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System Identification for Temporal Networks
Sergey Shvydun and Piet Van Mieghem

Abstract—Modelling temporal networks is an open problem that has attracted researchers from a diverse range of fields. Currently, the
existing modelling solutions of time-evolving graphs do not allow us to provide an accurate graph sequence. In this paper, we examine
the network dynamics from a system identification perspective. We prove that any periodic graph sequence can be accurately modelled
as a linear process. We propose two algorithms, called Subspace Graph Generator (SG-gen) and Linear Periodic Graph Generator
(LPG-gen), for modelling periodic graph sequences and provide their performance on artificial graph sequences. We further propose a
novel model, called Linear Graph Generator (LG-gen), that can be applied to non-periodic graph sequences. Our experiments on
artificial and real networks demonstrate that many temporal networks can be accurately approximated by periodic graph sequences.

Index Terms—Temporal Networks, Network Dynamics, System Identification.
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1 INTRODUCTION

MANY real systems such as social, financial, biologi-
cal and technological systems can be represented as

networks, where the nodes are the elements of the system
and the links are interactions between them. The power
of networks resides in their ability to provide insights into
complex system structure and to model complex dynamics
such as diffusion and contagion. However, most studies in
graph theory are performed under the assumption that the
structure of the network is static, which is not true for most
real systems. Indeed, in many applications, the systems are
dynamic in nature and evolve over time which, in turn,
affects their topology and the processes that propagate over
the network. Such an observation leads to the fact that many
practical problems can be solved more accurately if the time-
evolving structure of the graph is taken into account. The
ability to model real systems facilitates our understanding
of the nature and the timing of observed evolution, but it
may also provide some useful intuition about the future be-
haviour of the system, thereby making valuable predictions.
Moreover, understanding the graph evolution can identify
system malfunction or security intrusion.

Understanding the evolution of networks is still an open
problem. Most papers on network dynamics focus on tem-
poral link prediction using matrix factorization, probabilis-
tic approaches, spectral clustering, time series or deep learn-
ing methods that fail to capture global topological features
and non-linear varying temporal patterns of the network
[1]. Other approaches focus on the graph level and consists
in producing generative graph sequences that mimic the
real-world networks in terms of certain topological features
such as the number of links, clustering coefficient, degree
distribution, connected components or motifs [2], [3], [4],
[5], [6], [7], [8], [9]. Various approaches have been proposed
to model particular dynamical processes such as human mo-
bility [10], [11], [12], [13] or communication networks [14].
These models are mostly probabilistic and activity-driven
(nodes and links are active or inactive within some time
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intervals) or spatiotemporal (nodes are changing their posi-
tion in space with respect to some trajectory) [15], [16]. For
instance, Chang et al. [11] introduce a Markov Modulated
Process (MMP), where states of the Markov chain encode
certain modifications to the original graph. It is shown that
an MMP model captures global graph properties, but it does
not provide an accurate topology of the graph and cannot
be applied for modelling processes that have seasonality or
spikes around certain events. To the best of our knowledge,
none of the existing models generates graph sequences that
resemble the real graph in terms of its set of adjacency
matrices. Moreover, most models do not provide knowledge
about the underlying process.

This paper is aimed as one step forward towards a
deeper understanding of network evolutionary processes.
We examine network dynamics from a system identification
perspective. Based on the observed graph sequence, we
attempt to model the graph evolution as a linear process.
The goal of the study is to find a process that generates such
graph sequences accurately.

Many real world systems possess a dynamics that re-
peats during a certain period of time due to a daily rhythm.
Examples of such quasi-periodic systems are road traffic,
computer networks, logistics, human mobility, social inter-
actions and many others. Ma and Hellerstein [17] show that
periodic patterns often lead to actionable insights about the
evolutionary process. We show that any periodic graph evo-
lution can be described by a linear time-invariant process.

Our major contributions can be summarized:
• We model the graph dynamics as a linear process

using a system identification approach in Section 3.2.
• We prove in Section 3.4 that any periodic graph

sequence can be modelled exactly. We provide infor-
mation about the dimensionality of the system that
produces the exact graph dynamics.

• We propose SG-gen, LPG-gen and LG-gen algo-
rithms to model periodic and non-periodic graph
sequences (see Sections 3.2, 3.5, 3.6).

• We test SG-gen, LPG-gen and LG-gen algorithms
on various artificial and real graph sequences and
illustrate their reachable accuracy (Sections 3.7-3.8).
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Fig. 1. Visualization of an LTI model. The symbol ∆ represents a delay.

The paper is organized as follows. In Section 2, we
provide basic information about time-invariant state-space
model and subspace methods for system identification. In
Section 3, we propose the SG-gen model for graph gener-
ation and apply it to artificial graph dynamics. Next, we
consider the properties of the SG-gen model and provide
the exact solution for periodic graph sequences (LG-gen).
We also consider the application of LG-gen to quasi-periodic
artificial networks and real graphs. Finally, Section 4 con-
cludes. Additionally, we introduce the notation to the reader
in the Appendix A.

2 LINEAR TIME-INVARIANT STATE-SPACE MODEL

2.1 Problem statement
The dynamics of a linear system in discrete time k is defined
by a linear time-invariant (LTI) state-space model [18]:{

x[k + 1] = A · x[k] +B · u[k],
y[k] = C · x[k] +D · u[k],

(1)

where u[k] ∈ Rm is the input vector, y[k] ∈ Rd is the
output vector, x[k] ∈ Rn is the state vector and where
A ∈ Rn×n, B ∈ Rn×m, C ∈ Rd×n and D ∈ Rd×m are time-
invariant matrices that define the relation between input,
output and state vectors. The dimension n of the state vector
x[k] defines the order of an LTI system. Equivalently, (1) is[

x[k + 1]
y[k]

]
= Q ·

[
x[k]
u[k]

]
, with Q =

[
A B
C D

]
(2)

The block matrix Q is an (d+n)×(n+m) system matrix. The
scheme of an LTI system from [19] is represented in Fig. 1.

In general, as shown by Verhaegen and Verdult [18],
there are different state representations that yield the same
dynamic relation between observations u[k] and y[k]. In fact,
any system{

xp[k + 1] = Ap · xp[k] +Bp · u[k],
y[k] = Cp · xp[k] +Dp · u[k],

with Ap = P−1AP , Bp = P−1B, Cp = CP , Dp = D and
xp[k] = P−1x[k] for any non-singular similarity matrix P
is an equivalent system to (1) since it produces the same
output y[k] given the same input u[k] and merely relabels
their vector components. Therefore, it is only possible to
identify the matrices A, B, C, D up to a similarity (or state)
transformation P and any LTI system with system matrices
(Ap, Bp, Cp, Dp) and state vector xp is equivalent to (1).

The identification of an LTI state-space model in (1)
from input and output measurements can be solved using
subspace identification methods [20]. The subspace meth-
ods are based on the fact that, by storing the input and
output data in structured block Hankel matrices, it enables
to retrieve certain vector subspaces that are related to the

system matrix Q of an LTI model. More precisely, the input
and output measurements can be stored in structured block
Hankel matrices as follows:

Yi,s,h =


y[i] y[i+ 1] · · · y[i+ h− 1]

y[i+ 1] y[i+ 2] · · · y[i+ h]
...

...
. . .

...
y[i+ s− 1] y[i+ s] · · · y[i+ h+ s− 2]

 ,

where Yi,s,h ∈ Rsd×h, h and s are parameters of an LTI
model (in general, s ≪ h). The blocked Hankel matrix
Ui,s,h ∈ Rsm×h constructed from u[t] is defined in a similar
way. Block Hankel matrices allow us to rewrite (1) as

Yi,s,h = Γs ·Xi,h +Hs · Ui,s,h, (3)

where Xi,h =
[
x[i] x[i+ 1] · · · x[i+ h− 1]

]
∈ Rn×h,

Γs =
[
C CA . . . CAs−1

]T ∈ Rsd×n and Hs ∈
Rsd×sm are correspondingly the extended observability and
the block Toeplitz matrices derived from A, B, C, D:

Hs =


D 0 · · · 0
CB D · · · 0

...
...

. . .
...

CAs−2B CAs−1B · · · D

 .

Several solutions of (3) have been presented in [19], [20],
[21], [22], [23], [24]. These methods express the row space
of Yi,s,h as a linear combination of row spaces of Xi,h and
Ui,s,h. Subspace methods benefit from reliable numerical al-
gorithms such as LQ decomposition and the singular value
decomposition (SVD), which are non-iterative and do not
need nonlinear optimization techniques. One of the most
prevailing algorithms for subspace system identification
is a numerical algorithm for subspace state space system
identification (N4SID) [24], which is described in Appendix
B. The N4SID algorithm can be extended to identify an LTI
system corrupted by process and measurement noise [18].

3 APPLICATION OF THE LTI MODEL TO TEMPO-
RAL NETWORKS

3.1 Preliminaries
We consider a temporal graph, denoted by Gk(N ,Lk), con-
sisting of a set N of N nodes (vertices) connected by a set
Lk of Lk links (edges) at discrete time k. The graph Gk is
described by an N×N adjacency matrix Ak whose elements
aij(k) are either one or zero depending on whether there is a
link between nodes i and j or not. For simplicity, we assume
that the set of nodes is fixed and the graph is undirected,
then all adjacency matrices Ak = AT

k are real symmetric
matrices. Additionally, we denote by L =

⋃T
k=1 Lk the

union of all L links that emerged in graphs over T time slots
with L ≤

(N
2

)
. The problem lies in identifying the underly-

ing process that generates the sequence G1, G2, . . . , GT of
graphs over T time slots.

