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Conditions That Impact the Complexity
of QoS Routing
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Abstract—Finding a path in a network based on multiple con-
straints (the MCP problem) is often considered an integral part of
quality of service (QoS) routing. QoS routing with constraints on
multiple additive measures has been proven to be NP-complete.
This proof has dramatically influenced the research community,
resulting into the common belief that exact QoS routing is in-
tractable in practice. However, to our knowledge, no one has ever
examined which “worst cases” lead to intractability. In fact, the
MCP problem is not strong NP-complete, suggesting that in prac-
tice an exact QoS routing algorithm may work in polynomial time.
The goal of this paper is to argue that in practice QoS routing may
be tractable. We will provide properties, an approximate analysis,
and simulation results to indicate that NP-completeness hinges
on four conditions, namely: 1) the topology; 2) the granularity
of link weights; 3) the correlation between link weights; and
4) the constraints. We expect that, in practice, these conditions
are manageable and therefore believe that exact QoS routing is
tractable in practice.

Index Terms—Complexity, multi-constrained path, QoS routing,
phase transition.

I. INTRODUCTION

THERE is an increasing demand for using real-time
multimedia applications over the Internet. In order for

these applications to work properly, quality of service (QoS)
measures like bandwidth, delay, jitter, packet loss, etc., need
to be controlled. Currently, the Internet cannot guarantee that
the QoS requirements of applications will be satisfied. This
has triggered the research community to (en masse) investigate
the QoS problem, resulting in proposals for QoS-based frame-
works (e.g., IntServ, DiffServ, constraint-based MPLS), QoS
routing protocols (e.g., Q-OSPF, PNNI), and many QoS routing
algorithms (see [15]).

Routing in general consists of two entities, namely the
routing protocol and the routing algorithm. The routing pro-
tocol has the task of capturing the state of the network and
its available network resources and disseminating this infor-
mation throughout the network. The routing algorithm uses
this information to compute shortest paths. Best-effort routing
performs these tasks based on a single measure, usually hop-
count. QoS routing, however, must take into account multiple
QoS measures and requirements. In this paper, we assume that
the network-state information is temporarily static and that it
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has been distributed throughout the network and is accurately
maintained at each node using QoS routing protocols. Once a
node acquires the network-state information, it performs the
second task in QoS routing, namely computing paths given
multiple QoS constraints, also known as the multi-constrained
path (MCP) problem. In this paper, we evaluate the complexity
of exactly solving the MCP problem. Before giving the formal
definition of the MCP problem, let us first describe the notation
that is used.

Let denote a network topology, where is the set
of nodes and is the set of links. With a slight abuse of no-
tation, we also use and to denote the number of nodes
and the number of links, respectively. The number of QoS mea-
sures is denoted by . Each link is characterized by an -di-
mensional link weight vector, consisting of nonnegative QoS
weights as components.
The QoS measure of a path can either be additive, multiplica-
tive, or min/max. In the case of additive measures (e.g., delay,
jitter), the path weight of that measure equals the sum of the
QoS weights of the links defining the path. Multiplicative mea-
sures can be transformed into additive weights by using the log-
arithm. The path weight of min(max) QoS measures (e.g., avail-
able bandwidth) refers to the minimum(maximum) of the QoS
weights along the path. The QoS constraints of an application
are expressed in the -dimensional vector . Constraints on
min(max) QoS measures can easily be treated by omitting all
links (and possibly disconnected nodes), which do not satisfy
the requested QoS constraint. In contrast, constraints on addi-
tive QoS measures cause more difficulties. Therefore, for our
study on complexity, we assume all QoS measures to be addi-
tive.

Definition 1: Multi-Constrained Path (MCP) Problem: Con-
sider a network . Each link is specified by

additive QoS weights . Given
constraints , the problem is to find a path
from a source node to a destination node such that

for

There may exist multiple paths in the graph that
satisfy all the constraints. Such paths are said to be feasible.
According to Definition 1, any of these paths is a solution to
the MCP problem. However, it might be desirable to retrieve the
optimal path, according to some criterion, within the constraints.
This more difficult problem is known as the Multi-Constrained
Optimal Path (MCOP) problem.

The rest of this paper is organized as follows. Section II
presents an overview of related work. Section III analyzes the
worst case NP complexity of the MCP problem. Section IV
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evaluates, mathematically and by simulation, the impact of
correlation on the complexity of solving the MCP problem.
Section V discusses the impact of the constraint values on the
complexity and introduces the concept of phase transitions
in the MCP problem. Finally, in Section VI, we present our
conclusions.

II. RELATED WORK

The MCP problem is an NP-complete problem. Garey and
Johnson [8] were the first to list the MCP problem with
as being NP-complete, but they did not provide a proof. Wang
and Crowcroft have provided this proof for in [27] and
[28], which basically consisted in reducing the MCP problem
for to an instance of the partition problem, a well-known
NP-complete problem [8]. The effect of this proof has been
tremendous, because it suggests that the MCP problem is in-
tractable, in which case heuristics should be used. Many simu-
lations performed in [6], [16], [23], and [25]1 suggest that exact
QoS routing may not be intractable in practice. There are cer-
tain NP-complete problems, such as partition, which are con-
sidered by many practitioners to be tractable in practice. The
reason for this is that, although no algorithms for solving them
in time bounded by a polynomial in the input length (e.g., )
are known, there exist algorithms which solve those problems in
time bounded by a polynomial in the input length and the mag-
nitude of the largest number (e.g., largest QoS weight) in the
given problem instance [9]. Such algorithms are called pseudo-
polynomial-time algorithms. NP-complete problems for which
no exact pseudo-polynomial-time algorithm exists, are called
NP-complete in the strong sense. In the case of the partition
problem, the NP-completeness strongly depends on the fact that
arbitrarily large numbers are allowed. If any upper bound was
imposed on these numbers in advance, even a bound which is
a polynomial function of the input length, there would exist a
polynomial-time algorithm for solving this (restricted) problem
[9].

