1,...,λN), where λj is the j-th real eigenvalue.  
 
The real eigenvalues can be ordered as  

121 λλλλ ≤≤≤≤ − NN

The eigenvalues are the zeros of the characteristic polynomial 

det A ! "I( ) = 0
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Algebraic graph theory 
Any graph G with N nodes and L links can be represented by an adjacency 
matrix A and an incidence matrix B, and a Laplacian Q 

T
NN AA =

⎥
⎥
⎥
⎥
⎥
⎥
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Basic properties of graph spectra 

L
N

j
j 2

1

2 =∑
=

λ ∑∑
==

==
N

j
jj

kk
N

j

k
j AATrace

11
)()(λ

Spectrum of A:1) all eigenvalues lie in the interval (–dmax, dmax]
  0

1
=∑

=

N

j
jλ2) 

Spectrum of Q:  1) any eigenvalue µk is non-negative and the smallest µN = 0 

( ) ∏
−

=

=
1

1

1 N

k
kN

G µξ

3) the second smallest eigenvalue,  
                  algebraic connectivity a(G) = µN-1, 
    is related to how strongly a graph is connected 

3) Perron-Frobenius Theorem: λ1 non-negative and components 
eigenvector are non-negative. (irreducible = connected: positive) 

There exists a wealth of properties of graph spectra: see e.g. 
 
P. Van Mieghem, Graph Spectra of Complex Networks, Cambridge University Press, 2011 

2) complexity (number of spanning trees) is  
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Refreshing your knowledge (1/2) 

•  Adjacency matrix 

1 

2 

3 

4 5 
  

A =

0 1 1 0 0
1 0 1 0 0
1 1 0 1 0
0 0 1 0 1
0 0 0 1 0

!

"

#
#
#
#
#

$

%

&
&
&
&
&

•  λ1 = spectral radius = largest eigenvalue of A 

28 

Refreshing your knowledge (2/2) 

   

Q = ! " A

! = diag( d1 d2 … dN )

•  Laplacian matrix 

1 

2 

3 

4 5 

•   a(G) = algebraic connectivity = second smallest eigenvalue of Q 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−−

−−−

−−

−−

=

11000
12100
01311
00121
00112

Q
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Connectivity of graphs 

G1 

G2 

G3 

Difficulty to  
disconnect 

a(G1) = 0 

a(G2) = 0.29 

a(G3) = 0.59 

Largest eigenvalue of a symmetric matrix 

30 

Rayleigh principle: !1 "
wT Aw
wTw

with equality only if w = x1 

Gerschgorin’s theorem: !1 " dmax

There are many variations possible on the Rayleigh principle: 
 1) find suitable vector w 
 2) apply to powers of A recalling that Nk = uT Ak u  
     is the total number of walks with k hops 

if  then Ax = !x Akx = ! k x for nonnegative integers k 

Power method:  Akw = !1"1
k x1 1+O

"2
"1

k#

$
%

&

'
(

#

$
%
%

&

'
(
(

P. Van Mieghem, Graph Spectra for Complex Networks,  
Cambridge University Press, 2011 
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Bounds largest eigenvalue adjacency matrix 

31 

dmax ! "1 A( ) ! 2L
N

= E D[ ]Classical bounds: 

! ! 
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N
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P. Van Mieghem, Graph Spectra for Complex Networks,  
Cambridge University Press, 2011 
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Optimization 
•  Remove m nodes in G such that each removal 

decreases λ1(A) maximally.  
•  Remove l links in G such that each link removal 

decreases λ1(A) maximally. 
•  What are the optimal strategies? 

•  Unfortunately, these problems are NP-complete...   