3.2 Subspace model for temporal networks
We assume that the graph dynamic is described by an LTI
state-space model. The L × 1 binary vector a[k] specifies1

1. The vector a[k] does not preserve information about the position
of links in Gk , except if we choose its dimension equal to

(N
2

)
, in

which case a component ai[k] corresponds to an element (Ak)pr in
the adjacency matrix.
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Fig. 2. Output generation using SG-gen model.

the links in graph Gk at discrete time k with component
ai[k] = 1 if the i-th link of the set L is present in graph Gk,
otherwise ai[k] = 0. Then we can construct T − 1 input-
output sequence {(u[k], y[k])}T−1

k=1 , where u[k] = a[k] and
y[k] = a[k+1]. In other words, the input of the LTI model at
discrete time k is the structure of graph Gk and the output is
the structure of graph Gk+1. The N4SID algorithm estimates
the system matrix Q that best approximates the graph Gk+1

given the real graph Gk.
Here, we propose a novel model, called Subspace Graph

Generator (SG-gen), that generates the whole graph sequence
using the identified LTI model. The SG-gen model assumes
that the estimated output vector ŷ[k] at discrete time k
equals the input vector û[k + 1] at discrete time k + 1, i.e.,
ŷ[k] = u[k + 1]. The governing equation (2) simplifies to[

x[k + 1]
ŷ[k]

]
=

[
x[k + 1]
u[k + 1]

]
= Q ·

[
x[k]
u[k]

]
, (4)

where Q is an (n+L)× (n+L) system matrix. If we denote

the block vector v[k] =
[
x[k]
u[k]

]
, then the law (4) of SG-gen is

v[k + 1] = Q · v[k], (5)

whose solution follows by iteration as

v[k + 1] = Qk · v[1]. (6)

The output sequence ŷ[1], . . . , ŷ[T − 1] corresponding to the
graphs Ĝ2, . . . , ĜT can be computed via (6). The SG-gen
model is visualized in Fig. 2.

The rationale behind the SG-gen model is that if the LTI
model accurately identifies the structure of graph Gk+1 from
graph Gk, it can also generate the whole graph sequence
G2,. . . ., GT using the initial structure of the graph G1.

The SG-gen model has some limitations. SG-gen is not
identical to a classical LTI system, which only makes a 1-
step prediction and does not use the estimated output ŷ[k]
as the input for the next time slot k + 1. On the contrary,
SG-gen relates to an autonomous system, does not require
any external inputs after the 1st time slot and may produce
infinite graph sequences. Finally, since the SG-gen model is
based on the N4SID algorithm, it requires input parameters
(the size of the block Hankel matrix) and should satisfy all
assumptions of N4SID.
Property of the SG-gen linear system. If the q×q system matrix
Q with q = n+L has q distinct eigenvalues λ1, . . . , λq , then
the matrix Q can be written [25] as

Q = XΛY T ,

where the matrices X and Y contain the right- and left-
eigenvectors of Q, respectively, in their columns and obey
XY T = I and Λ = diag(λi) is a diagonal matrix of

eigenvalues of Q. Since Qk = XΛkY T and applied to (6), it
follows that

a) v[k]→ 0 for k →∞ iff |λi| < 1, ∀i = 1, . . . , q.
b) v[k]→∞ for k →∞ if ∃i such that |λi| > 1.

Hence, this property of SG-gen constitutes the main lim-
itation, because not all graph dynamics can be generated
by SG-gen. Indeed, if there exists at least one eigenvalue
larger than 1, then the long-term evolution of SG-gen will
tend to infinity and the SG-gen model becomes useless.
If all eigenvalues are less than 1, the SG-gen model will
eventually generate empty graphs, which are not suitable
for real-world networks. Therefore, SG-gen imposes strict
requirements on the graph dynamics, namely |λi| = 1 for
all 1 ≤ i ≤ q, and only periodic graph sequences can be
modelled by SG-gen (see Section 3.4).

Finally, we assess the performance of SG-gen by the mean
square error (MSE)

MSE(y, ŷ) =
1

T − 1

T−1∑
k=1

L∑
i=1

(yi[k]− ŷi[k])
2
, (7)

where y[k] and ŷ[k] are the real and estimated vectors corre-
sponding to the graph Gk+1 at time k+1. Thus, the accuracy
of SG-gen is estimated based on all output measurements.

3.3 Experiments on periodic graph sequences

We apply the SG-gen model to various periodic graph
sequences. We assume that the temporal graph has a period
p; thus, Gk = Gk+p for ∀k = 1, . . . , T − p. We begin with
periodic sequences, where the graph Gk+1 is constructed
from graph Gk by adding or removing only one link. Next,
we consider more comprehensive periodic sequences, where
we make multiple random changes or none in graph Gk to
generate the next graph Gk+1.

• Graph dynamic №1: we arbitrary enumerate all pos-
sible links L = N(N − 1)/2 in the graph and add
1 link per time slot to the graph in the prescribed
order. Once the graph Gk equals the complete graph
KN , precisely one link is removed per time slot in the
reversed order. Once the graph is empty, we repeat
the graph generation process. The described process
has a period p = 2L. The SG-gen model has been
tested on networks containing up to 25 nodes.

• Graph dynamic №2: the dynamical process is the same
as for the graph dynamic №1, but we also allow the
graph to keep its structure unchanged for some time
slots. For instance, we assume that the graph does
not change for 6 time slots if it is empty, for 4 time
slots if it is complete and for 2 time slots if it contains
half the number of possible links. The period of the
process is p = 2L + 12. The SG-gen model has been
tested on networks containing up to 10 nodes.

• Graph dynamic №3: we start with an arbitrary graph
G1, then produce up to 1 random change in a graph
structure per time slot but after p time slots, it
becomes identical to G1. The period of the process
is p = 2L. The SG-gen model has been applied
to graphs with up to 11 nodes while the MSE is
averaged across 500 iterations.
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A detailed information about the experiments on pe-
riodic data is provided in the Appendix C. Overall, the
SG-gen model almost exactly predicts the graphs sequence
G2, . . . , GT from graph G1 for all graph dynamics, i.e.,
MSE (y, ŷ) ≈ 0. Moreover, we observe that the choice of
the initial graph G1 does not affect the results of the exper-
iment. The experiments indicate that the minimal number
of periods to identify the system matrix Q with accurate
predictions does not exceed 3 for the graph dynamic №1, 9
for the graph dynamic №2 and 7 for the graph dynamic №3.
The sequence of state vectors x[1], . . . x[T − 1] has the same
period p.

Next, we examine how the dimension n of the state
vector x[k] and the order of the system matrix Q depend
upon the number L of links in a temporal graph. For the
graph dynamic №1, the state vector has L coordinates and Q
is a p× p matrix. For the graph dynamic №2, the dimension
of the state vector is n = p−L−1 and Q is a (p−1)×(p−1)
matrix. For the graph dynamic №3, the dimension n of the
state vector satisfies |p− L− n| ≤ 1 while the order of Q is
either p or p− 1.

The experiments in Appendix C show that SG-gen gen-
erates many periodic graph sequences accurately. However,
we have not yet proved that SG-gen can model all periodic
graph sequences, because the SG-gen model has limitations.
First, the identification of the system matrix Q is constructed
based on a 1-step prediction from the real input. Thus, there
is no guarantee that the identified matrix Q will accurately
generate G2, . . . , GT sequence from G1. Second, since the
SG-gen model is based on the N4SID algorithm, the perfor-
mance of SG-gen depends on the choice of input parameters
such as the number of observations in the dataset and
the number of rows in block Hankel matrices. In general,
there is no prior information about these parameters, conse-
quently, we determine them experimentally by finding the
values that minimize the MSE in (7). In Section 3.4, we prove
that all periodic graph sequences can be modelled by SG-
gen and we propose the LPG-gen algorithm that identifies
accurately the system matrix Q without subspace methods.

3.4 Properties of a Linear System for Periodic Data
First, we analyse the (n+L)×(n+L) system matrix Q. Since
the vector state x[k] has a period p, it holds that v[k + p] =
v[k], for ∀k = 1, . . . , T−p. Combined with v[k+p] = Qp·v[k]
in (6), the matrix Q satisfies Qp = I , where I is the identity
matrix. The eigenvalue equation Q · z = λz, where λ is an
eigenvalue of Q belonging to eigenvector z, is equivalent
to Qp · z = λpz for non-negative integer p and leads, with
Qp = I , to λp − 1 = 0, whose solution is λ = e2πim/p

where m = 0, 1, . . . , p − 1. In other words, all p = n + L
eigenvalues of the matrix Q are unique and evenly spaced
around the unit circle in the complex plane with λ = 1
as real eigenvalue corresponding to m = 0. Only if p is
even, then λ = −1 is the other possible real eigenvalue for
m = p/2.

The (k+1)-th output of SG-gen is given by v[k + 1] =
Qkv[1] in (6), where v[1] is a concatenation of vectors x[1]
and u[1]. In general, vector u[1] is an L × 1 vector that
corresponds to the graph G1, while the n × 1 vector x[1]
is unknown. Thus, we need to determine the dimension n
as well as the values of the vector x[1].

Lemma 1. If the (n + L) × 1 vectors sequence v[1], . . . , v[T ]
has a period p, then v[k + 1] = Qkv[1] in (6) implies that

a) Qp = I . The matrix Q is called (p+ 1)-potent [26];
b) All vectors v[k] with k = 1, . . . , T are eigenvectors of

matrix Qp = I , because v[k + p] = Qp · v[k] = v[k].

Since the vectors v[1], . . . , v[T ] are periodic, it is suffi-
cient to consider only first p vectors during 1 period. We
rewrite (5) as{

v[k + 1] = Q · v[k], ∀k = 1, . . . , p− 1,

v[p+ 1] = Q · v[p] = v[1],

or, equivalently
[v[2] . . . v[p] v[1]] = Q · [v[1] . . . v[p− 1] v[p]]. (8)

We denote the two (n + L) × p matrices V1 =
[v[1] . . . v[p − 1] v[p]] and V2 = [v[2] . . . v[p] v[1]] such
that (8) becomes V2 = Q · V1.

