Non-Dominance in QoS Routing: an
Implementational Perspective

F.A. Kuipers and P. Van Mieghem

Abstract—1In QoS routing, the problem of finding paths sub-
ject to multiple constraints, is NP-complete. Therefore, efficient
search-space reducing techniques are needed. The concept of
dominance is such a technique. Contrary to the popularity
of using dominance verification, the dominance implementation
issues are hardly studied. This letter provides such a study.

I. INTRODUCTION

Finding paths that can guarantee multiple constraints (QoS
routing) is NP-complete. This is reflected in the search-space,
which may grow exponentially large. To reduce the size of the
search-space, the technique of non-dominance could be used.
In this letter we examine three possible ways to implement
the non-dominance concept. First we explain the notation that
is used.

A network is represented as a graph G = (V, E) consisting
of a set V of N =|V| nodes and a set E of M = |E| links.
Each link (u,v) € E from node u to node v is characterized by
an m-dimensional link weight vector w(u,v), where w; > 0.
The m components refer to QoS measures such as delay. L
denotes the constraints vector. The possible QoS measures
belong to two different classes: additive (e.g., delay) and
min-max (e.g., bandwidth) QoS measures. Without loss of
generality [10], all QoS measures are assumed to be additive.

The rest of this letter is organized as follows: Section II
discusses non-dominance and related work. The complexity
is investigated in Section III. Section IV discusses a possible
improvement for verifying non-dominance, while Section V
evaluates this gain via simulations. Section VI ends with the
conclusions.

II. DEFINITION OF NON-DOMINANCE

The concept of non-dominance is widely used in the field
of multi-objective optimization, where it is often referred to
as Pareto-optimality.

Definition 1: A path P is called non-dominated if there
does not exist a path P’ for which w;(P’) < w;(P) for all
link weight components ¢ except for at least one j for which
U}j(P/) < U}J(P)

Theorem 1: If for all m QoS measures, there is no negative
cycle in the graph G, then a walk containing a loop is always
dominated by the same walk without the loop.

Proof: If no negative cycles appear in G, then traversing a
cycle (loop) @ will never decrease any weights and therefore
walk P will always dominate walk P + @, since w;(P) <
wi(P+ Q) =w;(P)+w;i(Q), forall : = 1,...,m.]

The amount of papers that specifically target or use non-
dominance for QoS routing is relatively small. Hansen [3] was

among the first to study the bi-objective (i = 2) shortest path
problem and demonstrated that the number of non-dominated
paths can grow exponentially with the size of the network.
Martins [6] generalized the algorithm of Hansen to handle
m > 2 measures. Henig [4] described methods to obtain non-
dominated and extreme non-dominated paths and compared
the expected complexity of these methods. Among the large
set of QoS routing algorithms, the SAMCRA [11] algorithm
is one of the few algorithms that employs the concept of non-
dominance.

A drawback of checking for dominance is the involved
complexity, which could be quadratic in the number of non-
dominated vectors. Little attention has been paid to improve
this complexity. For instance, checking if a new vector is
dominated could be done more efficiently with a proper data
structure [8] or through clever sorting [1].

III. COMPLEXITY OF DOMINANCE

The non-dominance property is very strong when the num-
ber of QoS measures m is small or when the QoS measures
are positively correlated. There exists a straightforward way
to check whether a new path is dominated by a set of other
paths, which is to check whether the new path is dominated
by the first path and continuing down the list of paths until
the new path is either dominated or all paths are examined
(and hence the new path is non-dominated). The worst-case
complexity of checking for dominance in this straightforward
way equals O(k% pm), where kyp refers to the number of
non-dominated paths stored at a node.

If we would not check for dominance and only check
for loops (Theorem 1), then for each path at most N — 1
hops should be traced. This approach has a complexity of
O(knoN), where ko refers to the number of loop-free paths
stored at a node, because for each examined path at most N —1
hops need to be checked. In this case dominated paths (that
are loop-free) may also be stored and hence kyo > knp. To
understand the complexity of checking for dominance, it is
therefore essential to know kx p. Simulations (not displayed),
for m = 2 in the class of square lattices, indicate that the time
to check for dominance is much smaller than only to check for
loops. The maximum number of loop-free paths kyo between
two nodes in any graph is upper bounded by |e(N — 2)!|. This
upper bound is precisely attained in the complete graph [9].

The worst-case amount of non-dominated paths kyp is
determined by the granularity of the constraints. In that case
the constraints L; can be expressed as an integer number of a
basic unit.

