
Ant Routing in Mobile Ad Hoc Networks

S. S. Dhillon, X. Arbona and P. Van Mieghem
Delft University of Technology

Faculty of Electrical Engineering, Mathematics and Computer Science
P.O. Box 5031, 2600 GA, Delft, The Netherlands

s.dhillon, P.VanMieghem@ewi.tudelft.nl and f.j.arbonabernat@student.tudelft.nl

Abstract

We study the performance of ant routing for static and
dynamic network topologies. We also compare the per-
formance of ant routing with AODV and DSR for ad hoc
networks. The simulations show that the ant routing al-
gorithm performs well for static topologies. However, the
routing overhead in ant routing is more than AODV and
DSR. Therefore, ant routing performs worse than AODV
and DSR in ad hoc networks because of the limited capacity
and restrictions on the buffer size. Moreover, with mobility,
a large number of data packets in ant routing experience
loops that degrade the end-to-end performance.

1. Introduction

Routing consists of a routing protocol and a routing algo-
rithm [15]. The routing protocol is used to exchange infor-
mation about topology and link weights while the routing
algorithm computes the paths between nodes. An exam-
ple of the classical approach to routing is the Open Shortest
Path First (OSPF). In OSPF, the routers exchange link-state
information by flooding and the link state updates are gen-
erated only when the link status changes. Once a node has
obtained topology information of the entire network, Dijk-
stra’s and Bellman-Ford’s algorithms are generally used to
compute the shortest path [15].

A relatively new approach to routing is the mobile agent
based routing (MABR) or ant routing [5, 4] which com-
bines the routing protocol and the routing algorithm into
a single entity. In MABR, the nodes maintain probabilis-
tic routing tables which are updated periodically by mobile
agents (ants) based on the quality of paths. The quality of
paths is expressed in terms of metrics such as hopcount,
end-to-end delay, packet loss etc. The probabilistic routing
tables contain the probability of choosing a neighbor as the
next hop for any destination. Data packets are forwarded
according to the probabilistic routing tables, and therefore,

no additional routing algorithm is required to compute the
paths.

There are a number of differences between the above
two approaches. MABR is a hop-by-hop routing approach.
In MABR, traffic across the network is continuously moni-
tored by the mobile agents. Due to the probabilistic routing
in MABR, the paths are not loop-free and oscillations might
occur. The hop-by-hop nature of routing in MABR cannot
reserve paths that satisfy QoS constraints [15]. However,
MABR provides soft-QoS since different paths are continu-
ously monitored and quality of paths is reflected in the rout-
ing table values. In OSPF, traffic fluctuations and the end-
to-end delay are not measured. MABR has been shown to
perform load balancing, i.e. distribute traffic along multiple
paths, and automatic adaptation to node or link failure in
static topologies [5, 14, 4].

In ad hoc and mesh networks [1], mobile nodes commu-
nicate with each other using multihop wireless links. A key
challenge in these networks is the development of routing
protocols that can efficiently find routes between commu-
nicating nodes. In addition, in ad hoc networks the routing
protocol must be able to cope with the node mobility that
changes the network topology frequently. We refer to the
frequently changing network topology as dynamic topol-
ogy. Routing protocols for ad-hoc networks can be clas-
sified into different categories such as Pro-active or table
driven (e.g. DSDV [3]) and Reactive or on-demand (e.g.
AODV [11] and DSR [9]) based on the routing information
stored at the nodes. In on-demand protocols, routes are cre-
ated only when desired by the source node. In table-driven
routing protocols, each node maintains one or more tables
to store routing information and attempts to maintain con-
sistent, up-to-date view of the network topology. In general,
on-demand protocols perform better than reactive protocols
in ad hoc networks [3] and mesh networks [1].

The performance of MABR for mobile ad hoc networks
is an open issue. MABR algorithms do not take into ac-
count the mobility of the nodes. Moreover, load balancing
for frequently changing topologies is a challenging issue.

Load balancing involves distributing traffic along multiple
paths depending on the traffic conditions such that the con-
gested nodes or the unavailable links are by-passed. With
node mobility, the paths are not stable making load balanc-
ing difficult. Furthermore, characteristics of traffic in ad
hoc networks is not known. In this paper, our aim is to
study whether MABR algorithms can be applied for routing
in mobile ad hoc networks.