Lemma 2. Let v[1], . . . , v[p]] be a linearly independent set of
p × 1 vectors or, equivalently, the matrices V1 and V2 are of full
rank. Then, there exists a unique matrix Q satisfying (8), which
is defined by

Q = V2 · V −1
1 . (9)

Relation (9) is crucial for periodic graph sequences. In-
deed, if vectors v[1], . . . , v[p] are linearly independent in p-
dimensional vector space, any periodic graph sequence can
be accurately modelled by the system matrix Q. This result
explains our previous findings in Section 3.3, where the
order of the system matrix Q is exactly p and the dimension
n of the state vector x[k] is p − L. Thus, p is a sufficient
dimension for the SG-gen model to exactly determine the
output of the periodic sequence. In fact, the identification of
matrix Q can be performed by constructing the n×1 vectors
x[1], . . . , x[p] such that the vectors v[1], . . . , v[p] will be
linearly independent. The system matrix Q can be computed
using (9). Consequently, the N4SID algorithm is not required
for periodic sequences. In general, it is not evident that p is
a minimal order of Q. Experiments show that some graph
dynamics can be accurately generated by mapping vectors
v[1], . . . , v[p] into an r-dimensional vector space with r < p.
Theorem 3 determines the minimal order of matrix Q.

We denote by C(V ) the (n + L) × p circulant matrix of
the vectors V = {v[1], . . . , v[p]},

C(V ) =


v[1] v[2] · · · v[p− 1] v[p]
v[2] v[3] · · · v[p] v[1]

...
...

. . .
...

...
v[p] v[1] · · · v[p− 2] v[p− 1]

 .

Theorem 3. Let V = {v[1], . . . , v[p]} be a set of r × 1 vectors
with r ≤ p. If there exists a non-zero matrix Q that satisfies (8),
then the minimal order r of the system matrix Q is defined as

r = rank(C(U)),

where C(U) is a (p · L) × p circulant matrix of input vectors
U = {u[1], . . . , u[p]} corresponding to the graphs G1, . . . , Gp.
The r × 1 vectors v[1], . . . , v[p] must satisfy

C(V ) ·

α1

...
αp

 = 0. (10)
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Theorem 3 implies that v[1], . . . , v[p] can always be
mapped into an r-dimensional vector space with r ≤ p. The
rows of the matrix C(U) contains all the dynamics of links
within p time slots, hence, we call the rank of C(U) the
complexity of the periodic process. By introducing vectors
x[1], . . . , x[p], satisfying (10), we can uniquely identify the
system matrix Q.

Theorem 4. Let V = {v[1], . . . , v[p]} be a set of r × 1 vectors
that satisfies (10) and r ≤ p. Then, there exists a unique matrix
Q, satisfying (8),

Q = [v[k1 + 1] . . . v[kr + 1]] · [v[k1] . . . v[kr]]−1, (11)

where v[k1], . . . v[kr] are r linearly independent vectors.

Theorems 3-4 are proved in Appendix D.

3.5 Linear Periodic Graph Generator (LPG-gen)
Theorems 3-4 are the basis for a general algorithm that
identifies the system matrix Q for periodic graph sequences.
Moreover, the rows of the matrix C(U) from Theorem 3,
which are linearly independent from the first row space of
matrix [u[1], . . . , u[p]], can used as state vectors. Algorithm
1 proposes the Linear Periodic Graph Generator (LPG-gen) that
produces accurately any periodic graph sequence:

Algorithm 1 Linear Periodic Graph Generator (LPG-gen)
Input: vectors u[1], . . . , u[T ] corresponding to G1, . . . , GT .
Output: system matrix Q and initial state vector x[1].

1. Define the minimal period p such that u[k] = u[k+p],
for ∀k = 1, . . . , T − p.

2. Solve α1, . . . , αp in the system

C(U) ·

α1

...
αp

 = 0. (12)

The order r of the matrix Q equals the rank C(U).
Define the pivot variables αk1

, . . . , αkr
from (12).

3. Initialize the state vectors x[k1], . . . , x[kr] to make
vectors v[k1], . . . , v[kr] linearly independent. The
remaining p−r state vectors x[k] with k = 1, ..., p and
k /∈ {k1, . . . , kr} are initialized with respect to (10).

4. Compute the system matrix Q via (11).
Return: Q, x[1].

Similarly to the SG-gen model, LPG-gen is designed
only for periodic graph sequences. However, LPG-gen en-
sures that any periodic graph sequences can be modelled
accurately and the order r of the matrix Q is minimal.
Additionally, LPG-gen does not require input parameters.

The computational complexity of LPG-gen. Step 1 requires
at most L·p·T

2 operations. Steps 2-3 takes at most 2Lp3

operations [27]. Finally, the worst-case running time of step
4 is 2p3. Therefore, the estimated computational complexity
of LPG-gen is O(LpT + Lp3). Experimentally, LPG-gen has
a lower runtime than SG-gen (see the Appendix E).

3.6 Linear Graph Generator (LG-gen)
In previous Sections, we have discussed only perfect peri-
odic graph sequences that obey Gk = Gk+p for any discrete
time k = 1, . . . , T − p and period p < T . Most real-world

systems are not perfectly periodic, hence, the graphs Gk and
Gk+p are not exactly the same. Therefore, we extend the
LPG-gen model to non-periodic graph sequences.

Since LPG-gen accurately produces any periodic graph
sequence, it serves as a basis for its extension. We borrow a
powerful idea from Fourier analysis that has found applica-
tion in many disciplines: most signals can be decomposed
into periodic waveforms. Zygmund [28, Chapter 17] treats
Fouries series in the m-dimensional Euclidean space and
states that the extension of a single variable m = 1 to the
case of several variables m > 1 is ’generally’ the same.

We apply the periodicity transform (PT) that decomposes
signals into basic periodic components by projecting onto a
set of periodic subspaces [29]. More precisely, the periodicity
transform iteratively defines the closest p-periodic vector to
the initial vector and then applies the PT to the residuals.
Contrary to the Fourier transform, periodic subspaces are
not orthogonal, hence, the periodicity transform does not in
general provide a unique representation. However, Sethares
and Staley [29] show that, in many cases, the periodicity
transform provides a clearer explanation of the underlying
nature of the signals than the Fourier transform.

The Linear Graph Generator (LG-gen) approximates the
real graph sequence G1, . . . , GT by a set of periodic graph
sequences. We denote by G

(i)
1 , . . . , G

(i)
T an i-th periodic

graph sequence satisfying G
(i)
k = G

(i)
k+pi

for any k =
1, T − pi with period pi. Then, we approximate a graph Gk

at discrete time k by l periodic graph sequences:

Gk ≈
l∑

i=1

G
(i)
k . (13)

The rationale behind the LG-gen model is that many
non-periodic graph evolutions may contain periodic pat-
terns that describe certain dynamical processes in the net-
work. The observed dynamics with periodic patterns can
be approximated by (13), while each periodic sequence
G

(i)
1 , . . . , G

(i)
T for 1 ≤ k ≤ T is computed by LPG-gen.

The LG-gen model is proposed in Algorithm 2. First,
LG-gen identifies the optimal period length p1 and periodic
graph sequence G

(1)
1 , . . . , G

(1)
T that best approximates the

initial graph sequence G1, . . . , GT . The obtained periodic
graph sequence is computed by LPG-gen. Next, we con-
struct the residual graph sequence G1 − G

(1)
1 , . . . , GT −

G
(1)
T which corresponds to information about graph struc-

ture that is not captured by the periodic graph sequence
G

(1)
1 , . . . , G

(1)
T . Next, the same procedure is iteratively ap-

plied to estimate the residual sequence. The algorithm con-
tinues until l periodic graph sequences are obtained. If the
residual sequence G1 −

∑
i G

(i)
1 , . . . , GT −

∑
i G

(i)
T is an

empty graph sequence, then Gk =
∑l

i=1 G
(i)
k is exact for

a finite l. Algorithm 2 can be also applied to weighted and
directed networks.

An important part of LG-gen is the identification of
periodic patterns in temporal networks. Andres et al. [30]
identify periodic time scales by computing the Fourier trans-
form of the function that measures the portrait divergence
between successive temporal networks. Here, we apply the
Algorithm 3, called LocalMin, that iteratively defines the
optimal period p∗ based on the vectors u[1], . . . , u[T ]. First,
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Algorithm 2 Linear Graph Generator (LG-gen)
Input: vectors u[1], . . . , u[T ] corresponding to G1, . . . , GT ,

number of periodic graph sequences l.
Output: system matrices Q1, . . . , Ql and initial state vectors
x1[1], . . . , xl[1].

1. u← [u[1], . . . , u[T ]]
2. for i← 1 to l

a) Determine the period pi for u
pi ← LocalMin(u).

b) Construct the average sequence with period pi
ū← [ū[1], . . . , ū[T ]].

c) Identify the system that produces ū :
Qi, xi[1]← LPG-gen(ū).

d) Update u← u− ū
Return: Q1, . . . , Ql and x1[1], . . . , xl[1].

Fig. 3. Identification of period for non-periodic data.

for each possible period p = 1, . . . , T , LocalMin constructs
the average periodic pattern ū = (ū[1], . . . , ū[p]) by

ū[k] =
1

nk

nk−1∑
i=0

u[k + i · p], (14)

where nk = [(T − k)/p] + 1 is the total number of vectors
u[1], . . . , u[T ] that corresponds to the k-th element of the
periodic graph sequence ū. Here [s] is the largest integer
smaller than or equal to s. The general idea of the average
periodic sequence construction is presented in Fig. 3. Sec-
ond, LocalMin replicates average patterns ū until T time
slots and computes the MSE between u[1], . . . , u[T ] and
each replicated periodic sequence ū[1], . . . , ū[T ]. Finally, the
optimal period p∗ is given by

p∗ = arg max
p≤T/2

count[p]

[(T − 1)/p] + 1
,

where count[p] computes the total number of timestamps
k ∈ {p, 2p, . . . , ([(T − 1)/p] + 1) · p} corresponding to the
local minima of the MSE.