32 

P. Van Mieghem, D. Stevanovic, F. A. Kuipers, C. Li, R. van de Bovenkamp, D. Liu  
and H. Wang, 2011, "Decreasing the spectral radius of a graph by link removals",  
Physical Review E, Vol. 84, No. 1, July, p. 016101 

The Interlacing Theorem 
For a real symmetric n x n matrix A and any principal  
m x m submatrix B of A obtained by deleting n-m same rows 
and columns in A, the eigenvalues of B interlace with those 
of A as 
 !n"m+ i (A) # !i (B) # !i (A) for any 1 # i # m
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USA air transportation network 
N = 2179 and L = 31326 

33 

Van Mieghem, P., H. Wang, X. Ge, S. Tang and F. A. Kuipers, 2010, "Influence of Assortativity and  
Degree-preserving Rewiring on the Spectra of Networks", The European Physical Journal B, vol. 76, No. 4, pp. 
643-652. 

Degree-preserving rewiring USA air 
transport network: adjacency eig. 

34 
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Degree-preserving rewiring USA air 
transport network: Laplacian eig. 

35 
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37 

Complex network models 

Small-World Graph  
of Watts-Strogatz 

Erdös-Rényi 
Random Graph 

Scale-Free Graph 
of Barabási-Albert 

Network Model: Erdös-Rényi random graph  

It is a class of graphs with N nodes 
and each node pair is connected 
independently with probability p. 
 

  
E[L] =

N (N ! 1)
2

p

  

The average clustering coefficient follows
E[c

Gp (N )
] = p   
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Degree distribution: Binomial distribution 

  
Pr[Drg = k] = N ! 1

k
"

#
$

%

&
' pk (1! p)N !1!k

For large N and p = λ/N approaches a Poisson distribution 

Pr[D
rg
= k ] !

(pN )k

k !
e !Np

Network Model: Erdös-Rényi random graph  

Simplest proof via pgf: 

E z
Drg!

"
#
$= 1% p+ pz( )

N%1
= 1+

! z%1( )
N

&

'
(

)

*
+

N%1

, e
! z%1( )

P. Van Mieghem, Performance Analysis of Communications Networks and Systems,  
Cambridge University Press, 2011 

The critical link density pc 
 
Pr[Gp(N) is connected]=Pr[Dmin ≥ 1] 
 
 

   

 

  
 

Pr
[G

p(
N
)	  i
s	  c

on
ne

ct
ed

]	  

pc~logN/N 

1 

0 

  

Pr[Gp (N ) is connected]=
0  if p < log N

N

1  if p > log N
N

!

"

#
#

$

#
#

  
O 1

N
!

"#
$

%&

Network Model: Erdös-Rényi random graph  

phase transition 

Pr Gp(N ) is connected!" #$ % exp &Ne&E D[ ]( )
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120

100

80

60

40

20

0

f λ
(x
)

-10 -5 0 5 10

Eigenvalues x

Random Graph  G0.002(300) 

Isolated node 

Node with degree ≤ 9 

Node with degree > 9 

Connected cluster size = 12 nodes 

E[D] = 0.6, p = pc/4 

from Javier Martin Hernandez 
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80
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f λ
(x
)

-10 -5 0 5 10

Eigenvalues x

Random Graph  G0.004(300) 

Connected cluster size = 25 nodes 

E[D] = 1.2, p = 0.5 pc 

Isolated node 

Node with degree ≤ 9 

Node with degree > 9 
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60
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f λ
(x
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-10 -5 0 5 10

Eigenvalues x

Random Graph  G0.008(300) 

Connected cluster size = 255 nodes 

Critical threshold: pc~0.019 

E[D] = 2.4 

Isolated node 

Node with degree ≤ 9 

Node with degree > 9 
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20
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f λ
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-10 -5 0 5 10

Eigenvalues x

Random Graph  G0.016(300) 

Connected graph, p = 2 pc 

E[D] = 4.8 

Isolated node 

Node with degree ≤ 9 

Node with degree > 9 
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20
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f λ
(x
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-10 -5 0 5 10

Eigenvalues x

Random Graph  G0.032(300) 

Isolated node 

Node with degree ≤ 9 

Node with degree > 9 

Connected graph, p = 4 pc 

E[D] = 9.6 

14
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4

2

0

f λ(
x)

