
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 1, FEBRUARY 2009 1

Virus Spread in Networks
Piet Van Mieghem, Member, IEEE, Jasmina Omic, and Robert Kooij

Abstract—The influence of the network characteristics on the
virus spread is analyzed in a new—the -intertwined Markov
chain—model, whose only approximation lies in the application
of mean field theory. The mean field approximation is quantified
in detail. The -intertwined model has been compared with
the exact -state Markov model and with previously proposed
“homogeneous” or “local” models. The sharp epidemic threshold

, which is a consequence of mean field theory, is rigorously
shown to be equal to , where is the
largest eigenvalue—the spectral radius—of the adjacency matrix

. A continued fraction expansion of the steady-state infection
probability at node is presented as well as several upper bounds.

Index Terms—Epidemic threshold, Markov theory, mean field
theory, spectral radius, virus spread.

I. INTRODUCTION

W E FOCUS ON A simple continuous-time model for the
spreading of a virus in a network that was earlier con-

sidered by Ganesh et al. [9] and by Wang et al. [15] in dis-
crete time. The model belongs to the class of susceptible-in-
fected-susceptible (SIS) models that, together with the suscep-
tible-infected-removed (SIR) models, are the standard models
for computer virus infections. Each node in the network is ei-
ther infected or healthy. An infected node can infect its neigh-
bors with an infection rate , but it is cured with curing rate .
However, once cured and healthy, the node is again prone to the
virus. Both infection and curing processes are independent. Re-
finements like the existence of an incubation period, an infection
rate that depends on the number of neighbors, a curing process
that takes a certain amount of time, and other sophistications
are not considered here, but we refer to, e.g., [2], [6], [10], and
[16]. The theory of the spreads of epidemics through a network
can be applied to the spread of e-mail worms and other com-
puter viruses, the propagation of faults or failures, and, more
generally, the spread of information (e.g., news, rumors, brand
awareness, and marketing of new products) and epidemic dis-
semination or/and routing in ad hoc and peer-to-peer networks.
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Many authors (see, e.g., [3], [6], [11], and [12]) mention the
existence of an epidemic threshold . If the effective spreading
rate , the virus persists and a nonzero fraction
of the nodes are infected, whereas for the epidemic dies
out. However, when the same model is exactly described via
Markov theory as shown in Section III, the observation that this
Markov chain (with a finite number of states) possesses an ab-
sorbing state, contradicting the existence of any threshold. Be-
cause, in an irreducible Markov chain—all states are reachable
from each other—the existence of an absorbing state implies
that all other states are transient states and that the steady state is
the absorbing state. Moreover, the probability that the process is
in a transient state exponentially tends to zero with time. How-
ever, the convergence time to the steady state can be very
large, as shown in Section III. Ganesh et al. [9] give estimates
of . When the number of states grows unboundedly, major
complications arise. An infinite-state Markov process is consid-
erably more complex than a finite-state Markov chain as illus-
trated by, e.g., a branching process [14, Ch. 12] where the proba-
bility of extinction is a characteristic feature that is not presented
in a finite-state Markov chain. Although there is an absorbing
state, in an infinite-state Markov process, there is a nonzero
chance that the process never dies out. Since the exact Markov
chain (see Section III) consists of —states in a network of
nodes, features of the infinite-state Markov process rapidly pop
up. The apparent steady-state connected with the observation
of an epidemic threshold is often termed the “metastable state”
since, on a sufficiently long time-scale for finite-state systems,
it disappears.

Our major motivation is to understand the influence of graph
characteristics on epidemic spreading. Earlier, Wang et al. [15]
presented an approximate analysis from which they concluded
that the threshold of the effective infection rate equals

, where is the largest eigenvalue of the
adjacency matrix of the network. This result relates—for
the first time to the best of our knowledge—the epidemiolog-
ical spreading to a specific characteristic, the spectral radius

, of the network. When using mean field theory (or re-
lated averaging techniques), we rigorously show in Section IV
that, in the steady state, there is indeed a well-defined threshold

. This result relativizes the belief of the
physics society (see, e.g., [1] and [12]) that scale-free networks
like the Internet possess a vanishingly small epidemic threshold
and, hence, are vulnerable to viruses. This announcement has
provoked a rush of investigations on immunization strategies
for scale-free complex networks, which is somehow question-
able. In fact, since is never smaller than the mean
degree of the network, the class of connected Erdös–Rényi
random graphs [14] possesses a far larger spectral radius than
any scale-free graph with a same number of nodes . Most
complex networks are not small-world networks such that their
average degree scales with the number of nodes , which
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means that, for sufficiently large , all of these complex net-
works, and not only scale-free graphs, seem prone to potential
infections.