Theorem 2: If all weight components have a finite gran-
ularity, the number of non-dominated paths kyp within the

constraints cannot exceed —Li=tZi
maxiy <i<m Li

Proof: See [10]. []
The worst-case number of partial paths is
. 1", L;
knp < — = N —2)! 1
ND S T Le()] (0

The first argument of the min-operator applies only to kxp
in the case of a finite granularity. The second argument of the
min-operator denotes the maximum number of loop-free paths
kno > knp that exists between two nodes in any graph (see
[9]) and applies in case the granularity is infinitely small or,
equivalently, for real values of w;.

IV. EFFICIENT DOMINANCE CHECKING

In the previous section we have discussed the straightfor-
ward way of checking for non-dominance, which we further
refer to as “normal dominance.” We have also mentioned the
use of only loop-detection, which we omit from further discus-
sion since we did not observe an improvement in running time.
In this section we will apply sorting to see if we can improve
the complexity of checking for dominance. The idea for sorting
was previously applied by Climaco and Martins [1], but the
description of their algorithm is not precise in explaining how
to sort. Our goal is to provide a more detailed analysis of the
efficiency gain via sorted dominance verification. The concept
of sorting has mainly potential for the case m = 2, to which
we confine.

It is easier to check for dominance among a sorted set of
paths. We will discuss two length functions: the “semi-linear”
length

I(P) = {

where wi(P) =}, ,yep wi(u,v) and the non-linear length
as used by SAMCRA [11]

wl(P), if wZ(P) S Li, 1= 1,
o, else

,m

In case of the “semi-linear” length, the k-th shortest path P
from source node s to node u will have weight w;(Py) >
w1 (Pg—1). P is non-dominated if wy(Py) < wa(Pg—1)-
Given k — 1 shortest non-dominated paths with w;(P;) >
wl(Pj_l), then ’wg(Pj) < ’wg(Pj_l) Vi <k-—1. If’wg(Pk) >
wa(Py_1) then path Py is dominated by path Pj_1, else Py
is non-dominated by the k — 1 paths. In conclusion, to check
whether P, is dominated, we only need to verify whether
T,UQ(P]C) < wg(P;cfl).

In case of the non-linear length, the paths P are ordered
in non-decreasing length such that for all j < k

< wl(Pj)va(Pf) > max w1<Pj*—1)7w2(Pf—1)
L1 L2 Ll L2
where P is the j-th shortest path according to the non-
linear length, which is not necessarily equal to P; given
by the semi-linear length. If wl—gk—) wQ—gL) is the max-

imum, we only need to compare wo(F;) with wa (P} ;)

(w1 (Py) with wy(P;_,)) to check for dominance. This re-
quires a complexity of O(1).

The complexity of sorting depends on the way of implemen-
tation. Sorting an array of k components requires a complexity
of O(klog, k). Hence sorting the paths each time a new non-
dominated path has been added requires O(k% , log, knp)
in total, which is worse than the O(k%) without sorting.
Another way to obtain a sorted list is to directly insert new
paths in the correct place. Finding (and inserting) the correct
place within k& components requires O(logk), when using
sorted heaps. In that case, checking for dominance is possible
in O(klog k). We use red-black trees [2] and sort them based
on the “semi-linear” length function. We call this “red-black
dominance.” It may happen that a new path dominates one or
more already stored paths. However, because the new path is
only verified against one previously stored path, other possibly
dominated paths are not recognized. “Normal dominance”
checks all stored paths and hence krp > knp.

An alternative approach emerges when we are searching
in a best-first manner (like Dijkstra or SAMCRA [11]);
then the length of paths extracted from the queue are non-
decreasing (or non-increasing if maximization is strived for).
These extracted paths are already sorted by length. We call this
“efficient dominance.” By using the ordering acquired from
best-first search, it is possible to verify for dominance in O(1)
time for each of the kgp paths, leading to a total complexity
of O(kjED) We have that kgp > kg > knbD.

V. EVALUATION OF DOMINANCE VERIFICATION

We have simulated with the three approaches red-black
(RB), efficient (ED) and normal (ND) dominance. All simula-
tions were performed in the class of two-dimensional lattices,
with source and destination chosen in opposite corners. This
class along with negatively correlated link weights provides a
worst-case scenario [5]. We have simulated with a correlation
p = —1 and p = 0, where the link weights were uniformly
distributed in the range (0, 1] and with two types of constraints
“loose” and “strict.” In the case of strict constraints only one
feasible path is available. For loose constraints L; = N,
for ¢ = 1,..,m. For each simulation run 100 graphs were
generated, after which a multi-constrained path between the
source and destination was computed by three SAMCRA-
based algorithms. For “red-black dominance” SAMCRA was
equipped with red-black trees at each node to check for
dominance. In “efficient dominance” the ordering in (the non-
linear) length of the extracted paths in SAMCRA was used to
check for dominance. The algorithm for “normal dominance”
is the SAMCRA algorithm as proposed in [11]. Note that
all algorithms used the same (non-linear) length function, use
Fibonacci heaps [2] to structure the queues and were equipped
with a second search-space reducing technique called look-
ahead [11].