Pisinger [22] has evaluated Knapsack problems, which are
NP-complete problems (proved via reduction to the parti-
tion problem), and found that in practice these problems are
tractable. For many more NP-complete problems, typical cases
are “easy” to solve. A study of the phenomenon that typical
cases are “easy” was performed by Cheeseman et al. [4], who
introduced the concept of phase transitions in NP-complete
problems. According to Cheeseman et al., NP-complete prob-
lems which are very under-constrained are soluble and it is
usually easy to find one of the many solutions. NP-complete
problems which are very over-constrained are insoluble. In
the phase transition in between, problems are “critically con-
strained” and it is typically very hard to determine if they
are soluble or insoluble [10]. For a more formal discussion
of phase transitions, we refer to [7]. Cheeseman et al. have
conjectured that all NP-complete problems have at least one
order parameter and that the hard to solve problems are around
a critical value of this order parameter. Although this conjecture
does not hold for all NP-complete problems [13], there seems
to be a connection between complexity and phase transitions.

1Our paper [25] can be seen as a more simulative companion to this paper.

Fig. 1. Assignment of link weights to the links between nodes i and i+ 1, in
a chain topology.

The lack of a phase transition seems to have significant compu-
tational implications: such problems are either computationally
tractable, or well-predicted by a single, trivial algorithm [13].
This alleged connection between complexity and phase transi-
tions motivated us to investigate phase transitions in the MCP
problem. Monasson et al. [20] report an analytic solution and
experimental investigation of the phase transition in K-satisfi-
ability (the first problem shown to be NP-complete). Gent and
Walsh [10] show that phase transitions occur in the partition
problem.

Levin [17] advocated a different study of NP-complete prob-
lems by introducing the concept of average-case complexity.
He indicated that some NP-complete problems are “easy on av-
erage,” while other (average-case NP-complete) problems may
not be.

There exists also some work in the literature revealing im-
portant properties of the MCP problem. We will mention three
of those properties, that all strengthen our belief that in prac-
tice exact QoS routing is tractable. First, the MCP problem is
not strong NP-complete. Second, if all but one measures take
bounded integer values, then the MCP problem is solvable in
polynomial time [5]. Finally, if some specific dependencies exist
between QoS measures, exact QoS routing can be performed in
polynomial time [19]. The goal of our work is to provide more
evidence that suggests the tractability of exact QoS routing, in
practice.

III. WORST CASE COMPLEXITY ANALYSIS

In this section we will analyze the worst case complexity of
the MCP problem for . First, we will rewrite the proof
that the MCP problem for is NP-complete [27], [28],
and refer to it as the NP-proof.

Theorem 1: The MCP problem is NP-complete.
Proof: First the proof for is presented. Given a

chain topology with nodes and links, each with a two-
component weight vector as depicted in Fig. 1, and a set of
numbers , for , where

. The constraints are chosen as follows: ,
and . To solve the MCP problem, we need to find a path
from node 1 to node , that obeys the constraints. Since,
for all link weight vectors, the sum of the components equals ,
we have that . Accordingly, a solution
satisfying the constraints is only found if and

. The problem has now become an instance of the
well-known NP-complete partition problem [8] and can only be
solved by finding the set , for which .
A feasible path exists if the set exists, in which case it is
retrieved by choosing the lower link if and the upper
link if .
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Fig. 2. Chain topology with two QoS weights per link and N nodes in total.

We have proved that the MCP problem with is
NP-complete. The proof that MCP in general is NP-complete
inductively follows. We assume that the MCP problem with
measures is NP-complete. If we extend the number of measures
with 1 to and choose ,
then all paths between source and destination obey this con-
straint. The MCP problem with measures is then only
solved if the MCP problem with measures is solved. This
concludes the proof.

Corollary 2: The MCP problem is not NP-complete in the
strong sense.

Proof: The MCP problem is not strong NP-complete,
because there exist pseudo-polynomial algorithms that exactly
solve this problem (e.g., see [14] and [18]).

The proof that a problem is NP-complete or not is entirely
based on a worst case argument. A problem is called polynomi-
ally solvable if it can be solved by an algorithm that terminates
after a number of steps (instructions) that is bounded by a poly-
nomial in the input length. A problem is called NP-complete
if there is even one instance that is not polynomially solvable
(unless ). It may occur that in some instances the run-
ning time required to solve the MCP problem is polynomial. We
call those polynomially solvable instances tractable and we will
use the term intractable when instances require a nonpolynomial
running time (i.e., they are not polynomially solvable).

We desire to distinguish the instances of the MCP problem
that are tractable and those that are intractable. If we look at the
graph on which the MCP problem should be solved, we could
delineate the class of polynomially solvable graphs, i.e., the
class of graphs in which the number of paths between two nodes
increases as a polynomial function of (e.g., tree, circle, and
star topologies). This class of graphs is most likely very small
and therefore most graphs potentially can lead to intractability.
Fortunately, the underlying topology alone is not sufficient to
lead to intractability: we also need a specific link weight struc-
ture. For instance, if all link weights are assigned the value 1,
then the MCP problem is polynomially solvable regardless of
the underlying topology. We will proceed by defining a link
weight structure that leads to intractability in the chain topology.
We will use the chain topology as depicted in Fig. 2 and ascer-
tain that all paths from source to destination are nondomi-
nated.

Definition 2: Dominance: A path dominates a path
if for all link weight components except
for at least one for which . A path is
called nondominated if there2 does not exist a path for which

2If there are two or more different paths between the same pair of nodes that
have an identical weight vector, only one of these paths suffices. In the sequel,
we will therefore assume one path out of the set of equal-weight vector paths as
being nondominated and regard the others as dominated paths.

for all link weight components except for at
least one for which .