403020100

eigenvalue x

E[λ1] = p(N −2) + 1

 p = 0.1
 p = 0.2
 p = 0.3
 p = 0.4
 p = 0.5
 p = 0.6
 p = 0.7
 p = 0.8
 p = 0.9
 Semicircle Law (p = 0.5)

p = 0.1

p = 0.9

p = 0.2p = 0.8

p = 0.3
 

p = 0.7

N = 50

Wigner’s semicircle law for Gp(N) 

46 

P. Van Mieghem, Graph Spectra of Complex 
Networks, Cambridge University Press, 2011 
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Network Model: Small-world graph  

Network Model: Small-world graph  
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Spectrum small world graph 

49 

0.8

0.6

0.4

0.2

0.0

f λ
(x

)

86420-2-4
 eigenvalue x

increasing 
rewiring 

P. Van Mieghem, Graph Spectra of Complex Networks,  
Cambridge University Press, 2011 

Metabolic network: nodes(chemicals) and links(bio-chemical 
reactions) 

H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.L. Barabasi, Nature, 407 651 (2000) 

Archaea	   Bacteria	   Eukaryotes	  

Network Model: BA power law graph  
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“Power laws” in complex networks 

10-4

10-3

10-2

10-1

100

1
2 3 4 5 6 7 8 9

10
2 3 4 5 6 7 8 9

100
2 3 4 5 6 7 8 9

1000
d

 CCDF. β=2.96
 PDF. β=2.58
 Slope -3. β=−3

“power law” Degree: 

[ ] β−== ckkDPr

degree k 

Pr
[D

 =
 k

] 

52 

Power law graphs 
Measurements of the degree of nodes in (subgraphs of) the Internet topology indicate that 

τ−≈= ckkD ]Pr[

A power law degree distribution is also called scale-free: 

[ ]kDakcaakD ==== −−− Pr]Pr[ τττ

Any number a just multiplies the probability density; there is no characteristic length 

The simplest family of “power law” graphs have been proposed by Barbasi-Albert: 
 1) start with n nodes 
 2) attach a new node with m links to a node proportionally to its degree 
 3) repeat 2) until size N is reached 

This construction of “preferential attachment”, “rich get richer”, is observed in 
many large complex networks (webgraph, proteins, social relations, etc...) 

[ ]

1k provided  
)(

)(]E[D

 1)-O(
1

1)(  where2, provided  
)(

)1(

k +>
−

=

++
−

=>
−

=
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τζ

τγ
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τζτ
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k

DE
Moreover, 
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53 
Reprinted from Linked: The New Science of Networks by Albert-Laszlo Barabasi 

ER graph BA graph 

54 

Mystery of “power laws” 

Power law of a “property” appear if the “system” grows 
exponentially: 
•  if X grows exponentially with Y and Y has an 

exponential distribution, then X will have a power-law 
distribution (Proof PA, p. 324) 

( ) ( )taf
dt
tdf
=

The exponential function f(t) has a linear differential 
equation 

which essentially means "growing proportional to its size" 

At phase transitions, quantities of interest also change 
in a “power law” fashion 



28	


Observed common properties 

•  small-world property 

•  average length of a path is short compared to the 
size N of the network (E[H] = O(logN)) 

•  scale-free degree distribution 

•  heavy tails (non-Gaussian behavior) 

•  clustering and community structure 

•  network of networks 

•  robustness to random node failure 

•  vulnerability to targeted hub attacks and cascading 
failures 

55 
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North American 
blackout 

58 

Cause: somewhere in Ohio 
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Cause: somewhere in Ohio 

60 

Cause: somewhere in Ohio 
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A few days earlier… 

•  “Alarm systems failed due to infection with Blaster Worm” 

Blaster Worm 

62 

Introduction (1/2) 

•  Society is critically depending on complex networks 
•  Internet 
•  Transportation networks 
•  Energy networks 
•  Communication networks 