After a review of basic models for epidemics in Section II, we
study the matrix structure of the infinitesimal generator of the
exact -state Markov chain in Section III and give rather pre-
cise fitting results for the convergence time in two limiting
graphs: the complete graph and the line graph. The major part
is devoted to our new -intertwined Markov model: Section IV
derives the model, assesses the influence of the mean field ap-
proximation, and derives precise relations and upper bounds for
the steady-state. Sections V and VI characterize the exponential
dying out for and the role of the spectrum of , respec-
tively. The accuracy of the Kephart and White model is eval-
uated in Section VII, while Section VIII compares our model
with exact computations. Section IX concludes the paper.

II. REVIEW OF SOME BASIC MODELS

Here, we review basic models that may help to understand
the finer details of our -intertwined model. All models are
rephrased in our notation used in [14]. Other more general
models for virus spread in networks based on Markov theory
are found in [2] and [10].

A. Kephart and White Model

Kephart and White [11] considered a connected regular
graph1 on nodes where each node has degree . The number
of infected nodes in the population at time is denoted by

. If the population is sufficiently large, we can convert
to , a continuous quantity representing

the fraction of infected nodes. Hence, the implicit assumption
is that the number of states is sufficiently large such that the
asymptotic regime for an infinite number of states is reached.
The rate at which the fraction of infected nodes changes, is
determined by two processes: 1) infected nodes are being cured
and 2) susceptible nodes are infected. For process 1), the cure
rate of a fraction of infected nodes is . The rate at which
the fraction grows in process 2) is proportional to the fraction
of susceptible nodes, i.e., . For every susceptible node,
the rate of infection is the product of the infection rate per
link, the number of infected neighbors (i.e., the degree ) of the
node, which is . Combining all contributions yields the time
evolution of in the Kephart and White model, described
by the differential equation

(1)

whose solution is

(2)

where is the initial fraction of infected nodes whereas
the steady-state fraction is obeying

.
The Kephart and White differential equation (1) is the basis

of a large class of mean field models that, apart from some

1Kephart and White have modeled an Erdös–Rényi random graph
with average degree , which tends, for large , to a regular graph.
Hence, to first order in , the properties of virus spread in Erdös–Rényi random
graphs and regular graphs are the same.

variations, possess the same type of solution, specified by a
“steady-state” epidemic threshold

(3)

Since each node has (on average) the same degree, the Kephart
and White model is also termed a “homogeneous” model. Many
variations on and extensions of the Kephart and White model
have been proposed (see, e.g., [13]). The Kephart and White
model has already appeared in earlier work (see, e.g., [3]). The
logistic model of population growth that was first introduced by
Verhulst in 1838 as mentioned by Daley and Gani [6, p. 20] is,
in fact, the same as the simple Kephart and White model. More-
over, the simplest stochastic analogon [6, p. 56–63]—a pure
birth process with transition rate —is
mathematically identical to the shortest path problem [14, ch.
16] in the complete graph with i.i.d. exponential link weights.
This observation and relation to the complete graph shows that
these earlier models do not take the confining way of actual virus
transport into account. The central role of the network structure
in the spread of viruses is the focal point of this paper.

B. Model of Wang et al.

The major merit of the model of Wang et al. [15] is the in-
corporation of an arbitrary network characterized by the adja-
cency matrix , which generalizes the homogeneous Kephart
and White model, where the only network characteristic was
the (average) degree. The discrete-time model of Wang et al.
belongs to the class of mean field models. Their major and in-
triguing result is that the epidemic threshold is specified by

Unfortunately, this result is proved in an approximate manner
which questions to what extent this remarkable result holds in
general. In the sequel, we show that the Wang et al. model is
only accurate when the effective spreading rate is below the
“steady-state” epidemic threshold .

III. EXACT -STATE MARKOV CHAIN

We consider the virus spread in an undirected graph
characterized by a symmetric adjacency matrix . We assume
that the arrival of an infection on a link and the curing process
of an infected node are independent Poisson processes with rate

and with rate , respectively. As soon as a node receives an
infection at time , it is considered to be infected and infectious
and in state . Similarly, an infected node is cured
with rate , and in the healthy state at time . At each
time , a node is in one of these two states.

The state of the network at time is defined by all
possible combinations of states in which the nodes can be
at time

and
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Fig. 1. State diagram in a graph with nodes and the binary numbering
of the states.

Hence, the state space of the Markov chain is organized with

The number of states with infected nodes is . Fig. 1
shows an example of the Markov state diagram in a graph with

nodes.
The defined virus infection process is a continuous-time

Markov chain with states specified by the infinitesimal
generator with elements

if

if

if
otherwise

(4)

and . The time dependence of the probability
state vector , with components

and normalization , obeys [14, p. 182] the
differential equation

whose solution is

The definition of as a joint probability distribution shows
that, if we sum over all of the states of all nodes except for the

Fig. 2. Lower triangular part of the infinitesimal generator .

node , we obtain the probability that a node is either healthy
or infected

where, in the index , every with
takes both values from the set {0,1}, while for is
either 0 (healthy) or 1 (infected). Defining

, then the relation between the vectors and is

where the matrix contains the states in binary nota-
tion, but bit-reversed, as

...
...