The computational complexity of LG-gen is O(l · L ·
T 2 + L ·

∑l
i=1 p

3
i ) where l · L · T 2 operations are needed by

Algorithm 3 Identification of periodic patterns (LocalMin)
Input: vectors u[1], . . . , u[T ] corresponding to G1, . . . , GT

Output: period p∗

loss← 0T×1

for p← 1 to T
a) Construct the average periodic sequence by (14)

ū← [ū[1], . . . , ū[T ]].
b) loss[p]← mse(u, ū)

count← 0T/2×1

for p← to T/2
j ← p
while j < T

if loss[j] < loss[j − 1] and loss[j] < loss[j + 1]
count[p]← count[p] + 1

j ← j + p
count[p]← count[p]

[(T−1)/p]+1

p∗ ← argmaxp(count[p])
Return: p∗.

the LocalMin algorithm. An important feature of LocalMin
is its convergence. Theorem 5 guarantees the decrease
in the residual values of the remaining graph sequence
G1 −

∑
i G

(i)
1 , . . . , GT −

∑
i G

(i)
T . We also prove that the

periodic sequence based on the average provides the largest
decrease of the MSE. Sethares amd Staley [29] have shown
that the average periodic pattern is an orthogonal projection
of the input vector onto the p-periodic subspace.

Theorem 5. Let u = {u[1], . . . , u[T ]} be a set of T vectors
with dimension L corresponding to G1, . . . , GT . For any non-
zero average sequence ū = {ū[1], . . . , ū[T ]} with an arbitrary
period p ≤ T , it holds that

a) ∥u− ū∥ ≤ ∥u∥,
b) ∥u− ū∥ < ∥u− ũ∥.

where ũ = {ũ[1], . . . , ũ[T ]} is any sequence of period p such that
ū ̸= ũ.

The proof of Theorems 5 is deferred to Appendix F. Ad-
ditionally, Appendix F.3 examines the minimal period p to
obtain a non-zero average periodic sequence and discusses
the convergence of LG-gen for arbitrary vector sequences.

3.7 Experiments on non-periodic graph sequences

We consider two graph dynamics that are almost periodic.
For simplicity, both dynamics are based on the periodic
graph dynamic №1, but the choice of the periodic dynamic
does not influence the results of the section.

• Graph dynamic №4: we assume that q links evolve
periodically with respect to the graph dynamic №1,
while the remaining links in the graph Gk evolve
randomly at each time slot k (see Fig. 4).

• Graph dynamic №5: we consider the graph dynamic
№1 and then perform q random changes in the graph
structure Gk at each time slot k (see Fig. 5).

The graph dynamic №4 indicates how the performance of
the SG-gen and LG-gen models is affected by the presence of
random links. The SG-gen model has been tested on graphs
with up 20 nodes. SG-gen can produce an exact dynamic for
q periodic links if the number of random links is low. For
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Fig. 4. Graph Dynamic №4 (6 nodes). Among 15 possible links only 10
links have periodic patterns while 5 other links evolve randomly.

Fig. 5. Graph Dynamic №5 (10 nodes). 8 random changes are performed
at each time slot.

a graph dynamic from Fig. 4 the only difference occurs for
the last 5 links (MSE ≈ 0.93). However, the increase of the
number of random links results in the inability to identify
periodic behaviour for q links by the SG-model.

Fig. 6 illustrates the results of LG-gen on the graph from
Fig. 4 for l = 1 and l = 3. LG-gen for l = 1 is compa-
rable to SG-gen. However, if the dynamic is approximated
by 3 periodic graph sequences, LG-gen provides a much
better performance (MSE ≈ 0.59). Overall, the increase of
parameter l leads to a more accurate graph identification
(e.g.: MSE ≈ 0.2 for l = 8). The first periodic graph
sequence captures the periodic behaviour of q links while
other periodic graph sequences model the dynamics for the
last 5 links. Finally, LG-gen still captures periodic patterns
for q links even if 85% of links evolve at random.

The SG-gen model was applied to the graph dynamic
№5 and did not provide an accurate performance (MSE ≈
3.92). SG-gen provides an empty graph after 7 time slots.

Fig. 7 illustrates the results of LG-gen on the graph from
Fig. 5 for l=1 and l=5. Similarly to the graph dynamic №4,
the first periodic graph sequence of LG-gen approximates
the original almost periodic dynamic while additional pe-
riodic graph sequences are used to model the remaining
changes. The MSE equals 2.08 for l=1, 1.02 for l=5 and
0.43 for l=10. Moreover, if we apply the rounding to the
sum of generated sequences, 7 periodic graph sequences are
sufficient to provide an ideal performance for unweighted

Fig. 6. Output of the LG-gen model for the Graph Dynamic №4 (6 nodes).

Fig. 7. Output of the LG-gen model for the Graph Dynamic №5 (10
nodes).

TABLE 1
MSE for LyonSchool network.

Model Number of periodic graphs sequences l
1 2 3 4 5 6 7 8 9

No rounding 26.5 20.6 16.4 15.1 13.1 11.8 11.2 10.9 10.7
With rounding 37 16.7 6.8 3.4 1.07 0.3 0.1 0.04 0.01

graph, i.e., Gk = round
(∑7

i=1 G
(i)
k

)
for any k = 1, . . . , T ,

where round(·) denotes for rounding to the nearest integer.

3.8 Experiments on Real Data

We now examine the performance of LG-gen to real net-
works. We consider several face-to-face interaction net-
works, collected in a school, in a hospital and in the
workspace by the SocioPatterns project2. The data were
gathered using wearable RFID badges, which assess the
proximity of two individuals with a probability in excess of
99% over an interval of 20 seconds [31]. We show that real
networks can be accurately modelled by the LG-gen model.

1. A school in Lyon. The LyonSchool dataset [32] contains
the contact events between 242 individuals (232 children
and 10 teachers) in a primary school in Lyon, France, during
two days in October 2009. Each time slot of the network
corresponds to a 20-second interval [t − 20s, t] while the
connections between nodes represent active contacts during
the interval. All the contacts have occurred between 10:30
and 19:20. Thus, total number of time slots is 3,180. The
total number of links is 6,594,492 with approximately 2,110
connections per time slot. The total number of unique links
in the graph is 26,594. The average number of changes
between two adjacent graphs Gk and Gk+1 is 1,245.

Intuitively, since the contact data is based on a two-days
period, we assume that the period should not exceed 1 day.
Thus, we test LG-gen with 1,590 time slots (≈8 hours 50
minutes) as an upper bound of the period. The initial MSE
between LyonSchool and a zero graph sequence is 43.7.

The results of the LG-gen model are presented in Table
1. Additionally, Fig. 8 illustrated the performance of LG-
gen in terms of the dynamics of the link count and the
MSE, which is computed between original and generated
graph sequences via (7). First, the LG-gen model captures
around 30% of links if it approximates the real dynamics
using only 1 periodic graph sequence. Second, we observe
that the rounding provides a lower MSE for any l ≥ 2.
Fig. 9 illustrates that the MSE decreases exponentially if the
rounding is applied at the final stage of LG-gen. For l = 5,
the difference between LG-gen and real network is about

2. http://www.sociopatterns.org/



8

Fig. 8. Performance of LG-gen (with rounding) on LyonSchool.

Fig. 9. The logarithm of the MSE on LyonSchool network.

1.15 links in average. The period of 4 graph sequences is in
the range from 1,488 to 1,590 time slots (≈1 day cycle), the
remaining period is 819 time slots (≈1/2 day cycle).

Finally, the LG-gen model generates the graph sequence
accurately for l=11, i.e., Gk = round(

∑11
i=1 G

(i)
k ), for any

k = 1, . . . , T . Thus, the LyonSchool networks can be accu-
rately modelled by the LG-gen model.

2. Hospital Data. The dataset [33] contains information
about contacts between patients, patients and health-care
workers (HCWs) and among HCWs in a hospital ward in
Lyon, France over 4 days (from December 6, 2010 at 1:00 pm
to December 10, 2020 at 2:00 pm). The total number of nodes
is 75. Each time slot of the network corresponds to a 20-
second interval [t−20s, t] while connections between nodes
represent active contacts during different time intervals. The
total number of time slots is 17,396 (9,453 time slots with
contacts). The total number of contacts is 32,424. There are 4
peaks in the data that correspond to daily cycles. Therefore,
we can assume that the dynamics can be approximated by 1
day periods. The initial MSE between Hospital network and
a zero graph sequence is 0.95.

Table 2 demonstrates the performance of LG-gen. The
increase of l decrease the MSE and for l ≥ 5 we obtain
almost exact matching. In general, the rounding at the final

TABLE 2
MSE for Hospital network.

Model Number of periodic graphs sequences l
1 2 3 4 5 6 7 8 9

No rounding 0.89 0.87 0.78 0.68 0.6 0.55 0.51 0.47 0.43
With rounding 0.95 0.91 0.28 0.06 0.03 0.01 0.005 0.002 0.001

Fig. 10. Performance of LG-gen (with rounding) on Hospital network.

TABLE 3
MSE for InVS13 network.

Model Number of periodic graphs sequences l
1 2 3 4 5 6 7 8

No rounding 0.018 0.014 0.012 0.01 0.008 0.007 0.00064 0.0058
With rounding 0.024 0.012 0.007 0.002 0.001 0.0005 0.0004 0

step of LG-gen produces a lower MSE for all l excluding
l=1. Even for l=9 the generated graph sequence is not exact,
which can be explained by the fact that contacts in hospital
have less periodic patterns in general, thus, requiring more
periodic sequences to capture such dynamics. Finally, the
period of all approximated graph sequences varies from
3950 to 4,320 time slots (≈1 day cycle).

Fig. 10 illustrates information about the number of links
in generated graph (after rounding) and in the real data. We
observe that for l = 5 LG-gen shows a good correspondence
with the real Hospital network.

3. InVS13 dataset. The dataset contains the human contact
events between 95 individuals in the office building in
France in 2013, namely a building of the Institut de veille
sanitaire [34]. The total number of time slots is 51,120 (20,129
time slots have at least one contact) that correspond to a 2
week period. We consider 10 working days from 9.00 a.m.
to 9.00 p.m (23,220 time slots in total). Additionally, we have
excluded the first 100 minutes from our experiment, which
looked anomalous, as there have been observed around 264
contacts per time slot for the first 300 time slots and only
15.9 contacts per time slot for the remaining time slots. In
average, the number of changes between graphs Gk and
Gk+1 is 10.7. We observe a weekly periodicity in the data,
thus, we have tested the LG-gen model with 10,805 time
slots (5 working days) as an upper bound of the maximum
period. The MSE between the workspace network and a
zero graph sequence is approximately 0.0245.