In general, there are two important properties that can reduce
the search space when solving the MCP problem without losing
exactness, namely nondominance and the constraints them-
selves. If a sub-path from source node to node exceeds
one or more constraints, it can never become a feasible path,3

because the path weight vector from to destination node con-
sists of nonnegative weights. Similarly, if for two paths
from to it holds that dominates , then all weights of

are smaller than (or equal to) those of and hence we
can omit from our search space and continue with [6],
because the paths extended from will always be dominated
by the paths extended from . According to [25], the max-
imum number of nondominated paths that obey the constraints

is upper bounded by , where the constraints are
expressed as an integer number of the smallest granularity. This
value provides a worst case estimate of the size of our search
space. According to Levin [17] some NP-complete problems
are “easy on average,” while other (average-case NP-complete)
problems may not be. The average-case complexity therefore
also gives some indication whether an NP-complete problem
could be tractable in practice. In [25] we have shown that if
the path weights are independently distributed in the solution
space, then the MCP problem can be solved in polynomial time
on average.

Without loss of generality, we assume that the link weights in
Fig. 2 are chosen such that and , for
( and would also have been possible). It can be
verified that if and or and were
allowed, this would lead to dominance.

Property 1: If, in the chain topology in Fig. 2, it holds that

(1)

for , where , then all
paths from node 1 to node are nondominated.

Proof: We will give a proof by induction.
: There are two paths from node 1 to node 2, namely

and . According to

formula (1): and , which shows that both paths
from node 1 to node 2 are nondominated.

The inductive step is to assume the correctness of formula (1)
for a certain . It remains to prove that it also holds for .
There are paths from node 1 to . From there are two pos-
sible links to , resulting in a total of 2 paths from node 1
to node . paths will follow the upper link from to

, while the remaining paths will follow the lower link.
Since all paths at are nondominated (inductive assumption),
the paths following the upper link are also nondominated, be-
cause the same vector is added to each of the path vectors. The
same property applies to the paths that follow the lower link. It
remains to show that if (1) holds, then the paths following the

3This also holds for the lower-bound estimation of the end-to-end path weight
vector ~w(P ) +~b, where~b denotes a lower-bounds vector consisting of the m
one-dimensional shortest path weights from i to d.
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upper link and the paths following the lower link do not domi-
nate each other.

If (1) is satisfied, then all paths following the upper link
possess a first path weight larger than the first weights of the
paths following the lower link. Similarly, the paths following
the lower link have a second weight, which is larger than the
second weights of the paths following the upper link. Hence,
the paths following different links are nondominated.

The partition problem is NP-complete, because the values in-
volved in an instance of the partition problem may be arbitrarily
large (or have an infinite granularity). The same phenomenon is
observed in formula (1), where the difference between and
(and correspondingly and ) grows exponentially:

If in the NP-proof are not chosen according to formula (1), but
if they take bounded integer values, then the problem becomes
polynomially solvable.

A second important phenomenon that we observe from for-
mula (1) is that the link weights display a perfect negative corre-
lation. If the link weights would have had a positive correlation,
then if most likely also , leading to dominance.

Lemma 3: Property 1 is a sufficient but also necessary con-
dition for all paths in the chain topology to be nondominated.

Proof: We need to show that if formula (1) does not hold,
then at least one path from node 1 to node is dominated.
If (1) does not hold, we have

(2)

or

(3)

or

(4)

We have written these formulas slightly differently from (1) to
illustrate that they correspond to two paths, namely the path that
followed all the lower links up to node and took the upper link
from node to node and the path that took all the upper
links toward node and the lower link from node to node .
Formula (2), without the equalities, is exactly the same as (1),
but is called and is called . If the equality sign applies,
then the path that followed all the lower links up to node and
took the upper link from node to node is the same as the
path that took all the upper links toward node and the lower link
from node to node . According to Definition 1 only one
of these two paths is nondominated. When formula (3) applies,
the path that followed all the lower links up to node and took
the upper link from node to node is dominated by (or
dominates in the case of formula (4)) the path that took all the

upper links toward node and the lower link from node to node
.

Property 1 and Lemma 3 seem very restrictive, because they
are solely based on the chain topology and we require all paths
to be nondominated. If only a subset of all paths (that increases
nonpolynomially in ) were nondominated, then the problem
would still be intractable. However, if only such a subset of all
paths would be nondominated, then Property 1 must hold for a
subset of the links/subpaths. Otherwise, all link weights would
be bounded and the problem would be polynomially solvable.

Also the chain topology can be put into perspective. Links in
the chain topology can be seen as sub-paths.

Lemma 4: If there are more than two links (all with two
weights) between two nodes in the chain topology, formula (1)
should hold for all possible pairs of links, in order for all paths
from node 1 to node to be nondominated.

In practice we do not expect links/sub-paths to satisfy for-
mula (1). If formula (1) is not satisfied, Lemma 4 suggests that
when there are many sub-paths to a node, the probability that all
these paths are nondominated decreases and consequently also
the search space decreases.

At the beginning of this section we mentioned that there are
two important properties to reduce the search space, namely
nondominance and the values of the constraints. If the con-
straints are chosen very large, then it will be easy to find a path
that obeys these constraints. On the other hand, if the constraints
are very strict, there may not be a path available that can obey
these constraints. For the chain topology, besides formula (1),
the constraints must lie in the range

to induce intractability. Since , the shortest path for
measure 1 from node 1 to node equals . If

, then no feasible path exists. If , then
all possible (loop-free) paths can obey this constraint. The same
reasoning applies to and is further motivated in Section V.