•  Severe consequences if networks are disrupted 

•  Robustness is defined as the extent to which the 
complex network is able to cope with perturbations 
imposed on it 
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Introduction (2/2) 

•  Examples of perturbations 
•  Failures 

•  Broken fibre cables 
•  Malfunctioning switches  
•  … 

•  Attacks 
•  Denial-of-Service 
•  Physical attack on Internet Exchange 
•  … 

•  Aim of this lecture: discuss examples of how graph-
theoretic metrics can be used to quanity robustness 

64 

Motivation for virus spread in networks 

•  Computer viruses 
•  security threat to Internet 
•  annoyance 
•  very costly 

•  Code Red worm: several billion $$ in damage 

•  Why do we care? 
•  Understanding the spread of a virus is the first step 

in preventing it 
•  How fast do we need to disinfect nodes so that the 

virus dies quickly? Which nodes? 
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Applications of virus spread models 

65 

•  Computer virus and worms modelling 

•  Epidemic algorithms 

•  Error propagation in networks 

•  Any self-replicating object on a dynamic 
network 

•  Emotions as infectious diseases in social 
networks 

66 

Simple SIS model (1) 

•  Homogeneous birth (infection) rate β on all edges 
between infected and susceptible nodes 

•  Homogeneous death (curing) rate δ for infected nodes 

Healthy 

β  
 β  

δ  

τ = β /δ : effective spreading rate	


Infected 

0 
3 

2 

1 

Infected 
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Simple SIS model (2) 

•  Each node j can be in either of 
the two states: 
•  “0”: healthy 
•  “1”: infected 

•  Markov continuous time: 
•  infection rate β	

•  curing rate δ	


•  Mathematically: 
•  Xj is the state of node j 
•  infinitesimal generator 
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1 0 

 

Qj t( ) =
!q1 j q1 j
q2 j !q2 j
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Simple SIS model (3) 
•  Nodes are interconnected in 

graph: 
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Qj t( ) =
!q1 j q1 j
" !"

# 

$ 
% 

& 

' 
( 

 

q1 j t( ) = ! a jk1 Xk t( )=1{ }
k=1

N

"
where the infection rate is due all infected neighbors 
of node j:  
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⎥
⎥
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⎣

⎡

=
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A
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…
…

21

22221

11211

and where the adjacency matrix of the graph is 

1 0 

q1j 

!
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Simple SIS model (4) 

•  Markov theory requires that the infinitesimal generator 
is a matrix whose elements are NOT random variables 

•  However, this is not the case in our simple model: 
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q1 j t( ) = ! a jk1 Xk t( )=1{ }
k=1

N

"

•  By conditioning to each possible combination of 
infected states, we finally arrive to the exact Markov 
continuous SIS model 

•  Drawback: this exact model has 2N states, where N is 
the number of nodes in the network.  

0000 
0 

0001 
1 

0010 
2 

0100 
4 

1000 
8 

1001 
9 

0011 
3 

0101 
5 

0110 
6 

1010 
10 

1011 
11 

0111 
7 

1101 
13 

1100 
12 

1111 
15 

1110 
14 

2N states! 

Exact SIS model 
N = 4 nodes 

Absorbing state 
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Simple SIS model (5): mean field 
•  The infinitesimal generator 
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Qj t( ) =
!q1 j q1 j
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is replaced by its mean (the only approximation!) 

 

q1 j t( ) = ! a jk1 Xk t( )=1{ }
k=1

N
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Qj = !E q1 j[ ] E q1 j[ ]
" !"
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E q1 j t( )[ ] = ! a jk
k=1

N

" Pr Xk t( ) =1{ }[ ]
•  Being able now to apply ordinary Markov theory, we arrive at our 

  N-intertwined model for virus spread 

  

 

dv1
dt

= (1! v1)" a1k
k=1

N

# vk !$v1

dv2
dt

= (1! v2)" a2k
k=1

N

# vk !$v2

!
dvN
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= (1! vN )" aNk
k=1

N

# vk !$vN
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vk t( ) = Pr Xk t( ) =1[ ]where 

N-intertwined virus spread model 

•  Non-linear matrix equation: 
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dV t( )
dt