We study the performance of a MABR algorithm
(W_AntNet) described in Section 3, for static and mo-
bile wireless networks. W_AntNet is an adaptation of the
AntNet algorithm proposed by Di Caro and Dorigo [5]. In
section 4, we compare the performance of W_AntNet al-
gorithm with Dijkstra’s shortest path algorithm for static
topology. We also compare the performance of W_AntNet
with ad hoc routing protocols AODV [11] and DSR [9].

2. Related Work

A variety of MABR algorithms have been proposed for
wired and ad hoc networks. AntNet and Ant-Based Control
(ABC) proposed by Schoonderwoerd et al. [14] are exam-
ples of MABR algorithms for wired networks. AntNet [5]
has been shown to perform better than OSPF under vary-
ing and near saturation traffic loads. In addition, AntNet
has been shown to converge to the shortest path with non-
varying traffic loads [4]. ABC is similar to AntNet but it
is designed for load balancing in circuit-switched networks
and uses one-directional mobile agents [14].

MABR algorithms for ad hoc networks, such as An-
tHocNet [6], Ad hoc Networking with Swarm Intelligence
(ANSI) [12], Ant-Colony-Based Routing Algorithm (ARA)
[7], Ant-AODV [10] and Termite [13], use on-demand mo-
bile agents for discovering routes. The on-demand flood-
ing of mobile agents is similar to flooding of route request
(RREQ) packets in on-demand protocols AODV and DSR.
In ANSI, ARA and Termite, the pheromone decays and as a
result after a certain period the routing tables are empty. The
decay of routing table values is similar to AODV where the
paths are valid for a certain duration of time. Thus, the paths
obtained by using AODV or ANSI, ARA and Termite are
identical. In addition, if a link breaks in ANSI, AntHocNet,
Ant-AODV and ARA routing protocols inject route error
packets similar to on-demand protocols. Indeed, the perfor-
mance of ANSI, ARA and Ant-AODV is similar to AODV
and DSR [7, 10, 12]. In our view, these algorithms are a
variation of the on-demand protocols and deviate from the
original idea of MABR algorithms in which routing tables
are sufficient for routing data packets. We do not consider
the performance of MABR algorithms that use on-demand
flooding of mobile agents in this paper.

Routing table

Local Traffic
Statistics

Network
node

N; N; WN…2; 2; W21; 1; W1

N....21

N; N; WN…2; 2; W21; 1; W1

N....21

Network nodes

N
et

w
or

k
no

de
s

Neighbor nodesx

y

z

Tk=

pzNpyNpxN

…
pz2py2px2

pz1py1px1

pzNpyNpxN

…
pz2py2px2

pz1py1px1

Mk =

(a) Routing table: For any destination node i, pxi+pyi +pzi = 1 (b) Statistic Table: The mean µi and variance si represent
the estimated mean and variance of the end-to-end delay to the node i. The moving observation window Wi is an array
containing the end-to-end delay for node i.

Routing table

Local Traffic
Statistics

Network
node

N; N; WN…2; 2; W21; 1; W1

N....21

N; N; WN…2; 2; W21; 1; W1

N....21

Network nodes

N
et

w
or

k
no

de
s

Neighbor nodesx

y

z

Tk=

pzNpyNpxN

…
pz2py2px2

pz1py1px1

pzNpyNpxN

…
pz2py2px2

pz1py1px1

Mk =

(a) Routing table: For any destination node i, pxi+pyi +pzi = 1 (b) Statistic Table: The mean µi and variance si represent
the estimated mean and variance of the end-to-end delay to the node i. The moving observation window Wi is an array
containing the end-to-end delay for node i.

Figure 1. The data structures: Routing table
() and Statistics Table () for a node with
neighbors , and and a network with
nodes.

3. W_AntNet Algorithm

The W_AntNet algorithm is based on AntNet but uses
neighbor discovery and added functionality to deal with
node mobility. We summarize W_AntNet and refer to [4]
for details.