...
...

...

The binary representation of the network states determines
the structure of the matrix. The upper triangular part of ,
denoted by , depends on the adjacency matrix elements ,
while the lower triangular part does not. The diagonal el-
ements of any matrix are the negative sum of the row ele-
ments, such that with

as in (4). It is thus instructive to write
as a sum of three matrices . The struc-
ture of the matrix is shown in Fig. 2, where the block matrix

and the nondefined elements are zeros. This
nested structure is the consequence of the binary representation.

The matrix is shown in Fig. 3. The block matrices
in are diagonal matrices of size with diagonal el-
ements depending on the adjacency matrix . The first row of
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Fig. 3. Upper triangular part of .

the matrix is zero, and, as a consequence, the largest block is
. The elements of depend on the indexes and ,

where as where
; ; . The exact -state

Markov chain has an absorbing state because the first row in
is a zero row and the absorbing state is the zero state in which all
nodes are healthy. The steady-state is just this absorbing state,
with steady-state vector . The proba-
bility state vector requires the insights in the eigenstructure of

because [7]

where denotes the multiplicity of the eigenvalue (with
) and the vector is related to the left- and right

eigenvector belonging to and the initial conditions. Since
is a sum of certain rows

of , we may write

where denotes the th column in the matrix . Let be
the largest eigenvalue of the set where , then

is dominated (for not too small ) by

(5)

which shows that a “bell-shape” distribution of can only
occur if that largest eigenvalue has a multiplicity larger
than 1.

A. Spectrum of

For all infinitesimal generators, it holds that and,
hence, the largest eigenvalue is .

Fig. 4. (in color) Histogram eigenvalues of of the in the complete graph
for three values of gives the number of times an eigenvalue occurs. The

insert shows the spectrum of for an extremely high .

Theorem 1: For , the eigenvalues of the matrix , de-
fined by (4), are with multiplicity , where

.
Proof: For , the infinitesimal generator

reduces to the lower-triangular
matrix , whose eigenvalues are identical to the
diagonal elements of , which are multiples of . In fact,
the structure of shows that each block row has a row sum
equal to for whose value appears times.
Hence, has an eigenvalue at with multiplicity

. These contain all of the nonzero eigen-
values of because .

For small values of , tends thus to a discrete, binomial
spectrum. Fig. 4 illustrates that, also for larger , the spectrum
of for the complete graph is still discrete,2 containing
many eigenvalues with high multiplicity.

Proposition 2: For constant and increasing (and
), the eigenvalues of shift, on average, to more negative

values than those of .
Proof: We apply Gershgorin’s Theorem3 to

, where and only contains (nonzero)
integer elements related to the adjacency matrix as observed
from (4). Hence, decreases with which implies that
both the center position and the possible range of each eigen-
value increases with .

Corollary 3: The eigenvalues of for the complete graph
and line graph spread over the largest (respectively,

smallest) possible range among all connected graphs. The
maximum possible range of the real part of eigenvalues of
for any connected graph is

Proof: From , defined in the proof of Theorem
2, it follows that the maximum possible sum of row elements
occurs for (all except for ) and the min-
imum one for line graph (only one 1-element on each row in the
adjacency matrix ). Gershgorin’s Theorem then provides the

2Random matrices of this size exhibit an almost continuous spectrum.
3Every eigenvalue of a matrix lies in at least one of the circular discs with

centers and radii . For any infinitesimal generator
, Gershgorin’s Theorem shows that and that the maximum

possible interval for real eigenvalues of is .
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Fig. 5. Four largest eigenvalues of the infinitesimal generator for the com-
plete graph with size , 8 and 10 as a function of with .
The second largest eigenvalues are increasing with as ,

and .

first statement. Since the maximum eigenvalue range thus oc-
curs for a complete graph, we consider in the -matrix for
the th row with one-bits in the binary representation. The
row elements, except from the diagonal element, represents the
transitions from and to a state with healthy and in-
fected nodes. The row sum of these positive elements equals

, and, hence, . Opti-
mizing with respect to proves the corollary.

As shown in the Appendix, also for the line graph, the max-
imum of the diagonal elements can be computed.

Yet, there are open questions regarding the spectrum of .
1) Although is not symmetric, computations reveal that all

eigenvalues of are real (and negative).
2) Perturbation theory of for small (or ) expresses the

eigenvalues in terms of those of and of the corre-
sponding right- and left-eigenvectors of . However,
the multiplicity of the eigenvalues of further com-
plicates the perturbation analysis.

3) The recursive block-structure (due to the binary represen-
tation) of needs to be exploited.

In the sequel of this section, we confine to explicit computa-
tion of the matrix for two extreme types of graphs: the com-
plete graph which has the smallest average hopcount (or the
fastest virus penetration) and the line graph that possesses the
largest possible average hopcount.