The performance of the LG-gen model for l ≤ 8 is
provided in Table 3. Again, we observe that the initial
graph can be well approximated by a set of periodic graph
sequences. The rounding at the final step provides a lower
MSE for all l excluding l=1. For l=5 the MSE is 0.001
which corresponds to approximately 525 link difference in
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Fig. 11. Performance of LG-gen (with rounding) on InVS13 network.

total during 22,920 time slots. For l=8 the generated graph
sequence is exact if the rounding step is applied. The period
of all approximated graph sequences varies from 7,219 (≈3.3
days cycle) to 10,796 time slots (≈5 days cycle). Finally, Fig.
11 demonstrates the difference in the number of changes
between original data and LG-gen with rounding.

Overall, the LyonSchool, Hospital and InVS13 networks
can be accurately approximated by a small number of peri-
odic graph sequences.

4 DISCUSSION

We have modelled the dynamics of temporal networks as a
linear process and have proposed 3 algorithms3 to generate
various graph sequences G1, . . . , GT accurately:

1) Subspace Graph Generator (SG-gen) for periodic data,
which defines the matrix Q by the N4SID algorithm;

2) Linear Periodic Graph Generator (LPG-gen) for peri-
odic data, which defines the matrix Q via (11);

3) Linear Graph Generator (LG-gen) for non-periodic
data, which approximates graph Gk at discrete time
k by l periodic graph sequences while each periodic
sequence is computed by LPG-gen.

We started with periodic graph sequences and have
proved that any p-periodic dynamics can be accurately re-
produced by SG-gen and LPG-gen. Both algorithms are de-
signed only for periodic dynamics and generate exactly the
same graph sequences while LPG-gen has a lower runtime
and does not require any additional input parameters. The
order of the system matrix Q is defined by the rank of the
circulant matrix C(U) of input vectors U = {u[1], . . . , u[p]}.
Additionally, we propose the rank of C(U) as a measure of
the complexity of the periodic process.

The LG-gen model has been tested on artificial and real
networks. The results of our experiments on artificial data
demonstrate a good performance of LG-gen. Since many
real systems have periodic patterns, we observe that most
of them can be well approximated by the relatively small
number of periodic graph sequences.

3. The Python code is available at https://github.com/SergSHV/

The strength of SG-gen, LPG-gen and LG-gen is their
simplicity as they are linear. An important issue of LG-gen
is the minimal number l of periodic graph sequences that are
used for the approximation. We observe that the rounding
at the final step may dramatically (about exponentially!)
decrease the required value l. In fact, if all residuals are
in the interval (-0.5; 0.5), LG-gen does not require any
additional steps. Finally, all the algorithms can be applied
to directed and weighted networks.

There are some limitations of the LG-gen model. A
first concern is the assumption that the graph dynamic
is almost periodic. If the process is stable and does not
contain any cyclic events, the performance of LG-gen will
decrease. However, the presence of periodic behaviour in
many real world networks (such as human mobility, social
interactions, traffic networks, etc.) makes the LG-gen model
quite useful. Another drawback of LG-gen is its high com-
putational complexity. Identification of periodic cycles in the
dataset is not a trivial problem, the current implementation
requires l ·L · T 2 operations where L is the number of links
in a graph, T is the total number of time slots and l is the
number of periodic graph sequences. Periodicity identifica-
tion is one of the future steps of the research. Moreover,
the order of the matrix Q depends on the complexity of the
observed dynamics and is limited by the period p, which can
be a very large number in general. For instance, if time slots
corresponds to minutes, the maximal size of the matrix Q in
the case of the weekly periodicity will be around 104 × 104.
One way to solve this problem is to decrease the period
length of the graph sequence (e.g.: daily cycles instead of
weekly cycles) or to decrease the number of time slots (e.g.:
time interval is 60 seconds instead of 20 seconds). Finally,
SG-gen, LPG-gen and LG-gen assume that the nodes in the
network remain the same in each time slot. In real systems,
however, both nodes and links are added or removed over
time. To remediate this problem, we can consider nodes as
isolated during discrete times of inactivity.

We would like to point out that our research presents
a conceptual framework showing that periodic graph se-
quences can be modelled as a linear process while non-
periodic graph sequences can be accurately represented as a
linear combination of periodic sequences.
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APPENDIX A
SYMBOLS

Only when explicitly mentioned, will we deviate from the
symbols outlined here.

General Notation
k discrete time

System Identification
u[k] m× 1 input vector at time k
y[k] d× 1 output vector at time k
x[k] n× 1 state vector at time k
v[k] concatenation of vectors u[k] and x[k]
n order of the system, dimensionality of

state vector
s number of rows in Hankel matrices
h number of columns in Hankel matrices

Q=
[
A B
C D

]
system matrix of the linear time-
invariant state-space model

Temporal Graphs
Gk temporal graph at time k
N set of all nodes in a temporal graph
N number of nodes in a temporal graph,

N = |N |
Lk set of links in Gk

Lk number of links in Gk, Lk = |Lk|
L set of all links in Gk, L =

⋃T
k=1 Lk

Ak an N × N adjacency matrix of Gk with
elements aij(k)

C(X) n × p circulant matrix of state vectors
X = {x[1], . . . , x[p]}

C(U) L × p circulant matrix of input vectors
U = {u[1], . . . , u[p]}

C(V ) (n + L) × p circulant matrix of vectors
V = {v[1], . . . , v[p]}

a[k] L× 1 binary vector with ai[k] = 1 if the
i-th link of the set L is present in graph
Gk, otherwise ai[k] = 0.

l number of periodic graph sequences for
the LG-gen model

p period of a temporal graph
r minimal order of matrix Q, complexity

of periodic process
T total number of observed graphs

G1, G2, . . . , GT

V1 (L + n) × p matrix of vectors with
columns [v[1] . . . v[p− 1] v[p]]

V2 (L + n) × p matrix of vectors with
columns [v[2] . . . v[p] v[1]]

APPENDIX B
NUMERICAL ALGORITHM FOR SUBSPACE STATE
SPACE SYSTEM IDENTIFICATION (N4SID)
The N4SID algorithm is based on oblique projection. The
oblique projection refers to the non-orthogonal projection,
which is formed by projecting the vector space W1 onto the
vector space W2 along the vector space W3. The N4SID algo-
rithm is always convergent (non-iterative) and numerically

stable [1]. It can be also applied for subspace identification
with process and measurement noise. The N4SID algorithm
makes the following assumptions [2]:
Assumption 1. The state vector is sufficiently excited, i.e.,

rank (X0,h) = n.

If the assumption 1 holds, the system is called reachable,
that is, for any k1 < k2 there exists a sequence of input
vectors u [k1] , . . . , u [k2 − 1] that will transfer the system
from state x [k1] to state x[k2].
Assumption 2. The input sequence u[t] ∈ Rm should satisfy
the persistently exciting condition of order s. In other words,
the blocked Hankel matrix U0,s,h is of full rank:

rank (U0,s,h) = s ·m

Assumption 3. The row vectors of X0,h and U0,s,h are linearly
independent, or there is no linear feedback from the states
to the inputs, i.e.,

span (X0,h) ∩ span (U0,s,h) = {0} .

The N4SID algorithm considers a special structure of
block Hankel matrices. More precisely, it uses input-output
estimation and a state vector to construct matrices

Up = U0,s,h−s, Uf = Us,s,h−s,
Yp = Y0,s,h−s, Yf = Ys,s,h−s,
Xp = X0,h−s, Xf = Xs,h−s,

where the subscripts p and f denote the past and future,
respectively. These matrices can be combined into the past

and future data matrices Wp =

[
Up

Yp

]
and Wf =

[
Uf

Yf

]
.

The key observation is that, under assumptions 1-3 with
s replaced by 2s, there is no overlap between row spaces
of Wp and Uf , span (Wp) ∩ span (Uf ) = {0}. Moreover,
as shown in [2], the state vector Xf connects the past and
future as it is a basis of the intersection of the past and future
subspaces, i.e., Xf = span(Wp) ∩ span(Wf ).

To estimate the system matrix Q, the N4SID algorithm
estimates the state vector Xf using the idea of oblique
projection: the output matrix Yf is approximated by a matrix
Ŷf which is an oblique projection of Yf onto Wp along Uf

(denoted by Ê||Uf
{Yf |Wp}) and an oblique projection of Yf

onto Uf along Wp (denoted by Ê||Wp
{Yf |Uf}), i.e.,

Ŷf = Ê||Wp
{Yf |Uf}) + Ê||Uf

{Yf |Wp}) = α · Uf + β ·Wp.

Since the initial data do not necessarily correspond to
the zero-input response, one can apply LQ-decomposition
to transform data matrices into block matrices with zeros in
the upper-right blockUf

Wp

Yf

 =

R11 0 0
R21 R22 0
R31 R32 0

QT
1

QT
2

QT
3

 ,

which yields to the equation

Yf =
(
R31 −R32R

†
22R21

)
R−1

11 Uf +R32R
†
22Wp, (15)

where R†
22 denotes the pseudo-inverse of R22. Since row

spaces of Wp and Uf , Xf and Uf do not intersect and Xf ∈
span(Wp), equations (3) and (15) yields

Ê||Uf
{Yf |Wp}) = R32R

†
22Wp = ΓsXf .
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Fig. 12. Graph Dynamic №1 (4 nodes). Link labels correspond to a pre-
defined order.

Fig. 13. Comparison of the SG-gen model with the real data for the
Graph Dynamic №1 (4 nodes). The rows correspond to coordinates of
real and estimated output vectors y[k] (on the left) and ŷ[k] (on the right)
while the colour indicates the values of these vectors.

Suppose that the SVD of an oblique projection be given
by Ê||Uf

{Yf |Wp}) = UΣV T with rank(Σ) = n. Thus, the
extended observability matrix and the state vector can be
given as Γs = UΣ1/2 and Xf = Σ1/2V T .

Finally, the N4SID algorithm estimates the system matrix
(Q by applying the least-squares method to the equation[

Xs+1,h−s−1

Ys,s,h−s−1

]
= Q

[
Xs,h−s−1

Us,s,h−s−1

]
.