3.1. Data Structures at a Node

Mobile agents communicate in an indirect way, through
the information they concurrently read and write in two data
structures stored at each network node :

1. A routing table , organized as a matrix with prob-
abilistic entries as shown in Figure 1. Each row in
the routing table corresponds to one destination in the
network and each column corresponds to a neighbor
of the current node. The routing table defines the
probabilistic routing policy currently adopted at node

: for each possible destination and for each neigh-
bor node , stores a probability value express-
ing the probability of choosing as the next node when
the destination is such that:X

= 1

where [1] and = { ()}
2. A table (2) containing statistics about the

traffic distribution over the network as seen by the local

node . For each destination in the network, the ta-
ble contains a moving observation window , an
estimated mean and an estimated variance 2 The
moving observation window , of size , rep-
resents an array containing the trip times of last
forward ants that travel from the node to the destina-
tion . The moving observation window is used to
compute the best trip time i.e., the best trip time
experienced by a forward ant travelling from the node

to the destination among the last forward
ants that travel from the node to the destination .
The mean and variance 2 represent the mean and
variance of the trip times experienced by the forward
ants to move from the node to the destination node
and are calculated using the exponential model:

+ () (1)

2 2 +
³
()

2 2
´

(2)

In (1) and (2), represents the newly observed
forward ant’s trip time to travel from the node to the
destination node and (0 1] is a factor that weighs
the number of recent samples that will affect the mean

and the variance 2.

3.2. AntNet Algorithm

The AntNet algorithm [5] can be described as follows:

1. At regular intervals, from every network node , a for-
ward ant is launched with a randomly selected
destination node . While travelling towards their des-
tination nodes, the identifier of every visited node
and the time elapsed since the launching time of the
forward ant to arrive at this -th node are pushed onto
a memory stack stored in the data field of the
forward ant. Forward ants share the same queues as
data packets, so they experience the same traffic de-
lays as data packets.

2. At each node , each forward ant chooses the next
node as follows:

• If all the neighboring nodes have not been visited,
then the next neighbor is chosen among the nodes
that have not been visited as:

0 =
+

1 + (| | 1)
(3)

In (3), represents the set of neighbors of
the current node and | | the cardinality of
that set, i.e., the number of neighbors while the

heuristic correction is a normalized value [0 1]
such that 1 is proportional to the length of
the queue of the link connecting the node with
its neighbor :

= 1 P| |
0=1 0

(4)

The value of in (3) weighs the importance of
the instantaneous state of the node’s queue with
respect to the probability values stored in the
routing table.

• If all the neighboring nodes have been visited
previously, then the next node is chosen uni-
formly among all the neighbors. In this case,
since all the neighbors have been visited previ-
ously the forward ant is in a loop (cycle).

• With a small probability , the next node is cho-
sen uniformly among all the neighboring nodes.
The parameter ensures that the network is be-
ing constantly explored, though it introduces an
element of inefficiency in the algorithm [4].

3. If a cycle is detected, the cycle’s nodes are popped
from the ant’s stack and all memory about the cycle is
destroyed. If the cycle lasted longer than the lifetime
of the forward ant before entering the cycle, the ant is
destroyed. The lifetime of a forward ant is defined as
the total time since the forward ant was generated.

4. When the destination node is reached, the forward
ant generates a backward ant . The for-
ward ant transfers all the memory contained in the
stack to the backward ant, and dies. The back-
ward ant takes the same path as the corresponding for-
ward ant, but in the opposite direction. At each node ,
the backward ant pops the stack to move to the
next node. Backward ants use high priority queues to
quickly propagate to the routing tables the information
collected by the forward ants.

5. Arriving at a node coming from a neighbor node ,
the backward ant updates the two main data structures
of the node, the local model of the traffic and the
routing table , for all the entries corresponding to
the destination node .

• The mean and variance 2 entries in the local
model of traffic are modified using (1) and
(2). If the newly observed forward ant’s trip time

from the node to the destination is less
then , then is replaced by

• The routing table is changed by increment-
ing the probability 0 (i.e., the probability of

choosing neighbor when destination is 0) and
decrementing, by normalization, the other proba-
bilities 0 The probability 0 is increased by
the reinforcement value as:

0 0 + (1 0) (5)

The probabilities 0 of the other neighboring
nodes for destination 0 are decreased by the
negative reinforcement as:

0 0 0 6= (6)

Thus, in AntNet, every path found by the forward
ants receives a positive reinforcement.