1) Complete Graph : Fig. 5 shows the four largest
eigenvalues of for the complete graph for , 8
and 10. The second largest eigenvalue seems like the only
eigenvalue that increases—contrary to the expectations of Ger-
shgorin’s Theorem—roughly exponentially in and with rate
increasing for increasing size . This second largest eigenvalue
determines the speed of convergence towards the steady state.
Fig. 5 also shows that, initially for small , the third and fourth
eigenvalue are the same and bifurcate (see dots) into distinct
values roughly around .
Hence, (5) indicates that, below , the dominant eigenvalue is
simply causing exponential decay, while above it has mul-

Fig. 6. Logarithm of versus the number links in for
and .

tiplicity larger than 1, creating a bell-shape. This observation
agrees with the figures in Section VIII.

In Fig. 6, the eigenvalues of for all computable complete
graphs (up to ) have been numerically calculated. The
second largest eigenvalue seems well fitted (for ) by

(6)

where denotes the number of links in the complete
graph . The dependence on is approximately given by

. Assuming that the scaling law (6) of
holds for any , the convergence time of the virus spread
in towards the steady state (the zero state), defined by

is found as .
In other words, for large size and , the convergence
time is so large that convergence towards the zero state is
in reality never reached, which explains the appearance of the
so-called “metastable state.”

Ganesh et al. [9] show that, for [a regime that is
not covered by (6)], the mean epidemic lifetime scales as

while, for where is the generalized
isoperimetric constant, , for some constant .
If we may extrapolate (6) to large , it shows that the constant

for .
2) Line Graph: Fig. 7 plots the second largest eigen-

value of for the line graph. The largest eigenvalue of
the adjacency matrix of the line graph, where each row
has precisely one nonzero element in the upper triangular
part of , is . Fig. 7
(axis on the right) also shows the epidemic threshold of
the line graph versus . As
observed from Fig. 7, the curves increase very slowly
with . Via curve fitting in the range , we
found that , which shows
the exponential dependence on (accurate) and the less
accurate dependence on . If extrapolation to large is
allowed, the convergence time of the virus spread in
the line graph towards the steady-state (the zero state) is

, which is considerably
smaller than in , which is the other extreme case.
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Fig. 7. Second largest eigenvalue of in the line graph versus the number
of nodes for various and . The epidemic threshold is shown
in the dotted line on the axis on the right-hand side.

B. Conclusion

An upper and lower bound on the spectrum of any graph are
given. Via fitting, we complement the scaling laws of Ganesh
et al. [9]. The matrix computations (on a PC) are limited to

. Simulations and the analytic matrix computations are,
within the simulation accuracy, identical. This observation al-
lows us to replace the matrix computations by simulations be-
yond graph sizes of .

IV. -INTERTWINED CONTINUOUS MARKOV CHAINS
WITH TWO STATES

By separately observing each node, we will model the virus
spread in a bi-directional network specified by a symmetric ad-
jacency matrix . Every node at time in the network has two
states: infected with probability and healthy with
probability . At each moment , a node can only
be in one of two states, thus .
If we apply Markov theory straight away, the infinitesimal gen-
erator of this two-state continuous Markov chain is

with and

where the indicator function if the event is true, else it
is zero. The coupling of node to the rest of the network is de-
scribed by an infection rate that is a random variable, which
essentially makes the process doubly stochastic. This observa-
tion is crucial. Using the definition of the infinitesimal generator
[14, p. 181]

the continuity and differentiability shows that this process is not
Markovian anymore. The random nature of is removed by
an additional conditioning to all possible combinations of rates,

which is equivalent to conditioning to all possible combinations
of the states (and their complements )
of the neighbors of node . Hence, the number of basic states
dramatically increases. Eventually, after conditioning each node
in such a way, we end up with a -state Markov chain, defined
earlier in Section III.

Instead of conditioning, we replace the actual random infec-
tion rate by an effective or average infection rate, which is basi-
cally a mean field approximation

(7)

In general, we may take the expectation over the rate , the net-
work topology via the matrix , and the states . Since we
assume that both the infection rate and the network are con-
stant and given, we only average over the states. Using

(see, e.g., [14]), we replace by

which results in an effective infinitesimal generator

The effective allows us to proceed with Markov theory.
Denoting and recalling that

, the Markov differential equation [14, (10.11) on
p. 182] for state turns out to be nonlinear

(8)

Each node obeys a differential equation as (8)

...

Written in matrix form, with ,
we arrive at

(9)

where is the all-one vector and is the diagonal
matrix with elements .

We rewrite (9) with as

or

(10)
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The time-continuous analog of Wang et al. [15] would be
, which thus ignores the impor-

tant nonlinear term , and, consequently as
shown in Section IV-B, it limits the validity to .