APPENDIX C
EXPERIMENTS ON PERIODIC DATA

Graph dynamic №1.
An example of the graph dynamic №1 for a graph with

4 nodes is shown in Fig. 12. We observe that the periodic
dynamic №1 can be modelled as a linear process. SG-gen
accurately predicts the graphs sequence G2, . . . , GT from
graph G1 for such a simple dynamic. Fig. 13 illustrates the
results for a graph dynamic with 4 nodes from Fig. 12.

The experiments indicate that the minimal number of pe-
riods to identify a system matrix Q with accurate predictions
(MSE (y, ŷ) < 10−8) does not exceed 2 for networks with
less than 14 nodes and does not exceed 3 for networks with
up to 25 nodes. We emphasize that 2 periods is sufficient to
reconstruct the correct graph sequence for networks with
more than 14 nodes, however, the MSE will be higher
(MSE (y, ŷ) < 10−4). Non-zero values of the MSE do not
influence the accuracy of predictions, while the presence
of errors is due to numerical finite accuracy (rounding)
computation. The sequence of state vectors x[1], . . . x[T − 1]
has a period p. Fig. 14 illustrates the dynamics of x[k] for a
graph with 4 nodes (p = 12).

Interestingly, we observe that the minimal order of the
system n is identical to the number of links in the graph G
if we allow MSE (y, ŷ) < 10−2 (see Fig. 15). Since the initial
dimensionality of the input data is L and the graph dynamic
№1 has a period p = 2L, SG-gen expands the subspace to
2L by adding L linearly independent vectors. Therefore, the
system matrix Q is p× p square matrix.

Fig. 14. Dynamic of state vector X for a graph with 4 nodes.

Fig. 15. Dimensionality of input/output vectors and state vector.

Fig. 16 illustrates eigenvalues of Q on a complex plane
for a graph with 4 nodes (p = 2L = 12). All eigenvalues of
the matrix Q are unique and evenly spaced around the unit
circle; two eigenvalues are real numbers -1 and 1.

Graph dynamic №2.
We consider the graph dynamic №1 and assume that the

graph does not change for 6 time slots if it is empty, for 4
time slots if it is full and for 2 time slots if it contains half
the number of possible links. An example of such dynamic
for a graph with 4 nodes is shown in Fig. 17.

SG-gen provides an ideal performance and generates the
exact dynamic (MSE (y, ŷ) < 10−7). The minimal number
of periods to identify Q accurately by the N4SID algorithm
is 3 for graphs with 3 nodes and 9 for graphs with 10 nodes.
Such an observation can be explained by the increased
complexity of the process and a higher stability of subspace
algorithms in case of many observations.

The dimension n of vector state x[k] depends on the
period pof the process and the dimensionality of the input
vector L (see Fig. 18). We observe for the graph dynamic №2
that n = p− L− 1. All eigenvalues are distinct and spaced
on the unit circle excluding −1.

Fig. 16. Eigenvalues of system matrix Q for a graph with 4 nodes.
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Fig. 17. Graph Dynamic №2 (4 nodes).

Fig. 18. The difference between the order of the system, dimension of
inputs and periodicity.

Graph dynamic №3.
We assume that the probability of changing the graph is 4

times more likely than remaining it unchanged. An example
of such dynamic is provided in Fig. 19.

SG-gen correctly generates any given graph sequence
with MSE (y, ŷ) < 10−8. The minimal number of periods
to learn the system matrix Q depends on the graph size but,
in general, it is less than 7. The order n of the state vector
satisfies |p − L − n| ≤ 1 for all tested graphs (see Fig. 20).
Thus, any periodic process which performs up to 1 random
change in the graph structure can be modelled by SG-gen.

Graph dynamic №6.
We consider the graph dynamic №2 and enumerate all

the periods when the network reaches L/2 links. We assume
that if the enumerated number is even, the growth/decrease
patterns remain the same as for the graph dynamic №2. On
the contrary, if the number is odd, the growth (decrease)

Fig. 19. Graph Dynamic №3 (4 nodes).

Fig. 20. Connection between the order of Q and the periodicity of the
process.

Fig. 21. Graph Dynamic №6 (4 nodes). The upper plot shows how the
network changes with respect to the number of links in a graph while the
bottom plot illustrates the dynamics of vector u[k].

Fig. 22. Connection between the order of Q and the periodicity of the
dynamics.

pattern will transform to the decrease (growth) pattern. The
visualization of such process for a graph with 4 nodes is
provided in Fig. 21.

The graph dynamic №6 has been studied for graphs with
up to 8 nodes. We observed that the SG-gen model provides
an exact graph sequence G2, . . . , GT . A graph with 4 nodes
requires 6 periods while a graph with 8 nodes requires 32
periods. The dimension n of the state vector satisfies |p −
L − n| ≤ 1 where p is a period of the process and L is the
total number of edges in the graph (see Fig. 22). The matrix
of the system Q has the same properties as it is for the graph
dynamic №2.

Graph dynamic №7.
We consider the graph dynamic №1 and assume that the

sequences of link addition and removal are set randomly. An
example of such a dynamic for a graph with N = 4 nodes is
shown in Fig. 23. Since there is only 1 change difference per
time slot, the graph sequence has the period p = N(N − 1).

The coordinates of the input vector are depicted in Fig.
24. To test the SG-gen model, we have examined graphs

Fig. 23. Graph Dynamic №7 (4 nodes).
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Fig. 24. Graph Dynamic №7 (4 nodes). Link change is performed ran-
domly within a period.

TABLE 4
Percentage of perfectly simulated graph dynamics within 10 periods.

# of changes Number of nodes in graph N
3 4 5 6 7 8 9

r ≤ 1 100% 100% 100% 100% 100% 100% 100%
r ≤ 2 99,9% 100% 99,4% 99,6% 99,8% 99,8% 99,8%
r ≤ 3 99,8% 100% 100% 99,8% 99,9% 100% 99,9%
r ≤ 4 - 100% 99,9% 100% 99,9% 99,9% 99,9%
r ≤ 5 - 100% 100% 99,8% 100% 100% 99,9%
r ≤ 6 - 100% 100% 100% 99,9% 100% 99,8%
r ≤ 7 - - 100% 100% 100% 100% 100%
r ≤ 8 - - 100% 100% 100% 100% 100%
r ≤ 9 - - 100% 100% 100% 100% 100%

with less than 20 nodes and generated 1,000 various graph
dynamics. SG-gen perfectly predicts the graphs sequence
G2, . . . , GT from graph G1. Contrary to the graph dynamic
№1, SG-gen requires more periods to identify the system
matrix Q and make accurate predictions. The number of pe-
riods depends on the randomly generated graph sequence
but, in general, it does not exceed 6 periods. Third, the
dimension n of the state vector x[k] is L. We can conclude
that the SG-gen model can ideally generates any graph
sequence if its dynamic is periodic, there is only 1 change
per time slot and there is a monotonic growth in the number
of links which eventually follows a monotonic decrease.

Graph dynamic №8.

We consider a graph dynamic which makes up to r
changes per time slot in the graph structure. The period p of
the process is N(N − 1).

SG-gen has been tested on graphs with less than 10
nodes while the MSE is averaged across 1,000 iterations.
The maximal number of changes q per time slot in the
graph structure is limited to the maximal possible number
of links in a graph, i.e., q ≤ L. Due to the computational
complexity of SG-gen, the maximal possible number of
periods to identify the system matrix Q was limited to 10.

Table 4 shows that the SG-gen model provides an exact
performance for all the graphs that change by at most 1 link
per time slot. The results agree with our previous results for
the graph dynamic №3. The performance does not depend
on the number of changes in the graph per time slot. Indeed,
among 54,000 graph sequences, only 30 of them have not
been identified within 10 periods; however, the increase of
such parameter has resulted in their correct identification.
Therefore, we may infer that any periodic graph sequence
can be modelled correctly using the SG-gen model.

APPENDIX D
LINEAR PERIODIC GRAPH GENERATOR (LPG-
GEN): PROOF OF THEOREMS IN SECTION 3.4
D.1 Proof of Theorem 3

Proof. Recall that v[k] =
[
x[k]
u[k]

]
, where L × 1 vector u[k] is

given and n × 1 vector x[k] is unknown. First, we examine
how many vectors v[1], . . . , v[p] should be linearly indepen-
dent. We consider the system of linear equations:

p∑
i=1

αiv[i] = 0, (16)

where α1, . . . , αn are unknown coefficients. If the solution
is unique (αi = 0 for any i ∈ {1, ..., p}), then all the
vectors v[1], . . . , v[p] are linearly independent and R = p.
Otherwise, the vectors are linearly dependent and R < p.
Multiplying (16) by Q and invoking (8) yields:

p∑
i=1

αiQv[i] =

p∑
i=1

αiv[i+ 1] =

p−1∑
i=1

αiv[i+ 1] + αpv[1] = 0,

because periodicity implies v[p + 1] = v[1]. By repeating
the same procedure of matrix multiplication, we obtain a
system of linear equations

α1v[1] + α2v[2] + ...+ αpv[p] = 0,

α1v[2] + α2v[3] + ...+ αpv[1] = 0,

. . .

α1v[p] + α2v[1] + ...+ αpv[p− 1] = 0,

(17)

which can be written more compactly as (10). The solution
of (10) also imposes the restrictions on the construction of
the state vectors x[1], . . . , x[p].

The rank of the matrix C(V ) defines the minimal
number of linearly independent vectors from the set
v[1], . . . , v[p]. Indeed, we can write that

rank(C(V )) = rank

[
C(U)
C(X)

]
,

where C(X) is a (n · p) × p circulant matrix of n × 1 state
vectors X = {x[1], . . . , x[p]}. Since the matrix C(U) is fixed
and there are no restrictions on the matrix C(X), we con-
clude that rank(C(V )) ≥ rank(C(U)). Thus, the minimal
number r of linearly independent vectors v[1], . . . , v[p] is
r = rank(C(U)).