The reinforcement value used in (5) and (6) is a di-
mensionless constant (0 1] and is calculated as:

= 1 + 2
() + ()

(7)
In (7), the parameter represents a better estimate of
mean and is calculated as:

= +
1

p| | (8)

where is the confidence level [4]. The first term in (7)
evaluates the ratio between the current trip time and the
best trip time observed over the moving observation win-
dow. The second term is a correction factor and indicates
how far the value of is from in relation to the
extension of the confidence interval [5]. The values of 1and
2 indicate the relative importance of each term.

The value calculated in (7) is finally transformed by
means of a squash function () defined by:

() =
1

1 + exp
³

| |
´ where (0 1] R+

(9)
()

(1)
(10)

The squash function () is used so that small values of
would have negligible effect in updating the routing tables
[5]. Due to the squash function (), the low values of
are reduced further, and therefore do not contribute in the
update of routing tables1. Figure 2 shows the effect of co-
efficient on the squash function (). Figure 2 shows
that if the value of coefficient is less than 1, then even
low values of get incremented due to the squash function
(). Thus, the value of parameter should be chosen such

that the coefficient is greater than 1.

1Low values of indicate sub-optimal paths.

1.0

0.8

0.6

0.4

0.2

0.0

s(
r)

/s
(1

)

1.00.80.60.40.20.0
r

a / Nk = 0.5

a / Nk = 1

a / Nk = 2

a / Nk = 4

a / Nk = 8

a / Nk = 16

a / Nk = 32

a / Nk = 64

Figure 2. The squash function () for differ-
ent values of the coefficient .

Data packets use different routing tables than the forward
ants for travelling from the source node to the destination
node. The routing table values for data packets are obtained
by re-mapping the routing table entries used by forward ants
by means of a power function () and re-normalizing these
entries.

() = 1 (11)

The power function () prevents the data packets from
choosing links with very low probability. The data packets
have a fixed time to live (TTL); if the data packets do not
arrive at the destination within the TTL, they are dropped.
Table 1 lists the optimized values of different parameters
used in W_AntNet [4].

Table 1. The values of different parameters
used in W_AntNet.

Name, symbol Value
used in (5) 0.2

0.1

1 used in (9) 0.7

2 used in (9) 0.3
used in (11)
used in (13) 3

Confidence interval () used in (10) 0.95

3.3. Neighbor Discovery Protocol

At regular intervals, hello messages are exchanged be-
tween neighboring nodes. When the neighbors are lost or
new neighbors are added, the routing tables are updated and
the probability values are re-normalized. The forward ant
packets and data packets waiting in the buffer are rerouted
if the next hop neighbor is lost. However, the backward ant
packets are dropped if the next hop neighbor is lost. This
ensures that only paths that are stable during a sufficiently
long time interval, i.e. the time between the creation of for-
ward ant and the receipt of the backward ant appear in the
routing tables.

3.4. Routing Overhead for W_AntNet

The routing overhead for obtaining a path to any destina-
tion is () in AODV and DSR since both these protocols
use controlled flooding or sequence numbers. To compute
the complexity of W_AntNet, we use the fact that ad-hoc
wireless networks can be modeled as a geometric random
graph (or random graph) [8]. In W_AntNet, the forward
ants perform random walks to search for the destination.
Therefore, the worst-case routing overhead for a single up-
date of the routing tables [2] is (log). Moreover, the
number of updates required for routing table convergence,
i.e. probability for one of the entries in routing tables to
be one, depends on the quality of different paths, network
topology and the routing table update function. We show
that multiple backward ants are needed for the routing ta-
bles to converge.

Consider a node with neighboring nodes. At = 0,
the probability of choosing neighbor as the next hop for
destination , (0) = 1 . We assume that only the
routing table values for neighbor i.e., receive posi-
tive reinforcement. Under these assumptions, the probabil-
ity (+ 1) is,

(+ 1) = () + () (12)

where is a constant. After updates,

() = (0) (1 +)

Since the routing table converges when () 1, the
value of is :

=
log ()

log (1 +)
(13)

where is the number of neighbors of node . Thus, the
overhead for routing tables to converge in W_AntNet under
the given assumptions is (log log). The value of

varies from for a complete mesh to (1) for a
random graph or geometric random graph [8]. The geomet-
ric random graph is almost surely connected [8] if the link
density log when is large and therefore, the
minimum value of = log .