In this section we have used the chain topology to create an
intractable instance of the MCP problem. This instance provided
us with some hints on the underlying causes of intractability. In
Section IV we will further evaluate the impact of correlation on
the complexity of QoS routing.

IV. THE IMPACT OF LINK CORRELATION ON COMPLEXITY

Section III hinted at a connection between link correlation
and complexity. In this section we will discuss the impact of link
correlation on the complexity of QoS routing by giving some
properties and presenting simulation results.

A. Theory

Ma and Steenkiste [19] have shown that when specific de-
pendencies (correlation) exist between QoS measures, due to
Weighted Fair Queueing scheduling, QoS routing can be per-
formed in polynomial time. However, it is a misconception that
if all QoS measures are a function of a common measure, then
by just minimizing this common measure, we will have min-
imized all measures. We will illustrate that this is not always
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Fig. 3. Example topology.

the case and provide some conditions when this statement holds.
We will denote by a convex function, by a concave
function, by a linear function, and by a monotone
increasing function.

Consider Fig. 3: if is a convex function, then the shortest
path based on is not necessarily the shortest path for . For
example, suppose that and .
Then the shortest path from to is for , but
for .

Likewise, if is a concave function, the shortest path
based on is not necessarily the shortest path for , e.g.,

and . Then the
shortest path from to is for , but for .

In case of a linear function , then the shortest
path based on will also be the shortest path for if
and .

In the rest of this subsection we consider graphs, for which all
link weights are a function of a common link weight. Each link

has a weight vector ... , where is the common

link parameter (links may have different and different ).
In the sequel we will refer to this graph as . We also intro-
duce the graph , which is identical in structure to , but for
which the links only have weight .

Let be the shortest path from source to destination in
, then

where is any other path from to in . Let
be a concave function, then

where is the hopcount of a path .

Property 4: If the weight vector of a link, ...

with concave functions, is a function of a single param-
eter and if is the shortest path from to in with length

and hopcount , then in satisfies the con-
straint vector if

(5)

Proof: The constraints are satisfied if .
Since are concave functions

or

Hence,

Note that although is the shortest path in , this does not
mean that is also the shortest path in (there may be another
path for which ). Equation (5)
is a sufficient but not a necessary condition, because there may
be a path that does not obey (5), but still satisfies the constraints.

Property 5: If the weight vector of a link, ...

with convex functions, is a function of a single parameter
and if is the shortest path from to in with length

and hopcount , then (and therefore all paths)
violates the constraints in if

(6)

for at least one .
Proof: By convexity

The th constraint is violated if , which is
the case if , which is equivalent to (6).

Property 6: If the weight vector of a link ...

with monotone increasing and is the shortest min-
imum-hop path from to in and , where is
the th ordered common link weight of another path from
to in , then is also the shortest path in .

Proof: The property is a corollary from [11, Th. 107]:
Suppose that the sets and are arranged in descending
order of magnitude. Then a necessary and sufficient condition
that should be
true for all continuous and increasing is that

.

B. Simulation Results

In this section we will evaluate the complexity of QoS
routing through simulations. We will present simulation results
for several classes of graphs, namely the class of random
graphs, the class of square two-dimensional (2d) lattices, the
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class of power-law graphs, and the chain topology. The class
of random graphs is of the type [3], where is the
expected link density4 . For the class of Internet-like
power-law graphs, we have chosen the power in
the nodal degree distribution . The chain
topologies were of a triangular shape (as depicted in Fig. 3).
We have simulated with three different distributions for the

link weights, namely the uniform, exponential, and
Gaussian distributions. We only present the simulation results
for correlated uniformly distributed link weights with
correlation coefficient5 [21], because they led to a higher
complexity than the exponential and Gaussian distributions.
We have previously also simulated with . The results are
scattered over several papers (e.g., [25] and [16]). The results
(assuming independence among the weights) do not show
a more than linear increase in complexity as a function of .
We have confined to for the correlation study, because
for the correlation coefficient can span the entire range

, while if grows, the links cannot all be correlated
with and the “mutual” correlation range tends to .

All simulations consisted of generating different graphs
and in each graph a path was computed via the SAMCRA algo-
rithm [26]. SAMCRA incorporates four concepts: 1) a nonlinear
measure for the path length ;
2) a -shortest path approach6 to examine multiple subpaths
per node; 3) the principle of nondominated paths to reduce the
search space; and 4) the “look-ahead” concept. The look-ahead
concept precomputes one or multiple shortest path trees rooted
at the destination and then uses this information to reduce
the search space. In TAMCRA [6], the polynomial-time
predecessor of SAMCRA, is fixed (giving its polynomial
complexity), but with SAMCRA this can grow exponentially
in the worst case. SAMCRA does not only exactly solve the
MCP problem, but also exactly solves the MCOP problem
by finding the optimal path within the constraints. Since the
MCOP problem is more difficult than the MCP problem, the
simulation results presented here should be interpreted as an
upper bound. We have simulated a worst case scenario by
choosing the constraints so large that all paths can satisfy the
constraints. Therefore, SAMCRA must search in the largest
search space possible (all nondominated paths between the
source and destination), for the optimal path. If SAMCRA was
only solving the MCP problem, choosing such large constraints
would make the MCP problem “easy,” because then any path
is a solution to the MCP problem. During all simulations, we
kept track of the minimum queue size ( : the minimum
number of paths that needs to be stored at a node) needed to
find a feasible path. If TAMCRA [6] had used this particular

under the same conditions, it would have found the same
optimal path as SAMCRA did. If a smaller queue size had been
used, TAMCRA would not have been able to find the optimal

4We have used a fixed link density, because according to [24] the dependency
on the link density becomes vanishingly small as N grows.

5We have verified that the correlation coefficient � of the generated random
variables equals the desired �.

6A k-shortest path algorithm does not stop when the destination has been
reached for the first time, but continues until it has been reached through k dif-
ferent paths succeeding each other in length.