An extension of the -intertwined model where the curing
and infection rates are node specific is

where the curing rate vector is . We
note that is, in general, not symmetric anymore,
unless and commute, in which case the eigenvalue

and both and have a
same eigenvector . In case the curing and infection rates are
link-specific, the adjacency matrix can be extended to that
of a multilink graph, where is an integer counting
the number of links (representing the strength of infection)
between node and node . Generally, can be a nonnegative
real, symmetric matrix where each contains the
strength of the infection of link in units of a constant .

A. Mean Field Approximation

At first glance, the averaging process—replacing in (7) by
its mean —seems quite accurate, because a sum of in-
dependent indicators (Bernoulli random variables) is close—ex-
actly if all Bernoulli random variables have the same distribu-
tion—to a binomial random variable, whose standard deviation

is small compared to the mean
. The latter implies that the random variable

is closely approximated by its mean for large . More pre-
cisely, the central limit theorem for a sum of in-
dependent random variables , each with finite vari-
ance (and small compared with ) states that,
for large

Applied to independent indicators with
shows that, for

and large

where the last step follows after (successive) partial integration
and retaining the term in the series for large . Hence,
for independent indicators, large deviations from the mean are
very unlikely.

However,
is a sum of dependent indicators. In addi-

tion, if is large, does not always increase with .
Indeed, and the maximum degree
in a graph can be independent of , for example, in the line
graph where for any .

We will first elaborate on the dependence. Let us consider the
time-dependent random variable , which is

1 if node is infected, else it is zero. If the node is infected
, can change from 1 to 0 with curing rate .

If the node is healthy , can change from
0 to 1 with rate . The change of in a
sufficiently small time interval is

After taking the expectation of both sides, we obtain (with
)

Since , only the case where appears in the re-
maining expectation, which is

where the conditional probability
. Hence, when , we arrive at

Assuming that the graph is connected, then

because a given infection at node cannot negatively influence
the probability of infection at node . When comparing with (8),
we observe that the mean field approximation implicitly makes
the assumption of independence that

. Hence, the positive corre-
lation is not incorporated appropriately. As a consequence, the
rate of change in is always overestimated. The -in-
tertwined Markov chain thus upper-bounds the exact probability

of infection.
Next, we will address the effect on the size by computing

the variance of , . First, we
have

or in terms of the conditional probabilities
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Since , an upper bound of
is

(11)
The variance of is

(12)

Since as argued above, the second double sum
consists of nonnegative terms such that the variance is
larger than in the case of independent random variables (where
the double sum disappears). This fact is not in favor of the mean
field approximation since larger variations around the mean

can occur which makes the mean a less good approxi-
mation for the random variable . In particular, (12) shows
that standard deviation , whereas the
standard deviation scales as in case of independence!
Especially in graphs with bounded maximum degree (such as
the line graph), may not decrease sufficiently fast
in compared to . Thus, we expect deviations between
the -intertwined and the exact model in those graphs to be
largest.

For small (and large enough to ignore the initial condi-
tions), and (12) shows that the double sum
is . Hence, for small , the situation is close to the inde-
pendence case, in which mean field theory performs generally
well. An upper bound for follows from (11) such that
the coefficient of variation

This shows, that for large where , the co-
efficient of variation is small, again in favor of the mean field
approximation. Hence, we expect that the deviations between
the -intertwined and the exact model are largest for interme-
diate values of . As shown in Section VIII, in some -region
around , large deviations are indeed found.

The two observations, dependence and absence of a limiting
process towards the mean as increases, complicate a more
precise assessment of the averaging process at this point. Since
the mean field approximation is the only approximation made,
a comparison of the nonlinear model (9) with the exact -state
solution in Section VIII further quantifies the effect of the mean
field approximation.

Finally, the mean field approximation also excludes informa-
tion about the joint probability of states,

where all , as in the -state Markov chain.

B. Steady-State Under the Mean Field Approximation

Assuming that the steady-state exists, we can calculate the
steady-state probabilities of infection for each node. The steady-
state, denoted by , implies that , and thus
we obtain from (8) for each node

Since all of the diagonal elements of the adjacency matrix are
zero, , we find

(13)

This nodal steady-state is the ratio of the (average) infection rate
induced by the node’s direct neighbors over the
total (average) rate of both the competing infection and curing
process. Since , (13) is equal to the steady-state prob-
ability in a two-state continuous Markov chain (see, e.g., [14,
p. 196]), which exemplifies the local (or nodal) character of our

-intertwined Markov model. We observe the trivial solution
for all , which means that eventually all nodes will be

healthy. On the other hand, if , then all or, to be
slightly more precise, (13) shows that for
large . Of course, if there is no curing at all , all nodes
will eventually be infected almost surely.

Lemma 4: In a connected graph, either for all
nodes or none of the components is zero.

Proof: If for one node in a connected graph,
then it follows from (13) that which is only
possible provided for all neighbors of node . Ap-
plying this argument repeatedly to the neighbors of neighbors
in a connected graph proves the lemma.