4. Results

We performed extensive simulations of W_AntNet us-
ing our simulator [4] and NS-2 simulator2. Using NS-2, we
compare the performance of W_AntNet with AODV and
DSR. The simulations are performed for the benchmark sce-
nario [3]: 50 nodes moving over an area of 1500 × 300
for 900 s. In W_AntNet, there is training period (T.P.) at
beginning of simulations during which data packets are not
generated. The values of various parameters in W_AntNet
are taken from [5, 4]. The mobility model in the simula-
tions is random waypoint [3]. A pause time of 0s corre-
sponds to continuous motion while a pause time of 900s
corresponds to the static scenario. We assume a transmis-
sion range of 250m for each node in our simulator. Using
these parameters, the average node degree is 2 =
50 (250)2

1500 300 22 and the network diameter or worst case

hopcount is 15002+3002

250 6.

4.1. Static versus Dynamic Topology

We compare the performance of W_AntNet for static and
dynamic topologies. The MAC layer is ignored in these
simulations. Moreover, we assume that each node is able
to remove 1 packet/ms from the queue and no TTL is set
for data packets. The routing tables are updated based on
the hopcount between the source and destination nodes so
that the performance is independent of the packet size, ca-
pacity of the links and the queueing delays. Thus, instead
of (3), 0 = + is used for choosing the next hop.
Figure 3 shows the probability distribution of hopcount for
W_AntNet with different pause times. To verify our analy-
sis, we also plot the number of connectivity changes in our
simulation model and the model used by Broch et al. [3]
(insert in Figure 3).

The legend in Figure 3 shows expected hopcount for
W_AntNet for different pause times. Figure 3 shows that
W_AntNet performs similar to the Dijkstra’s algorithm in
a static topology. However, when mobility is introduced
(pause time is less than 900s) the expected hopcount in-
creases which points to a significant amount of packets in
loops. Figure 4 shows the percentage of data packets with
loops as a function of the pause time. Figure 4 also shows
results for W_AntNet with look-ahead3. The increase of
data packets in loops with increased mobility in W_AntNet
is in sharp contrast to AODV and DSR that are shown to
be loop-free [11, 9]. Sequence numbers in AODV excludes
loops at all times while DSR uses source routing that is in-
herently loop-free. Figure 4 also shows that look-ahead re-

2NS-2 NETWORK SIMULATOR, http://www.isi.edu/nsnam/ns, 2005.
3Look-ahead means that if the destination is among the neighbors, then

the destination is chosen as the next hop

0.20

0.15

0.10

0.05

0.00

P
r[

H
 =

 k
]

252015105

hop k

W_AntNet
 pause_time = 0 E[H] = 22.2
 pause_time = 30 E[H] = 21.0
 pause_time = 60 E[H] = 22.6
 pause_time = 120 E[H] = 19.3
 pause_time = 300 E[H] = 12.8
 pause_time = 600 E[H] = 7.3

Static Topology
 W_AntNet E[H] = 4.3
 Dijkstra's algorithm E[H] = 2.9

N = 50

12x10
3

10

8

6

4

2

0

N
u

m
b

er
 o

f
co

n
n

ec
ti

v
it

y
 c

h
an

g
es

8006004002000

pause time (sec)

 our Simulation model
 Broch et al. [5] model

N = 50

0.20

0.15

0.10

0.05

0.00

P
r[

H
 =

 k
]

252015105

hop k

W_AntNet
 pause_time = 0 E[H] = 22.2
 pause_time = 30 E[H] = 21.0
 pause_time = 60 E[H] = 22.6
 pause_time = 120 E[H] = 19.3
 pause_time = 300 E[H] = 12.8
 pause_time = 600 E[H] = 7.3

Static Topology
 W_AntNet E[H] = 4.3
 Dijkstra's algorithm E[H] = 2.9

N = 50

12x10
3

10

8

6

4

2

0

N
u

m
b

er
 o

f
co

n
n

ec
ti

v
it

y
 c

h
an

g
es

8006004002000

pause time (sec)

 our Simulation model
 Broch et al. [5] model

N = 50

Figure 3. The probability distribution of hop-
count for W_AntNet algorithm as a function
of pause time. The legend shows the ex-
pected hopcount for different values of pause
times.

duces the percentage of data packets in loops at increased
mobility.