Fig. 4. Expected queue size for the class G (N), with m = 2 uniformly
distributed correlated link weights, as a function of the number of nodesN and
the correlation coefficient �.

Fig. 5. Expected hopcount for the class G (N), with m = 2 uniformly
distributed correlated link weights, as a function of the number of nodesN and
the correlation coefficient �.

path. This minimum queue size can grow as a factorial in
the worst case and presents our measure for the complexity of
QoS routing.

As illustrated in Fig. 4, the results for the class of random
graphs do not display any intractability. We can see that a
positive correlation leads to a slightly higher than with
a negative correlation. This peculiar phenomenon has only been
observed in the class of random graphs, with correlated uni-
formly distributed link weights. An explanation can be found if
we look at Fig. 5, which shows that a positive correlation be-
tween the link weights may induce a higher expected hopcount.
When the link weights become more positively correlated,
the weights become similar, and the problem approaches the

case. Since the expected hopcount of the -dimensional
shortest paths approaches the minimum hopcount if grows
to infinity [23], the case is expected to have the largest
hopcount. A negative correlation between the link weights also
leads to shorter hopcount paths. A low hopcount is possible
because there are sufficiently many paths in , which
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Fig. 6. Expected queue size for different topology classes as a function of the
number of nodes N , with m = 2 independent (� = 0) uniformly distributed
link weights.

can be viewed as a thinning of a complete graph provided
. For negative correlated link weights, a small link

weight component is likely accompanied with a large one.
For perfect negatively correlated link weight components

, SAMCRA’s shortest-length path (15) compensates
outliers in the link weight components with the result that (one
or two) links with weight components close to are selected
which leads to the observed minimum-hop paths.

In general, the more hops we must traverse to find the shortest
path, the more (sub)-paths we must evaluate and the more com-
plex the computation becomes. We believe that one of the mea-
sures for the “computational complexity” of a class of topolo-
gies is the expected (minimum) hopcount of an arbitrary path
in that topology. The expected hopcount (for ) scales
as in a random graph, while as in a 2d lat-
tice and in the chain topology. Besides the expected hop-
count in a graph, also the number of paths between a source and
destination can provide a measure for the “computational com-
plexity” of a class of topologies. The class of random graphs
with and increasing, has an increasing number
of paths and an increasing average nodal degree, giving the
graph a small diameter (i.e., the source and destination are di-
rectly linked or a few hops apart). This can be interpreted from
Fig. 5. Fig. 6 gives the expected queue size for three different
classes of graphs, namely the random graphs , the
2d lattices, and the Internet-like power-law graphs (with power

). For all three classes of graphs, the source and
destination nodes were chosen randomly. Only for the class of
2d lattices “Lattice2,” we have chosen the source and destina-
tion nodes in opposite corners, to attain the largest minimum
hopcount. In the class of random graphs , although the
number of paths is large, the expected hopcount is small, leading
to a small complexity. For the extreme regular class Lattice2 of
2d lattices, the number of paths and the expected hopcount are
large, which leads to a large complexity. The class of power-law
graphs may be considered, in terms of randomness, to lie be-
tween the random graphs and the 2d lattices. The power-law
graphs with have a moderate expected hopcount

Fig. 7. Expected queue size in the class of two-dimensional lattices as a
function of the number of nodes N and correlation coefficient �. The m = 2
link weights were uniformly distributed and the source and destination nodes
were chosen in opposite corners.

and a small number of paths, and lie, in terms of complexity,
closer to the class of random graphs than to the class of 2d lat-
tices. We have also simulated with different link weight distri-
butions, namely Gaussian and exponentially distributed corre-
lated link weights. If we use exponentially distributed correlated
link weights, the first weight has a higher probability of being
small, than with a uniform distribution. With a uniform distribu-
tion, each value for the first weight is equiprobable. Therefore,
with exponentially (and also Gaussian) distributed correlated
link weights, there is a higher probability that the link weight
vectors are similar. For uniformly distributed link weights there
is a larger variability, leading to a somewhat worse performance
than in the exponential (or Gaussian) case. However, in all cases
the expected queue size in the class of random graphs was close
to one, leading to a complexity similar to that of Dijkstra’s al-
gorithm. These simulation results therefore suggest that, irre-
spective of the link weight structure, QoS routing in the class
of random graphs (and according to [24] also Waxman graphs)
is possible in polynomial time. In contrast, the regularity and
large expected hopcount in the class of 2d lattices, may provide
ground for intractability. Indeed, we can observe a tendency to-
ward intractability in Fig. 7 and true nonpolynomial behavior in
Fig. 8.

Because the chain topology was used in the proof that the
MCP problem is NP-complete, we have also evaluated the
performance of SAMCRA in chain topologies. The results are
plotted in Figs. 8 and 9.

Our simulation results7 indicate that in the class of 2d lat-
tices and chain topologies, the MCP problem seems tractable
for nearly the entire range of correlation coefficient , except
for extreme negative values. Recall that the NP-proof is based
on an extreme negative link correlation. We doubt that in prac-
tice link weights will display such a negative correlation, sug-
gesting that exact QoS routing in practice, irrespective of the
underlying topology, is possible in polynomial time.

7Recall that the simulation results reflect the complexity of the much more
difficult MCOP problem.
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Fig. 8. Expected queue size (on a logarithmic scale) in the class of
two-dimensional lattices and chains, as a function of the number of nodes N ,
with correlation coefficient � = �1. The m = 2 link weights were uniformly
distributed and the source and destination nodes were chosen in a way that
the minimum hopcount was largest. We have fitted with exponentials, which
perfectly match the results in the simulated range. Simulating with larger N
may consume months of CPU time and therefore can only be done by reducing
the number of iterations or via parallel procesing.