Apart from the exact steady-state for all , the non-
linearity gives rise to a second solution, coined the “metastable
state.” That second nonzero solution can be interpreted as the
fraction of time that a node is infected while the system is in the
“metastable state,” i.e., there is a long-lived epidemic.

Theorem 5: For any effective spreading rate
, the nonzero steady-state infection probability of any node
in the -intertwined model can be expressed as a continued

fraction

...
(14)

where is the degree of node . Consequently, the
exact steady-state infection probability of any node is bounded
by

(15)
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Fig. 8. Difference between the exact result and the -iterations
of (14) for the complete graph and line graph (both with nodes) versus
the effective infection rate .

Proof: We rewrite (13) as

since because for all .
This proves (15).

We proceed further by introducing
, such that

This bound improves on (15). The third iteration gives

Ignoring yields a new upper bound
that sharpens the previous upper bound of the second itera-
tion. Each iteration provides a tighter upper bound by putting

in the deepest fraction. Continuing the
process leads to an infinite continued fraction expansion (14) for

.
The continued fraction stopped at iteration includes the ef-

fect of virus spread up to the -hop neighbors of node .
As illustrated in Fig. 8 (and typical for other graphs that we have
simulated), a few iterations in (14) already give an accurate ap-
proximation. The accuracy seems worst around .

Additional insight can be gained from (9), which in the
steady-state reduces to

Define the vector , then

or

Ignoring the absence of curing ( or ), the bound
(15) shows that cannot be one such that the matrix

is invertible. Hence

and we end up with the equation

Further, we expand each element as
, where the geometric series always converges since

. With the notation , we
arrive at the steady-state equation

(16)

Lemma 6: There exists a value , and,
for , there is only the trivial steady-state solution .
Beside the solution, there is a second nonzero solution
for all . For where is an arbitrary small
constant, , where is the eigenvector belonging to the
largest eigenvalue of the adjacency matrix .

Proof: Theorem 5 shows that the only solution at is
the trivial solution . Let , where is an
arbitrary small constant and each component . Introduced
in (16) gives, after division by

For sufficiently small , the steady-state equations reduce
to the eigenvalue equation

(17)

which shows that is an eigenvector of belonging to
the eigenvalue . Since is a nonnegative matrix, the
Perron–Frobenius Theorem [14, p. 451] states that has a
positive largest eigenvalue with a corresponding
eigenvector whose elements are all positive and there is only
one eigenvector of with nonnegative components. Hence,
if , then (and any scaled vector

) is the eigenvector of belonging to . If
, then cannot be an eigenvalue of

and the only possible solution is , leading to the trivial
solution . For , Theorem 5 provides the nonzero
solution of (13).
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Canright et al. [4] proposed the eigenvector centrality (EVC)
measure of a spreading power of a node

where is the spreading power of a node . Written in our nota-
tion as , the EVC is recognized
as the component representation of the eigenvalue equation (17)
for . The steady-state infection probability is the long-run
fraction of time during which the node is infected. The higher
the probability , the faster the node is prone to infection and
the more important its role is in further spreading. This Markov
steady-state interpretation may explain the term centrality anal-
ogously as the betweenness centrality of a node.

In passing, we note that, by combining Theorem 5 and
Lemma 6, a continued fraction expansion of the (scaled)
largest eigenvector in any graph is found from (14) for

.
Lemma 7: For any effective spreading rate

, the components of the steady-state infection probability
vector obey

(18)

Proof: Summing all rows in (16), which is equivalent to
multiplication of both sides in (16) by the all-one vector ,
yields

where is the degree vector. After
rewriting the -sum, we arrive at (18).

Equation (18) is obeyed for the trivial solution and if
. In the case of regular graphs (where

for all ), both and
are exact solutions of (13). This shows that, in certain cases, the
continued fraction (14) can be simplified.

The fraction of infected
nodes in the network, based on the estimate ,
is

(19)

Numerical computations in Fig. 9 assess the quality of the ap-
proximation (19).

Lemma 8: For all , cannot be a solution
of (13) for where is the second smallest
degree in the graph .

Proof: Indeed, leads for
to , which is impossible.

The strict inequality is important. Lemma 8 ex-
plains that larger variations in the degree lead to worse results
of (19) in Fig. 9.

Fig. 9. Comparison of (19) and exact computations or precise simulations for
different types of graphs with nodes.