= !A.V t( ) " diag vi t( )( ) !A.V t( ) + #u( )
where the vector uT =[1 1 ... 1] and VT = [v1 v2 ... vN] 

•  Results: 
•  Probability of infection vk for each node k separately 
•  Number of infected nodes in the steady state 
•  Phase transition phenomena for any network (largest eigenvalue  

 of the adjacency matrix A) 
•  Analytic computations feasible: 

•  expansions of vk as a function of the effective infection rate 
  around the epidemic threshold and around infinity  

P. Van Mieghem, J. Omic, R. E. Kooij, “Virus Spread in Networks”, 
IEEE/ACM Transaction on Networking, Vol. 17, No. 1, pp. 1-14, (2009). 
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Simulations 
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500 simulations 

K10,990 ! = 1
s
= 0.15

y!(s) =
mn " s2( )
m + n

1
s +m

+ 1
s + n

#
$%

&
'(

time 

Kephart-White model 
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dv1
dt

= (1! v1)! a1k
k=1

N

" vk !"v1

dv2
dt

= (1! v2 )! a2k
k=1

N

" vk !"v2

!
dvN
dt

= (1! vN )! aNk
k=1

N

" vk !"vN

#
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%
%
%
%%

&

%
%
%
%
%

Assume perfect homogeneity & symmetry: a graph of degree r 
dv
dt
= (1! v)!rv!"v

steady-state 

v =1! 1
r! ! =

"
#

where 

threshold 

! ! ! c =
1
r then v ! 0

J. O. Kephart and S. R. White, “Directed-graph epidemiological models of computer  
viruses,” Proc. IEEE Comput. Soc. Symp. Research in Security  
and Privacy, May 1991, pp. 343–359. 
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What is so interesting about epidemics? 

75 

 
•  Final epidemic state  

•  Rate of propagation  

•  Epidemic threshold 

β : infection rate per link 

δ : curing rate per node 

τ= β/ δ  : effective spreading 

              rate 

 

! c = 1
"1 A( )

 

E D[ ] = 2L
N

! "1 A( ) ! dmax

Affecting the epidemic threshold 

•  Degree-preserving rewiring 
•  Changing the assortativity of the graph 
•  Van Mieghem, P., H. Wang, X. Ge, S. Tang and F. A. Kuipers, 2010, 

"Influence of Assortativity and Degree-preserving Rewiring on the Spectra of 
Networks", The European Physical Journal B, vol. 76, No. 4, pp. 643-652. 

•  Removing links/nodes (optimal way is NP-complete) 
•  Van Mieghem, P., D. Stevanovic, F. A. Kuipers, C. Li, R. van de Bovenkamp, 

D. Liu and H. Wang, 2011,
"Decreasing the spectral radius of a graph by link removals", Physical Review 
E, Vol. 84, No. 1, July, p. 016101. 

•  Quarantining: Removing inter-module links 
•  Omic, J., J. Martin Hernandez and P. Van Mieghem, 2010, "

Network protection against worms and cascading failures using modularity 
partitioning", 22nd International Teletraffic Congress (ITC 22), September 
7-9, Amsterdam, Netherlands. 
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E.R. van Dam, R.E. Kooij, The minimal spectral radius of graphs with a given diameter,  
Linear Algebra and its Applications, 423, 2007, pp. 408-419. 
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Introduction 

Graph metrics 

Spectrum 

Network models 

Attacks & failures 

Framework for robustness 

 

Outline 

A framework for network robustness:  
the R-model 

 

EU project FP7 – 224619: http://www.resumenet.eu/   
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Barabasi-Albert 
N = 300 

Define robustness 
Classes or “how good is 
the network?” 

To which class  
does a given  

network 
belong? 