Fig. 9. Expected queue size in the chain topology, with m = 2 correlated
uniformly distributed link weights forN = 50, as a function of the correlation
coefficient �.

V. THE IMPACT OF CONSTRAINTS ON COMPLEXITY

In this section we analyze the influence of the constraints on
the complexity of the MCP problem. For this purpose, we will
initiate an evaluation of a phase transition [4], [12] in the MCP
problem.

A. Theory

Property 7: Let denote the one-dimensional
shortest path from source to destination , for which

. Then, the MCP and MCOP prob-
lems are not NP-complete when

(7)

for at least one constraint.
Proof: is the path with the shortest th weight

. Therefore, is a lower bound on the th

weight that any path between and can attain.
Therefore, if for any constraint it holds that ,
then no path can obey . Since can be found in
polynomial time (e.g., via the Dijkstra algorithm), the MCP
problem is solvable (i.e., it is verified that no solution exists) in
polynomial time if any constraint obeys (7).

Property 8: Let denote the one-dimensional shortest
path from source to destination for which

. Then, the MCP problem is not NP-complete when

(8)

for at least constraints.
Proof: If for all con-

straints, then all one-dimensional shortest paths , (for
) obey the constraints. Hence, any path can

be chosen as a feasible path.
If for constraints (say

) and for one
constraint , then if path
obeys all constraints. If , then by Prop-
erty 7 we know that no feasible path exists. Since the paths

can be found in polynomial time (e.g., via the Dijkstra
algorithm), the MCP problem is solvable in polynomial time if
at least constraints obey (8).

For , Properties 7 and 8 constitute a closed NP-com-
plete range

(9)

The MCP problem with is only NP-complete if both
constraints lie in the NP-complete range (9). When the link
weights are positively correlated, the NP-complete range (9)
will be smaller than when the link weights are negatively cor-
related. This is illustrated in Fig. 10, for . At the cost of
increased (polynomial-time) complexity, we can further reduce
the NP-complete range by using Property 9.8

Property 9: Let denote the path from source
to destination for which

. Then, if

where with an inequality for at least one , then there
is no feasible path present that can solve the MCP or MCOP
problem.

Proof: A proof by contradiction. Assume that
denotes the path from source to destination for which

and that
. If a path existed that

obeys the constraints, then ,
for and consequently

, which contradicts our as-
sumption that .
Since the path can be found in polynomial time (e.g.,

8We have not programmed Property 9 in our simulations.
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Fig. 10. Constraints range (bold square) for (a) positive correlation
and (b) negative correlation. The dots in the figure denote paths in the
two-dimensional space (m = 2).

via the Jaffe algorithm [14]), the MCP problem is solvable in
polynomial time if .

The work presented in Section II suggested that there is a con-
nection between worst case complexity and phase transitions.
Using the terminology of Gent and Walsh [10], if problems are
very under-constrained, then it is usually easy to find one of the
many solutions. When problems are very over-constrained, it is
usually easy to determine that they are insoluble. In the phase
transition in between, problems are “critically constrained” and
it is typically very hard to determine if they are soluble or in-
soluble. Applied to the MCP problem, we can distinct a phase
transition based on the values of the constraints. If one of the
constraints obeys (7), the probability of finding a path obeying
the constraints is zero. Moreover, it can be verified in polyno-
mial time, that there exists no path in the graph that obeys the
constraints (Property 7). On the other hand, if the values of the
constraints are very large (under-constrained), such that all con-
straints follow (8), then a path satisfying these large constraints
can be found in polynomial time. A phase transition is there-
fore expected to occur if the constraints do not obey (7) and

(8). For small values of (with the
MCP problem may still be insoluble, however the effort (com-
plexity) needed to verify that indeed no feasible path is present
in the graph has increased. In contrast to the case where the
constraints , only computing the Dijkstra
shortest paths is not sufficient to determine that the problem is
insoluble. The SAMCRA [26] algorithm (or another exact MCP
routing algorithm) must be invoked and will eventually observe
that no path can obey the constraints. The larger the constraints
become, the longer it will take to determine that no feasible
path exists. Hence, increasing the constraints until a feasible
path emerges augments the complexity of its solution. On the
other hand, when decreasing the constraints starting from the
upper boundary (8), first many paths will obey the constraints

leading to a high probability that
a feasible path will be found fast. If the values of the constraints
decrease, the probability of finding a feasible path fast will also
decrease. It is therefore expected that a phase transition occurs
if there are only a few (if any) feasible paths present. In this case
MCP MCOP. The steepness of the phase transition depends
on the range between (7) and (8), which is heavily influenced
by the correlation coefficient as illustrated in Fig. 10 (and by
the computations in the Appendix). As discussed in Section IV,
the correlation coefficient also impacts the level of complexity,
which decreases if increases.

B. Simulation Results

To be able to observe a phase transition, we must choose an
intractable configuration. The simulation results in the previous
section suggest that the graphs should contain many paths, have
a large expected hopcount, and the link weights should have a
negative correlation. All these properties are present in the class
of 2d lattices, which in terms of structure and complexity can
be seen as a counterpart of the class of random graphs. In the
remainder of this paper we confine attention to this class of lat-
tices and try to distinguish a phase transition via simulations and
an approximate analysis. For our simulations, we have chosen
to use a single 2d lattice with nodes and correlated uni-
formly distributed link weights in the range [0, 1].

A worst case scenario is obtained if the source node is posi-
tioned in the upper left corner and the destination node in the
lower right corner, causing the largest minimum hopcount. For
each constraint and , 100 different values were chosen
in the NP-complete range (9) as discussed above, leading to a
total of iterations, all in the same lattice. Fig. 11 displays
the maximum queue size used by SAMCRA,9 for
and .