Lemma 9: In a connected graph with minimum degree
and for , a lower bound of for any node

equals

(20)

Proof: Lemmas 4 and 6 show that, for , there exists a
nonzero minimum of steady-state in-

fection probabilities, which obeys (13), assuming that this min-
imum occurs at node , to yield

From the last inequality, it can be shown that

(21)

which is only larger than zero provided .
Introducing the bound (21), we also have for each node

which is (20).
For , the lowest possible lower bound for node is

Finally, by combining the upper bound (15) and the lower bound
(20) for , we find that belongs to the interval

This shows clearly that for variations between all values
of for all will tend to 0.
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C. Example: Complete Bi-Partite Graph

The adjacency matrix of the complete bi-partite graph
is, with ,

(22)

The bi-partite graph may represent a set of servers and
clients. Let us now solve (10) for the bi-partite graph

After some manipulations, we find

With , we rewrite

With , the first rows

reduce to identical equations, from which it is tempting to
conclude that for all and for all . However,
this assumption is only valid if all initial conditions are the
same. Only in that case

Similarly, for the last equations, we have with for all
, that

With and
, we arrive at

(23)

The steady-state obeys

These equations hold in general for because the steady-
state does not dependent on the initial conditions. Substituting

from the first equation into
the second yields

(24)

and, introduced in the first equation,

(25)

Hence, all components of the steady-state
are found.

V. TIME EVOLUTION OF EPIDEMICS

Supposing that all are sufficiently small to ignore the
term in (10), the time-dependent solution
is

Since an adjacency matrix has the eigenvalue decomposition
, where and is the set

of eigenvalues of , and where the orthonormal matrix has
the eigenvectors of as columnvectors (see, e.g., [14, Appendix
A]), we obtain

or . Thus

and, in order for to be a probability vector, we must require
that all eigenvalues or that for all
. This again leads to the requirement that .

The analysis shows that, in the regime , the
probability vector tends exponentially fast to zero.

Ganesh et al. [9, Theorem 3.1] and Durrett [8] have bounded
the probability that the virus spread process is not (yet) in the
absorbing state as

where the norm (see e.g., [14, Sec. A.3])
. Since is related to and

the largest component of precisely decays proportionally
to , we may expect that the nonlinear -inter-
twined model is fairly accurate for , as
also confirmed by simulations presented in Section VIII.

VI. FRACTION OF INFECTED NODES AND THE ROLE OF
THE SPECTRUM OF

The sum gives the fraction of in-
fected nodes in the network. Summing (8) over all is equiva-
lent to right multiplication of by because

. Then, we find from (10) that

Since because , we can write

(26)

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 24, 2009 at 03:04 from IEEE Xplore.  Restrictions apply.



12 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 1, FEBRUARY 2009

Invoking the eigenvalue decomposition of the sym-
metric adjacency matrix leads to

(27)

where is the th component of the vector : the scalar
product or the projection of the vector onto the th eigen-
vector of . We have that .

Equation (27) shows that the zero eigenvalues in the adja-
cency matrix of a graph do not contribute to the infected frac-
tion of nodes. In general, a matrix has a zero
eigenvalue if its determinant is zero. A determinant is zero if
two rows are identical or if some of the rows are linearly depen-
dent. For example, two rows are identical if two distinct nodes
are connected to a same set of nodes. Since the elements
of an adjacency matrix are only 0 or 1, linear dependence of
rows here occurs every time the sum of a set of rows equals an-
other row in the adjacency matrix. For example, consider the
sum of two rows. If is connected to the set of nodes and

is connected to the distinct set , where and
, then the graph has a zero eigenvalue if another node

is connected to . These zero eigenvalues
occur when a graph possesses a “local bi-partiteness.” In real
networks, this type of interconnection often occurs.

Lemma 10: For any effective spreading rate
, the components of the steady-state infection probability

vector obey

(28)

from which

where is the number of links.
Proof: The equality (28) is an immediate consequence of

(27). The first upper bound follows from (15). The second one
from the basic equation of the degree .

Since for any graph, the lower bound in
Lemma 10 shows that the positive eigenvalues and their eigen-
vectors are more important than the negative ones. Because the
left-hand side of (28) is increasing in , the vector is in-
creasingly more aligned with eigenvectors of belonging to
positive eigenvalues. Lemma 6 shows that at , only
the eigenvector of plays a role. As increases, we
now deduce that is influenced by additional eigenvectors
(proportional to ). The contribution of the eigenvector of

to remains dominant, because it is
the only eigenvector with all positive components and all eigen-
vectors in are normalized, i.e., . By combining (28)
and (18), we have

VII. EVALUATION OF THE KEPHART AND WHITE MODEL

Here, we will show that, by making additional approxima-
tions, our model can reproduce the differential equation (1) of
the Kephart and White model.

In a regular graph with degree and adjacency matrix ,
the degree vector and the eigenvector belonging to the
largest eigenvalue is such that (27) becomes

If we let and assume in the last sum that all
eigenvalues and vectors are equal to the largest one, we again
find the Kephart and White differential equation (1). Clearly,
apart from the mean field approximation and the confinement
to regular graphs (or nearly regular graphs), the Kephart and
White model approximates the eigenvalue structure of a regular
graph and only the largest eigenvalue and eigenvector are con-
sidered. Since implying that a nonnegligible
fraction of the eigenvalues are negative, the Kephart and White
derivative underestimates the actual rate of infection
in the regular graph. Most likely, this underestimation is a gen-
eral property of “homogeneous” virus spread models. A sim-
ilar comment holds for the extended local models proposed by
Pastor Satorras and Vespignani [13, ch. 9].