How to modify 
the graph to 
increase its robustness 
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Network: topology + service(s) 

•  Topology (or network infrastructure): 
•  graph G with N nodes and L links 
•  link weights 
•  “hardware” 

 
•  Service: 

•  more abstract and less clearly defined 
•  uses the network infrastructure to transport items (e.g. email 

service, telephony, video, cars on roads, neurons in brain, 
etc.) 

•  “software” 
 

•  Topology and service 
•  own specifications 
•  service is often designed independently of the topology 
•  often more than 1 service on a same topology  
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High-Level Goal: 
Express Network Resilience in a 
Number R 

! 

R " [0,1]
R = 0: absence of resilience 
R = 1: ideally resilient 

82 

Simple framework 

Compute 
R-value 

R > Rthresh 
Desired 
Graph 

Modify 
Graph 

topology 
service 

yes no 

network 

Goals: 
1. define “R-value” that characterizes the level of robustness in any network 
2. compute the R-value 
3. robustness classes (understanding): which R is desirable and what is Rthreshold 
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R-model 

tstsR
m

k
kk .

1

==∑
=

s: the service vector with m components (interpreted as weights) 
t: the topology vector where each component is a metric  
   (e.g. average degree, clustering coefficient, algebraic connectivity, 
   minimum degree, diameter/hopcount, betweenness, etc...)  

•  Normalization:  R = 0 (absense of network robustness) 
   R = 1 (perfect robustness)  

•  Linear:  
• simplest m-dim expression & geometric interpretation (vector) 
•  expectation E[R] easy 

•  no constraints on component values (else linear programming model) 

)10( ≤≤ R

P. Van Mieghem, C. Doerr, H. Wang, J. Martin Hernandez, D. Hutchison,  
M. Karaliopoulos and R. E. Kooij, 2010, "A Framework for Computing  
Topological Network Robustness", Delft University of Technology, report20101218. 
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Issues with R-model 
•  dimension m: trade-off between accuracy and 

computational complexity (not problematic, consensus) 
•  orthogonality of the metrics (fundamental problem) 

•  each metric should ideally be a basis vector in m-dim 
space 

•  almost all topology metrics are dependent 
•  degree of dependence depends on the graph 
•  Solution: no metrics, but matrices (adjacency A, 

incidence B, Laplacian Q) or spectra (graph theory)? 
•  Normalization of graphs: how to compare graphs with 

different number of nodes and links?  
•  unclear how to map a service onto a service vector 

(recall sk is projection of s on k-th metric)  
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Which metrics to choose? 

•  Which metrics to choose is still an open question 

• Decomposition problem 
• Dependency problem 
• Normalization problem 

User-Level Metrics 

Topological Metrics 

R as a function of “challenges” 

n 

R[k] 

k challenges 
0 

best 

worst 

•  resilience is related to the network’s capability to withstand 
perturbations from the outside during a given time interval 

specific realization 
Rtheshold 
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Understanding the Series of Events: 
Metric Envelopes 

88 

Understanding the Series of Events: 
Comparing Metric Envelopes 

•  Comparing resilience based 
on metric envelopes give a 
visual explanation of the 
network degradation process 

• Depending on the application 
domain a more bounded envelope 
might be preferable 

• The effect of various failure sources 
on the evaluated metric can be 
revealed 
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Computational Approach to a  
     Measuring Resilience 
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Case Study: 
A Wireless 
GEANT2 

Show case for: 
- Regional Challenges 
- Fine-Grained, Intuitive Failures 
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W-GEANT2: 
Where are the weak points? 

•  Risk map indicates 
which areas are most 
vulnerable to 
challenges 

Impact map visualizes the 
effect of a particular failure 
on the network as a whole 

Let’s take a deeper look: 
What concretely would happen? 

92 

C. Doerr and J. Martin-Hernandez, “A Computational Approach to  
Multi-Level Analysis of Network Resilience,” Proc. 3rd Int. Conf. Dependability,  
Venice, Italy, July 2010.  
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Books 

Articles:   http://www.nas.ewi.tudelft.nl 
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