Different constraints can lead to different -dimensional
shortest paths. For instance, if is small (e.g., 5.0 in Fig. 11)
and is large (e.g., 7.0 in Fig. 11), then a path obeying
these constraints must also have a small weight
and the second weight may be large as long as .
Since is slightly larger than the weight of the
shortest Dijkstra path for measure 1, the path may closely

9k is different from the previously used k , since k denotes the maximum
queue size in SAMCRA whereas k is the queue size that TAMCRA would
have needed to attain the same solution as SAMCRA. We have used this larger
value here, because k = 0 if there is no path present.
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Fig. 11. Contour plot of the queue size in a two-dimensional lattice, with
correlated uniformly distributed link weights, N = 49, � = �1, and 10

different constraint vectors.

approximate , which may be easy to find as indicated
by small values in Fig. 11. Similarly, if is large (e.g.,
9.0 in Fig. 11) and is small (e.g., 3.0 in Fig. 11), then a
path obeying these constraints may closely approximate
the Dijkstra shortest path for measure 2 , which may
also be easy to find (as verified in Fig. 11). We observe that
the complexity is largest when and .
These values are situated near the center of the rectangle
(Fig. 10) spanned by the NP-complete range (9) at
and . These observations seem to suggest that the
complexity is largest when the constraints closely approximate
the weights of the -dimensional shortest path , which equal

on average [see the Appendix, (19)]. For 2d lattices
of nodes, we therefore expect the highest complexity
for . The deviation in our case is caused by only
examining one single lattice, instead of the many required for
statistical results.

The sharp edge/line in Fig. 11, constituted by the different
shortest paths, can be attributed to the extreme negative corre-
lation as explained in Fig. 10(b) and the Appendix.
Since the link weights are chosen in the range [0, 1], we have
that for . Hence,
the path weights of any path obey ,
where and equals the hopcount
of path . If we again look at Fig. 11, we may observe that
the straight line, once continued, intersects both axes and

at 12, which is precisely the minimum hopcount of the 2d
lattice with 49 nodes. Moreover, since ,
we know (see Property 8) that when , then no
feasible path exists. This means that for the class of 2d lattices
with correlated uniformly distributed link weights,
the constraints must obey , for a feasible path to
be possible. This condition for the constraints can be checked

Fig. 12. Contour plot of the queue size in a two-dimensional lattice, with
uniformly distributed link weights, N = 400; � = 0, and 10 different
constraint vectors.

in polynomial time and it is therefore possible to obtain a much
steeper phase transition than observed in Fig. 11. Finally, we
have also simulated with independent uniformly distributed link
weights in the range [0, 1]. As discussed in Section IV,
the complexity of solving the MCP and MCOP problems under
independent link weights is smaller than with negatively cor-
related link weights. To observe a phase transition, we had to
simulate with a lattice larger than . Fig. 12 gives the
contour plot for and . The complexity is largest
for and .

It would be desirable to obtain an estimation of the size of the
constraints that make the MCP problem critically constrained.
Such an estimation would allow us to predict the location of the
phase transition and hence give us an indication of the “critically
constrained” region. In the next subsection we will attempt to
provide an approximate analysis of the weights of the -dimen-
sional shortest path, because as we have seen above, choosing
the constraints close to these weights may lead to a nonpolyno-
mial running time.

C. Estimation of the Length of the Shortest Path in a Lattice

This last subsection discusses the approximate computation
of the length of the -dimensional shortest path between two
corner points in a rectangular 2d lattice with links vertically
and links horizontally. The link weights are independent uni-
formly distributed in the range (0, 1]. The approximate analysis
of the formulas presented in this subsection and some of the no-
tation that is used can be found in the Appendix. The asymptotic
average weight of a hop path in one dimension for
a 2d lattice is given by (13) as . This esti-
mate agrees reasonably well with simulations in the range

, which accurately follow .



KUIPERS AND VAN MIEGHEM: CONDITIONS THAT IMPACT THE COMPLEXITY OF QoS ROUTING 727

The extension to dimensions with independent link weight
components for the average length is the
approximation (17)

The scaling as a function of has been observed in simu-
lations, even for . This approximate analysis (16) shows
that there is no shortest path obeying the constraints if the length,
as defined in (15), . This event has probability

Clearly, if the lattice (i.e., , and ) is fixed and
the constraints decrease (increase), all (no) paths violate the con-
straints. The fact that there exists a path within the constraints
depends on the product of the constraints or equivalent con-

straint . If or (for large ), nearly

all paths obey the constraints. If or ,
for a large number of constraints, no path obeys the con-
straints. Hence, for large and large , there seems to be a
critical value of the equivalent constraint for
which and specifically for the square
lattice . Below that value the shortest path be-
havior is clearly different than above that value, which points to
a phase transition.

The result (18) in two dimensions , with perfectly
negative correlation , even points to a more confining
situation, as was readily observed by comparing Figs. 11 and
12. Since [see (19)] and any random variable

, the average weight of the shortest path lies very
close to the boundary .

In summary, we have estimated the average length or weights
of the shortest path for large values of or, equivalently, the
number of nodes in the 2d lattice. As common for extremal
distributions, the variance is small, which implies a fast tran-
sition from 0 to 1 of around the average. The
knowledge of the shortest path is important to set the constraints:
if the constraints are close to , the problem is criti-
cally constrained and more computations are needed to deter-
mine whether there exists a path obeying the constraints or not.
For constraints larger or smaller than , the problem is
either under- or over-constrained and the verdict that there ex-
ists a path within the constraints is usually simple to draw with
high probability. In the analysis presented in the Appendix, we
have assumed that a possible overlap of -hop paths is suffi-
ciently weak to allow the application of the limit laws for inde-
pendent random variables. Only relatively few paths will share
a large number of links. We have used a heuristic argument to
validate this assumption and have observed a good agreement
with our simulation results. The second assumption is that the
shortest path in the 2d lattice has hops or that
is negligibly small. This approximation is reasonable since sim-
ulations show that is rapidly decaying in
with decay rate dependent on the size of the graph. The larger

the graph, the slower the decay rate. However, for increasing
, simulations show that the shortest path tends to have hops.