4.2. NS-2 Simulations

The default settings for all the experiments and the simu-
lation code and parameters for AODV, DSR are taken from
the CMU/Monarch extensions for NS-2 [3]. The MAC layer
is 802.11 and the interface queue size is assumed to be 100
packets. The number of CBR sources is 10 and the data
rate is 4 packets/sec. The capacity of links is 2 Mbps. In
W_AntNet, we assume that each node can store 50 packets
in the low and high priority queues.

4.2.1 Case Study 1: Static Network

We compare the packet delivery ratio (PDR) and the end-
to-end delay for AODV, DSR and W_AntNet for a sta-
tic scenario. The size of data packets is varied from 64
bytes to1024 bytes. We also show results for W_AntNet
when the forward ants are generated only during the T.P.
(W_AntNet_antsTP). This reduces the number of control
packets in the network. Since the topology is static and the
amount of data traffic is small, the generation of forward
ants only during T.P. is sufficient for routing under these
conditions.

The PDR and end-to-end delay in Figure 5 show that
W_AntNet performs similar to AODV and DSR when for-
ward ants are generated only during the T.P. However,

40

30

20

10

0

Pe
rc

en
ta

ge
 o

f
da

ta
 p

ac
ke

ts
 in

 lo
op

s

8006004002000
pause time (s)

 W_AntNet
 look_W_AntNet

4

5

6

7

8

9

10

2

E
[H

]

8006004002000

pause time (s)

 look_W_AntNet
 W_AntNet

N = 50

40

30

20

10

0

Pe
rc

en
ta

ge
 o

f
da

ta
 p

ac
ke

ts
 in

 lo
op

s

8006004002000
pause time (s)

 W_AntNet
 look_W_AntNet

4

5

6

7

8

9

10

2

E
[H

]

8006004002000

pause time (s)

 look_W_AntNet
 W_AntNet

N = 50

Figure 4. Percentage of data packets with a
loop in their path as a function of pause time
for W_AntNet (look_W_AntNet). The insert
shows the expected hopcount in W_AntNet
for different pause times.

as the forward ant generation rate is increased from 0
(W_AntNet_onlyTP) to 2 forward ants/s, the routing over-
head causes congestion in the queues. Thus, W_AntNet
causes a dual problem in ad hoc networks. A large num-
ber of forward ants cause congestion in the network. How-
ever, with increasing mobility, more forward ants need to be
generated to account for frequent changes in the topology.

4.2.2 Case Study 2: Mobile Scenario

We study the performance of different routing proto-
cols with mobility. The packet size is assumed to be
64 bytes. Figure 6 shows the PDR, end-to-end delay
and the routing overhead (measured in number of bytes
since the size of control packets varies in W_AntNet)
for AODV, DSR, W_AntNet and W_AntNet with look-
ahead (W_AntNet_look). We also reduce the routing over-
head in W_AntNet by generating forward ants only from
source-destination pairs that have data packets to send
(W_AntNet_onlysrc). Thus, the remaining nodes in the net-
work do not maintain up-to-date routing tables.

Figure 6 shows that with high node degree, AODV and
DSR perform well in terms of PDR and end-to-end delay.
Figure 6 shows that using optimizations such as look-ahead
and generating ants only from source-destination pairs re-
duces the overhead in W_AntNet. However, the routing
overhead is still more than in AODV and DSR. As a re-
sult, the PDR for W_AntNet_look and W_AntNet_onlysrc

Figure 5. The PDR and end-to-end delay for
W_AntNet, AODV and DSR for static topol-
ogy.

is still lower than AODV and DSR.

4.2.3 Case Study 3: Large Area Network (Sparse
Graph Topology)

In this case, we compare the performance of different pro-
tocols in a larger area with the same number of nodes (=
50). The area over which the nodes move is 2000×2000 2.
Under these conditions, the average node degree is 2 5 and
the worst case hopcount is given by 11. The number of CBR
sources is also increased to 20. Figure 7 shows the PDR
and end-to-end delay for AODV, DSR and W_AntNet. The
packet size is assumed to be 64 bytes.