During the simulations the maximum number of paths k
stored at a node and the execution time were maintained. The

results are illustrated in Figure 1, with ratios 7[k;] = E]flikj]
o ND]
and r[Timel[j]] = rhemtils, for j = RB, ED.
For p = —1, the expected queue-size of “normal domi-

nance” is smallest, but as N grows, “red-black dominance”

and “efficient dominance” approximate this value and hence
the ratios approach 1. The time-ratios for “red-black domi-
nance” and “efficient dominance” on the other hand become
smaller than 1, illustrating that sorting indeed results in a
gain in time-complexity even though there is a slight loss
in space-complexity. Unfortunately, the gain in complexity is
relatively small. The increase in space-complexity produces
a O(kNlog(kN)) increase in the Fibonacci heap, which
counteracts the gain in dominance verification. Thus, it seems
that there is a one-to-one trade-off between space- and time-
complexity.

For p = 0, there are more dominated paths and therefore
“normal dominance” does not need to check its entire list every
time. In this case “normal dominance” performs best. The
results for strict and loose constraints are similar in behavior.

VI. CONCLUSIONS

QoS routing is an NP-complete problem and therefore
efficient search-space reducing techniques are needed. The
non-dominance concept is such a technique that is much used
in the field of multi-objective optimization, but its strength for
QoS routing is still not fully studied. With this letter we have
provided a coverage of the non-dominance concept for QoS
routing and we have presented efficient ways of checking for
dominance when there are only two (m = 2) QoS measures.
The efficiency gain has been evaluated via simulations. There
is a one-to-one trade-off between space- and time-complexity,
making all implementations about equally powerful. However,
only “normal dominance” is simple and valid for all m, which
made it the preferred choice for SAMCRA.

REFERENCES

[1] J. Climaco and E. Martins, “A bicriterion shortest path algorithm,”
European Journal of Operational Research, 11:399-404, 1982.

[2] T. H. Cormen, C. E. Leiserson and R. L. Rivest, An Introduction to

Algorithms, MIT Press, Boston, 1991.

[3] P. Hansen, “Bicriterion path problems,” in G. Fandel and T. Gal (eds.),

Multiple criteria decision making: theory and applications, lecture notes

in economics and mathematical systems 177, pp. 109-127, Springer,

Heidelberg, 1980.

M.L Henig, “The shortest path problem with two objective functions,”

European J. of Operational Research, 1985, vol. 25, pp. 281-291.

[5] F. A. Kuipers and P. Van Mieghem, “The Impact of Correlated Link
Weights on QoS Routing,” Proc. of IEEE INFOCOM, 2003.

[6] E.Q.V. Martins, “On a multicriteria shortest path problem,” European J.
of Operational Research, 16, pp. 236-245, 1984.

[7]1 H. L. Royden, Real Analysis, Macmillan Publishing Company, New
York, third edition, 1988.

[8] M. Sun and R. Steuer, “Quad trees and linear lists for identifying

nondominated criterion vectors,” INFORMS Journal on Computing,

8(4):367-375, 1996.

P. Van Mieghem, “Paths in the simple Random Graph and the Waxman

Graph,” Probability in the Engineering and Informational Sciences

(PEIS), vol. 15, pp. 535-555, 2001.

[10] P. Van Mieghem and F. A. Kuipers, “On the Complexity of QoS
Routing,” Computer Communications, vol. 26, No. 4, pp. 376-387,
March 2003.

[11] P. Van Mieghem and F.A. Kuipers, “Concepts of Exact Quality of Ser-
vice Algorithms,” to appear in IEEE/ACM Transaction on Networking.

[4

[}

[9

—

5 T T T
——— kgl

o flkepl
——-v——— kgl (s)
flkeol ()

-

120

k]

25 -

20

35
2 s g
£
10 b g
05 b
0 70
N
5 T
o
—e—— Elkg]
[} Elkeo]
4r| ——w—— Ekyl
——v—- Elkggl(s) o
— & — Elkgl(s)
3f| ——O—— Elkyls)

8 T T T o)
—e—— Time[RB|
o Time[ED]
——-¥-—— Time[ND] x
—-—-—-- Time[RB] (s) /
6| —-m— Time[ED] (s) 4
——O—— Time[ND] (s) ,/

Time[j]

L
400

Fig. 1. The results (s denotes strict constraints) for the class of lattices as
a function of the number of nodes N (m = 2). The ratio of k (Ist) and the
ratio of time (2nd) for p = —1. The expected queuesize E[k] (3rd) and the
expected time T'ime[j] in seconds (4th) for p = 0.