For the simplest regular graph, the complete graph , we
observe that (8) for each node is identical. Thus, one might be
led to put for all and for all and such
that . In that case, the set of (9)
reduces to a single equation

which is the Kephart and White differential equation (1). Al-
though apparently correct, the assumption that (for all
) implies that all initial conditions also are the same. That full

symmetry reduces the modeling of the network to that of a single
node. Also, that local view of the single node is equivalent to ig-
noring all, but the largest eigenvalue in (27). In random attack
strategies of computer viruses, where each node has equal prob-
ability to be infected initially, the full symmetry
for any pair of nodes and is achieved.

VIII. COMPARISON OF THE -INTERTWINED MC
WITH THE EXACT -STATE MC

Via simulations, we assess the accuracy of the -intertwined
Markov chain. Only small networks are simulated because we
expect for small the largest error. Figs. 10–12 present a typ-
ical view of the fraction as a function of time in for
three different -regimes.

Below the epidemic threshold ( in
Fig. 10), the -intertwined nonlinear model is almost exact.

In a -region round , Fig. 11 illustrates that the deviations
from the exact solution are substantial. However, sufficiently
above as in Fig. 12, the accuracy of the -intertwined
nonlinear model again improves. Since the -intertwined
nonlinear model upper-bounds the fraction of infected nodes as
shown in Section IV-A, the relative small difference in Fig. 12
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Fig. 10. Fraction of infected nodes in where as a function
of time computed exactly (via the -matrix) and with the intertwined Markov
chain model.

Fig. 11. times the fraction of infected nodes in where
as a function of time computed exactly (via the -matrix) and with

the intertwined Markov chain model.

quantifies the effect of neglecting dependence in the mean field
approximation.

In summary, for all graphs, if , the -intertwined
Markov chain is very accurate. If , the -intertwined
Markov chain differs from the exact solution, but the differ-
ence decreases with increasing network size . The fact that the
non-linear -intertwined model and the exact -state Markov
chain are close for large is linked with a general property of
Markov chains: a Markov chain can approximate any stochastic
process arbitrarily close provided the number of states in the
Markov chains is sufficiently large.

IX. CONCLUSION

The robustness of the infrastructure against failures and
attacks has motivated the analysis of an epidemic spreading
process in a given, fixed network, represented by the adjacency
matrix . Individual interactions are not homogeneous, but

Fig. 12. times the fraction of infected nodes in where as
a function of time computed exactly (via the -matrix) and with the inter-
twined Markov chain model.

dictated by the structure of the network. Models of spreading
processes should take the network topology into account.

Two models for virus spread in networks are presented: the
exact state Markov chain and the new -intertwined model,
whose only approximation lies in the application of mean field
theory. The exact Markov chain provides insight into the virus
spread process (the time of convergence to the absorbing state).
The -intertwined model relates network topology parameters
to the spreading process (largest eigenvalue and degrees of the
nodes). The influence of the mean field approximation is quan-
tified. Several upper bounds for the steady-state infection prob-
abilities are presented.

Additional contributions of the paper are: 1) our -inter-
twined model reduces for regular graphs to the basic Kephart
and White epidemiological model after additional simplifica-
tions; 2) we have explored the phase transition phenomenon and
shown that, for a fixed graph, the epidemic threshold is conse-
quence of the mean field approximation and we have presented
the relation between spreading rate and convergence time to-
wards the extinction of epidemics for two extreme cases (full
mesh and line graph); this is especially important for smaller
epidemics where is close to the epidemic threshold and where
the lifetime of an epidemic varies significantly; and 3) the largest
eigenvalue of the adjacency matrix of the graph is rigorously
shown to define an epidemic threshold of the -intertwined
model (as well as of other mean field models).

APPENDIX

We compute the upper bound of the sum of the rows in for
the line topology. First, let us consider two cases with the same
number of infected nodes on the same line graph as shown in
Fig. 13.

Case a) has two nodes that can be infected by two neighbors
and one that can be infected by only one neighbor. In the case b)
only one node can be infected by one neighbor. Thus, in case a),
all healthy nodes can be infected by two neighbors in contrast to
case b), where one node can be infected by only one neighbor.
Since, from the viewpoint of curing, both cases are equal, we
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Fig. 13. a), b) Line graph with and three infected nodes. The “1” refers
to an infected node and a “0’ to healthy node. c) Line graph with (odd
number of nodes) and four infected nodes.

will consider only the cases analogous to a), where nodes are
alternately infected. There is also a difference between the line
graphs with odd and even number of nodes , as observed from
case c). We can now write the sum of the non-diagonal elements
of such a th row in as a function of the number of infected
nodes . We have for odd

and when is even we have
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