This scenario leads to a sparse graph topology and an in-
crease in network diameter. As a result, the performance of
all three protocols degrades considerably. Thus, the simula-
tions show that all three protocols have scalability problems.
To improve the scalability of routing protocols, additional
schemes such as clustering need to be implemented [15].
Figure 7 also shows that the use of look-ahead does not im-

Figure 6. The PDR, end-to-end delay and rout-
ing overhead for W_AntNet, AODV and DSR
for mobile network of 50 nodes moving in an
area 1500×300m2.

prove the performance of W_AntNet since the average node
degree is small.

Figure 7. The PDR and end-to-end delay for
W_AntNet, AODV and DSR for different val-
ues of the pause time. Nodes are moving in
an area 2000m×2000m.

5. Conclusion

The performance of W_AntNet is comparable to the
shortest path algorithm for static topology but is dependent
on the buffer size at the nodes. Since forward ants share the
same queue as data packets in W_AntNet, a high ant gen-
eration rate leads to congestion in the network. This causes
W_AntNet to perform poorly compared to AODV and DSR
when the size of the buffer is small. In a dynamic topology,
a significant amount of packets in W_AntNet have loops.
This can be attributed to the non-convergence of routing ta-

bles in W_AntNet. Therefore, with mobility, the perfor-
mance of W_AntNet deteriorates in comparison to AODV
and DSR that are loop-free.

References

[1] I. F. Akyildiz, X. Wang, and W. Wang. Wireless mesh net-
works: a survey. Computer Networks, 47:445–487, 2005.

[2] C. Avin and G. Ercal. On the cover time of random geomet-
ric graphs. Lecture notes in computer science ISSN 0302-
9743, 2005.

[3] J. Broch, D. A. Maltz, D. B. Johnson, Y. Hu, and J. Jetcheva.
A performance comparison of multi-hop wireless ad hoc
network routing protocols. Proc. IEEE/ACM MOBICOM,
47:445–487, 1998.

[4] S. S. Dhillon and P. Van Mieghem. Performance analysis of
the AntNet algorithm. Computer Networks, in print, 2007.

[5] G. Di Caro and M. Dorigo. AntNet: Distributed stigmergetic
control for communication networks. Journal of Artificial
Intelligence Research, 9:317–365, 1998.

[6] G. Di Caro, F. Ducatelle, and L. M. Gambardella. AntHoc-
Net: an ant-based hybrid routing algorithm for mobile ad
hoc networks. Proc. 8th International Conf. on Parallel
Problem Solving from Nature, pages 461–470, 2004.

[7] M. Güneş and O. Spaniel. Routing algorithms for mobile
multi-hop ad-hoc networks. Proc. IFIP Conf. on Network
Control and Engineering for QoS (Net-Con), pages 120–
138, 2003.

[8] R. Hekmat and P. Van Mieghem. Study of connectivity in
wireless ad-hoc networks with an improved radio model.
Proc. International Symposium on Modeling and Optimiza-
tion in Mobile, Ad Hoc, and Wireless Networks (WiOpt),
2004.

[9] D. Johnson, D. Maltz, Y.-C. Hu, and J. Jetcheva. The
dynamic source routing protocol for mobile ad hoc net-
works. Internet Draft, draft-ietf-manet-dsr09-11.txt, work
in progress, April 2003.

[10] S. Marwaha, C. Tham, and D. Srinivasan. Mobile agents
based routing protocol for mobile ad hoc networks. Proc.
IEEE Globecom, 2002.

[11] C. Perkins, E. Royer, and S. Das. Ad hoc on demand dis-
tance vector routing. Internet Draft, draft-ietf-manet-aodv-
11.txt, work in progress, August 2002.

[12] S. Rajagopalan and C. Shen. ANSI: A unicast routing pro-
tocol for mobile ad hoc networks using swarm intelligence.
Proc. International Conf. on Artificial Intelligence, pages
24–27, 2005.

[13] M. Roth and S. Wicker. Termite: Emergent ad-hoc network-
ing. Proc. 2 MedHocNet, 2003.

[14] R. Schoonderwoerd, O. Holland, and J. Bruten. Ant-
like agents for load balancing in telecommunication net-
works. Proc. First International Conf. on Autonomous
agents, 1997., 1997.

[15] P. Van Mieghem. Data Communications Networking.
Techne Press, Amsterdam, The Netherlands, 2006.