Also for very negative correlation coefficients, the probability
that shortest paths have hops increases. Finally, although com-
puted for uniformly distributed link weights, the same results
hold for any distribution whose -fold convolved distribution
also behaves as for small . Any distribution in the same
sphere of minimal attraction (such as exponentially distributed
link weights with mean 1) yields the same results.

VI. CONCLUSION

In this paper, we have evaluated the complexity of QoS
routing. Finding a path based on multiple QoS constraints
is proven to be an NP-complete problem. However, this
Multi-Constrained Path (MCP) selection problem is not
NP-complete in the strong sense, meaning that a pseudo-poly-
nomial algorithm can exactly solve the problem. The NP-com-
pleteness of the MCP problem hinges on four factors, namely:
1) the underlying topology; 2) link weights that can grow arbi-
trarily large or have an infinite granularity; 3) a very negative
correlation among the link weights; and 4) the values of the
constraints. If the values of the constraints are very large then
it is easy to find a path within the constraints. On the contrary,
if the values of the constraints are very small, then it is easy to
verify that there is no path within the constraints. This indicates
that there will be a phase transition if the constraints are around
the weights of the -dimensional shortest path in the network.
In this case, it is expected to be difficult to establish whether a
feasible path exists. If the four above-mentioned conditions are
all necessary to induce intractability, they will allow network
and service providers to properly dimension their network and
to avoid intractable scenarios. Moreover, if the theory of phase
transition holds for the MCP problem, then we know that QoS
requirements close to the -dimensional shortest path will, if
admitted, provide the highest possible level of QoS, but also
the highest computational cost. Such information is invaluable
for pricing and billing mechanisms and admission control
algorithms. Finally, a proper understanding and use of the four
conditions, will allow for efficient QoS routing at controlled
computational costs.

APPENDIX

In this Appendix, we will present an approximate analysis of
the length of the -dimensional shortest path in a 2d lattice.

A. Analysis for a Single Link Weight

Consider a rectangular 2d lattice with size and and with
independent uniformly distributed link weights on . The
shortest hop path between two diagonal corner points consists
of hops. The weight of such a -hop path
is the sum of independent uniform random variables and

has distribution

(10)
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In particular, and for small holds that

. We assume that the number10

of those -hop paths is large. Although these paths can
possibly overlap, we ignore this dependence for the moment
and assume that the minimum weight among all -hop paths
is well approximated by the limit law (of extremal types [2]) for
the minimum of a set of independent random variables with
identical distribution . In particular, if

(11)

The limit sequence must obey for sufficiently
large , which implies that must be small or, equivalently,

must be small. Hence, or . The limit
law (11) for the minimum weight of the
shortest hop path between two corner points in a rectangular 2d
lattice is

In other words, the random variable tends to an exponential
random variable with mean 1 for large or

The mean shortest weight of a -hop path equals

(12)

For a square 2d lattice where , we have

Using Stirling’s formula ([1, 6.1.38]) for the factorial
where , we finally arrive for large

at

(13)

We now provide a heuristic argument why, for large , the
neglect of the dependence between -hop paths is justified. De-
note by the set of all -hop paths in the 2d lattice between

corner points, with the number of those paths .

A particular path of the set is denoted by . We denote the
weight of by . Let be the (random) weight of the
shortest path between corner points in the 2d lattice with inde-
pendent uniformly distributed link weights. The event

10Any path in a rectangular lattice can be represented by a sequence of r(ight),
l(eft), u(p), and d(own). A shortest hop path between diagonal corner points
consists of z r’s (or l’s) and z d’s (or u’s). The total number of these paths

equals
z + z

z

.

implies that there is a -hop path with weight
and, therefore,

(14)

where the second inequality follows from Boole’s inequality
. Using the independence of the link

and the link weights

or since given by (10)

From this rigorous inequality we infer the heuristic argument

. For a typical value of ,

the probabilities should sum to 1, yielding

where the assumption is that
. Hence, a typical value for the

weight of the shortest path is the solution of .

For small , we have such that

which agrees with in (12).

B. Analysis for Multiple Link Weights

Let us now consider a 2d lattice where each link is speci-
fied by a link weight vector . We further
confine to the case where all link weight components are inde-
pendent and uniformly distributed. Using the nonlinear length
of SAMCRA [26], the length of a -hop path is computed as

(15)

where each weight per component is with
distribution given in (10). Since all link weight components
are independent

For small

We define an equivalent constraint . Ne-
glecting the dependence of -hop paths due to possible overlap
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as above and applying the limit law for the minimum length with
results in

For large , we obtain the approximate distribution
of the minimum length, , of a

-hop path

(16)

The average length of the shortest path is with

Since all link weight components are independent and equal
in distribution, we can interpret as the weight of the
shortest path in dimensions. For a square 2d lattice, using ([1,

6.1.49]) , the formula

(17)

shows that the weight of the shortest path very slowly increases
with as and that for any dimension

.
The variance equals

For large , we see that

Hence,

which is rather small and independent of as is common for
extremal distributions.

C. Perfect Negative Correlation

In case of and perfect negative correlation, the first
path weight is and the second is

. Then

If , then and if ,
then else . Thus,

equals

Assuming as before independence of paths, then for the min-
imum length path holds

With ,

If , then
. It remains to find in terms of . We rewrite

. For small and with

such that, with the Gaussian approximation for

and

Finally

(18)
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from which

(19)

Hence, for large , the average rapidly tends to , as
has been verified through simulations.
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