D.2 Proof of Theorem 4

Proof. If all vectors v[1], . . . , v[p] are linearly independent
(r = p), the proof follows from Lemma 2. Thus, suppose
that r < p, which implies that vectors v[1], . . . , v[p] are not
independent. For simplicity, we assume that vector v[p] is
linearly dependent. Then, there exists αj ̸= 0 and v[p] can
be expressed from the (p+1-j)-equation of (17) as

v[p] = − 1

αj

j−1∑
i=1

αiv[p− j + i] +

p∑
i=j+1

αiv[i− j]

 . (18)

If vector v[p] satisfies (18), then the equation v[1] = Qv[p]
is redundant. Indeed, the substitution of relation (18) into
v[1] = Qv[p] and applying (8) yields
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Fig. 25. Runtime of SG-gen and LPG-gen models on graph dynamics
2-3.

v[1] = − 1

αj

j−1∑
i=1

αiQv[p− j + i] +

p∑
i=j+1

αiQv[i− j]

 =

= − 1

αj

j−1∑
i=1

αiv[p− j + i+ 1] +

p∑
i=j+1

αiQv[i− j + 1]

 .

Therefore,

αjv[1] +

j−1∑
i=1

αiv[p− j + i+ 1] +

p∑
i=j+1

αiQv[i− j + 1] =

=

j−1∑
i=1

αiv[p− j + i+ 1] +

p∑
i=j

αiQv[i− j + 1] = 0. (19)

Relation (19) is the ((p+2-j) mod p)-equation of (17). Since
vectors v[1], . . . , v[p] satisfy (17), relation (19) always holds.
Thus, the equation v[1] = Qv[p] is redundant and relation
(8) can be rewritten as

[v[2] v[3] . . . v[p] ] = Q · [v[1] v[2] . . . v[p− 1] ].

We have shown that the equation v[1] = Qv[p] can be
omitted if v[p] is linearly dependent and satisfies (10). By
induction, any equation v[(k + 1) mod p] = Qv[k] can be
omitted if v[k] is linearly dependent and satisfies (10). Thus,
relation (8) can be reduced to

[v[k1 + 1] . . . v[kr + 1]] = Q · [v[k1] . . . v[kr]],

where v[k1], . . . v[kr] are linearly independent vectors.

APPENDIX E
THE RUNTIME OF SG-GEN AND LPG-GEN

We compare the runtime of SG-gen and LPG-gen models
on graph dynamics №2 and №3. To reduce the complexity
of the N4SID algorithm, which is used by SG-gen, the
dimension n of state vectors is set in such a way that the
order of the system matrix Q will be p−1 or p. Additionally,
we averaged the runtime of SG-gen and LPG-gen across 100
iterations for the graph dynamics №3.

Fig. 25 shows that the graph dynamic №2 requires more
time compared to the graph dynamic №3, because the the
order of Q is larger for the graph dynamic №2. Overall,
the LPG-gen model performs better than the SG-gen model.
Indeed, the SG-gen model requires parameters s and h (the
size of the block Hankel matrix) for the N4SID algorithm
which, in general, are defined experimentally, which in-
creases the runtime of SG-gen.

APPENDIX F
LINEAR GRAPH GENERATOR (LG-GEN):
PROOF OF THEOREMS AND PROPERTIES

F.1 Proof of Theorem 5a in Section 3.6

Proof. Since ∥u∥2 =
∑T

k=1

∑L
i=1 u

2
i [k] and ∥u − ū∥2 =∑T

k=1

∑L
i=1(ui[k]− ūi[k])

2, we should check the following
inequality:

T∑
k=1

L∑
i=1

(ui[k]− ūi[k])
2 ≤

T∑
k=1

L∑
i=1

u2
i [k],

or, equivalently
T∑

k=1

L∑
i=1

ū2
i [k]− 2

T∑
k=1

L∑
i=1

ui[k]ūi[k] ≤ 0.

The sequence ū = {ū[1], . . . , ū[T ]} is periodic; thus,
ūi[k] = ūi[k + p] for ∀k = 1, . . . T − p and ∀i = 1, . . . , L.
Moreover, the term ūi[k] is constructed by averaging the
initial sequence u, i.e.,

ūi[k] =
ui[k mod p] + . . .+ ui[k mod p+ (nk − 1)p]

nk
,

where nk is the total number of vectors that corresponds
to (k mod p)-th element of the periodic graph sequence ū.
The parameter nk satisfies k mod p + (nk − 1)p ≤ T and
k mod p+ nkp > T . Thus, one can write that

T∑
k=1

L∑
i=1

ū2
i [k] = n1

L∑
i=1

ū2
i [1] + . . .+ np

L∑
i=1

ū2
i [p] =

=

p∑
k=1

L∑
i=1

nkū
2
i [k]

and
T∑

k=1

L∑
i=1

ui[k]ūi[k] =

p∑
k=1

L∑
i=1

(ui[k mod p] + . . .+

+ ui[k mod p+ (nk − 1)p])ūi[k] =

p∑
k=1

L∑
i=1

nkū
2
i [k].

Therefore, the initial inequality becomes

−
p∑

k=1

L∑
i=1

nkū
2
i [k] ≤ 0.

Since n1, . . . , np > 0, the left part of inequality is zero if
and only if all average values ūi[k] are zeros. In other words,
the periodic sequence ū = {ū[1], . . . , ū[T ]} is a set of zero
vectors. Otherwise, ∥u− ū∥ < ∥u∥.

F.2 Proof of Theorem 5b in Section 3.6

Proof. We consider an arbitrary periodic set of vectors z =
{z[1], . . . , z[T ]} in RL with period p. To prove the theorem,
we need to minimize the function

f(z) = ∥u− z∥2 =
T∑

k=1

L∑
i=1

(ui[k]− zi[k])
2.

Since z[k] = z[k+p] for ∀k = 1, . . . , T−p, we can rewrite
the function as
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f(z) =
T∑

k=1

L∑
i=1

(ui[k]− zi[k])
2 =

p∑
k=1

L∑
i=1

(nkz
2
i [k]−

− 2(ui[k] + . . .+ ui[k + p(nk − 1)])zi[k]) +
T∑

k=1

L∑
i=1

u2
i [k] =

=

p∑
k=1

L∑
i=1

nk

(
zi[k]−

ui[k] + . . .+ ui[k + p(nk − 1)]

nk

)2

+

+
T∑

k=1

L∑
i=1

u2
i [k]−

p∑
k=1

L∑
i=1

(ui[k] + . . .+ ui[k + p(nk − 1)])2

nk
,

where nk is the total number of vectors that corresponds
to (k mod p)-th element of the periodic graph sequence z.
Since n1, . . . , np > 0, the minimum value of f is attained
when

zi[k] =
ui[k] + . . .+ ui[k + p(nk − 1)]

nk
.

Therefore, we observe that zi[k] is the average value of
the i-th components of vectors ui[k], . . . , ui[k + p(nk − 1)].
In other words, z = {z[1], . . . , z[T ]} is an average periodic
sequence, i.e., z = ū.

F.3 Average Periodic Pattern Decomposition

We have proved in Theorem 5 that the subtraction of the
average periodic graph sequence always decreases the mean
square error (MSE) if and only if the average sequence of
period p is not a zero sequence. Therefore, it is important to
understand the following:

1) Is it possible to find a non-zero average periodic
sequence at each iteration of the LG-gen model?
What is the smallest period p∗ for such a sequence?

2) Is it possible to achieve a zero sequence by the se-
quential subtraction of average periodic sequences?

We denote by u = (u[1], u[2], . . . , u[T ]) an arbitrary non-
zero vector sequence where u[k] ∈ RL for ∀k = 1, . . . , T .
Additionally, let ūp = (ūp[1], ūp[2], . . . , ūp[p]) be an average
vector sequence, which is defined by relation (14). In fact,
since u is arbitrary and the subtraction of average periodic
sequences is performed independently for each row of u, we
examine a graph with 1 link (L = 1) for simplicity.

First, we define the smallest period p∗ ≤ T such that ūp∗

is a non-zero sequence for any u ̸= 0. Indeed, we need to
find the smallest number p∗ such that

∀p ≤ p∗ ūp = 0⇔ u = 0. (20)

Since the average sequence ūp consists of p elements, the
equation ūp = 0 implies p linear equations. Hence, relation
(20) contains a system of (1 + p∗)p∗/2 linear equations with
T variables u[1], u[2], . . . , u[T ]. Thus, we need to identify the
smallest number p∗ in such a way that relation (20) contains
T linearly independent equations and, consequently, has a
unique trivial solution u[1] = u[2] = . . . = u[T ] = 0.

Fig. 26 illustrates the results for T ≤ 3000 where the
minimal period p∗ linearly increases with the number of
observations T . Indeed, p∗ = p(T ) ≈ 0.11T − 10 for T ≥
300. In other words, if u = (u[1], u[2], . . . , u[T ]) is a non-
zero sequence, then there always exists a non-zero average
sequence of period p ≤ 0.11T − 10 that decreases the MSE.

Fig. 26. The smallest period p∗ to decompose any arbitrary sequence u
of length T .

Therefore, we conclude that LG-gen always decreases the
MSE by relatively short periodic sequences.

Next, we determine whether an arbitrary sequence u
always converges to zero by LG-gen. In fact, Sethares and
Staley [3] have shown that the subtraction of average pe-
riodic sequence ūp performs an orthogonal projection of u
onto vector subspace Pp, which contains all sequences of
period p. In other words, the residual u − ūp /∈ Pp or,
equivalently, u − ūp ∈ P⊥

p where P⊥
p is the orthogonal

complement of a subspace Pp.
We denote by rl ∈ RT the residual vector, which is

obtained from u by the sequential subtraction of l average
sequences with periods p1, p2, . . . , pl. Since the residual
vector rl does not belong to the sum of vector subspaces
Pp1

, . . . ,Ppl
, rl is an element of the vector subspace V

where the dimension dim(V ) of the vector space V is
defined by

dim(V ) = T − dim(Pp1
+ . . .+ Ppl

). (21)

Relation (21) defines the convergence of the LG-gen
model. If the sum of vector subspaces Pp1

, . . . ,Ppl
spans

the entire space RT , the residual vector rl = 0 because
rl ∈ V and dim(V ) = 0. An important question is to find
the smallest period p∗ such that P1 + P2 + . . .+ Pp∗ = RT .
Relation (20) is also the solution to the problem. Thus, we
conclude that the LG-gen model accurately describes any
sequence u.

F.4 Performance of LocalMin
The LG-gen model is based on the periodicity transform
(PT), which identifies periods based on the LocalMin algo-
rithm. However, the PT does not in general provide a unique
representation and there are other methods to identify peri-
ods in the data (see Table 5), which are described in Section
F.4.1. Thus, we compare the performance of the LocalMin
algorithm against other existing methods.

F.4.1 Other periodic transforms
Sethares and Staley [3] introduce various algorithms that
define the order in which the projections are applied:

1) Small2Large: the algorithm iteratively selects the
smallest ”significant” period pi, which satisfies

∥u− ūp∥ < h · ∥u∥ ,
where h is a predefined threshold.



17

TABLE 5
Periodic decomposition techniques.

# Name Description
1 small2large the Small2Large algorithm (h = 0.9)
2 l-best the l-best algorithm
3 l-best-gamma the l-best-gamma algorithm
4 Best correlation the best correlation algorithm
5 LocalMin the LocalMin algorithm
6 PT (DFT) the best frequency algorithm
7 PT (Farey) the sequence of periods is based on the

Farey representation
8 PT (Ramanujan) the sequence of periods is based on the

Ramanujan PT
9 PT (iterative DFT) the sequence of periods is iteratively de-

fined by the DFT of the residual
10 PT (iterative Farey) the sequence of periods is iteratively de-

fined by the Farey representation of the
residual

11 PT (iterative
Ramanujan)

the sequence of periods is iteratively de-
fined by Ramanujan PT of the residual

2) l-best: the algorithm consists of two steps. First, the
l-best algorithm identifies l periods that sequentially
provide the largest decrease of the MSE. Second,
each average periodic sequence ūpi is further de-
composed into their constituent periodic elements,
which are the factors of a period pi, to see if these
smaller (sub)periods decrease the MSE more than
another currently in the list.

3) l-bestγ : a variation of the l-best algorithm where the
MSE is normalized by the square root of pi.

4) Best Correlation: the algorithm iteratively selects the
period pi with the highest correlation between u and
the pi-periodic basis vector xs

pi
, which is given by

xs
pi
[j] =

{
1, if (j − s) mod pi = 0,

0, otherwise,

where s ∈ {1, . . . , pi}.
5) Best Frequency: the algorithm performs the Discrete

Fourier transform (DFT) of the vector u and then
sequentially converts the frequency fi with the i-
th largest magnitude to the closest integer period
pi = round(1/fi). The average periodic sequence
ūpi

, which is subtracted from u, differs from a
sinusoidal function with frequency fi. Therefore, we
also consider the recursive best frequency algorithm,
which recalculates the DFT of u at each step i.

The major disadvantage of the PT is the concatenated
structure of periodic subspaces, which leads to the consid-
eration of different projections sequences. An alternate ap-
proach was suggested in [4], [5], where the Farey dictionary
is introduced. This dictionary is based on the union of non-
overlapping columns of several DFT matrices. More pre-
cisely, given the maximal period pmax, the Farey dictionary
A

(f)
pmax is the T × Φ(pmax) block matrix

A(f)
pmax

=
[
V1 V2 . . . Vpmax

]
,

where Φ(pmax) =
∑pmax

m=1 ϕ(m) and ϕ(m) is the Euler totient
function (number of integers in 1 ≤ i ≤ m coprime to m)
and the T × ϕ(m) matrix Vm is given by

Vm =



1 1 · · · 1

W k1
m W k2

m · · · W
kϕ(m)
m

W 2k1
m W 2k2

m · · · W
2kϕ(m)
m

...
...

. . .
...

W
(T−1)k1
m W

(T−1)k2
m · · · W

(T−1)kϕ(m)
m


with Wm = ei2π/m and gcd(m, ki) = 1 for 1 ≤ ki ≤ m. The
notation gcd(m, ki) refers to the greatest common divisor
(GCD) while the relation gcd(m, ki) = 1 means that integers
m and ki are coprime. The column space of Vm contains
m-periodic sequences. Moreover, any set of T columns in
A

(f)
pmax is linearly independent.

The Farey dictionary represents u in the form

u = A(f)
pmax

· d (22)

where d is an Φ(pmax) × 1 vector, which defines how
u can be decomposed as a linear combination of peri-
odic sequences. The solution of d is not unique, therefore,
Vaidyanathan and Pal [5] minimizes the l1 norm of d to ob-
tain a sparse solution for vector d. The Farey Representation
of u is computationally expensive as the Farey dictionary
A

(f)
pmax has approximately O(p2max) columns.

As an alternative to the Farey representation, Tenneti
and Vaidyanathan [4], [6] have introduced the Ramanujan
periodicity transform matrix A

(R)
pmax of size T × Φ(pmax) as

A(R)
pmax

=
[
C1 C2 . . . Cpmax

,
]

where Cm =
[
cm c

(1)
m · · · c

(ϕ(m)−1)
m

]
is a T × ϕ(m)

matrix, c
(i)
m is the circularly downshifted by i version of

the T × 1 vector cm and the k-th component of cm is the
Ramanujan sum

(cm)k =
m∑

n=1:gcd(n,m)=1

W kn
m .

A distinct feature of the Ramanujan periodicity trans-
form matrix A

(R)
pmax is that the column space of Cm contains

m-periodic sequences and the column spaces of Cm and Cq

are orthogonal whenever m and q are the divisors of T .
The Ramanujan Periodicity transforms defines u as

u = A(R)
pmax

· d (23)

where d is an Φ(pmax) × 1 vector, which defines how u is
decomposed as a linear combination of periodic sequences.
The solution of d is not unique. Therefore, Tenneti and
Vaidyanathan formulate the l1 and l2 convex programs for
d and demonstrate that the l2 norm solution results in a
much faster computation. Again, the Ramanujan Periodicity
transforms of u is computationally expensive as the matrix
A

(R)
pmax has approximately O(p2max) columns.

Overall, we compare the LocalMin algorithm to 10 pe-
riodic decomposition techniques from Table 5. The Farey
and the Ramanujan representations are only used to identify
periods in the data, because there is no guarantee that the
subtraction of l periodic sequences from the matrices A(F )

pmax

and A
(R)
pmax decreases the MSE of u.

We attempt to identify a relatively small number of
periodic graph sequences that describe the dynamics of
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Fig. 27. The comparison of periodic transforms for Graph Dynamic №4.

the graph. In general, the identification of periods can be
defined on the L × T vector sequence a[1], . . . , a[T ] corre-
sponding to the graphs G1, . . . , GT (full data). However, due
to the high computational complexity, such an approach is
impractical for very large graphs. Hence, we also identify
periods using a 1-dimensional sequence that describes the
dynamics of link count in the temporal network.

F.4.2 Experiments on artificial quasi-periodic data
We test two quasi-periodic graph dynamics №4 and №5
from Section 3.7. Fig. 27 illustrates the MSE of the periodicity
transforms on the graph dynamics №4 (6 nodes, 15 links,
T = 80) for l = 10 and pmax = T/2.

First, the rounding at the final step dramatically de-
creases the number l of periodic sequences required to
accurately describe the initial graph dynamics. For instance,
if l = 10, then the lowest MSE without rounding is ap-
proximately 0.02 for the l-best and the LocalMin algorithms.
However, the rounding at the final step provides a zero MSE
for LocalMin (l = 6), l-best (l = 7), small2large (l = 8) and
PT (DFT, l = 7). Second, since the link count has the same
period as the graph dynamics №4, it is a good measure
to define the sequence of projections. For instance, the
LocalMin algorithm accurately describes the graph dynamic
№4 using 5 periodic sequences if the sequence of periods is
identified based on the dynamics of the link count. Overall,
we observe that the LocalMin algorithm outperforms other PT
methods because it accurately describes the initial graph
dynamics by a smaller number of periodic sequences.

Next, we compare the PT techniques with respect to the
identified periods p1, . . . , pl. In general, we aim to find the
PT, which accurately describes the initial graph dynamics
by relatively short periods pi as the order of the system
matrix Q of LG-gen depends on pi. Thus, Fig. 28 presents
the comparison of the PT techniques with respect to the sum
of the periods

∑l
i=1 pi and the space complexity, which is

the total number of elements in matrices Q1, . . . , Ql of LG-
gen. Overall, we observe that the LocalMin algorithm and
PT (DFT) provide periodic sequences that have the lowest
sum of periods as well as the lowest space complexity.

The results for the graph dynamic №5 are similar to
the graph dynamic №4: the dynamics of the graph can be
accurately described by a relatively small number of peri-
odic sequences. The LocalMin, the l-best and the small2large

Fig. 28. The sum of periods and the space complexity of the PT for the
graph dynamic dynamics №4.

Fig. 29. The PT of the LyonSchool network (MSE).

algorithms with rounding produce an exact periodic decom-
position within 10 periods while LocalMin has the lowest
space complexity.

F.4.3 Experiments on Real Data

We compare the periodicity transforms on a real network
from Section 3.8, collected in the school (LyonScool dataset).
Due to the high computational complexity, we have ex-
cluded the PT methods №8-11, which are based on Farey
or Ramanujan dictionaries.

The performance of the periodicity transforms with re-
spect to different values of l ≤ 15 is provided in Fig. 29.
First, the results on the link count are similar to the results
on the full data. For instance, the l-best algorithm, which is
performed on the full data and on the link count, requires 9
periodic sequences to describe exactly the dynamics of the
graph. Thus, the link count is a good metric to define the
sequence of periodic projections in the LyonSchool dataset.

We observe that only l-best and LocalMin algorithms
accurately define the graph dynamics within 12 periods.
Therefore, we also compare these algorithms with respect
to the identified periods p1, . . . , pl. Fig. 30 demonstrates
that the l-best algorithm (full data) provides the lowest
sum of the periods

∑l
i=1 pi while the LocalMin algorithm

(link count) has the smallest number of elements in matrices
Q1, . . . , Ql of LG-gen.
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Fig. 30. The total number of periodic sequences, the sum of their periods
and the space complexity of the PT (LyonSchool).
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