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On the Efficiency of Multicast
Piet Van Mieghem, Gerard Hooghiemstra, and Remco van der Hofstad

Abstract—The average number of joint hops in a shortest-path
multicast tree from a root to arbitrary chosen group member
nodes is studied. A general theory for all graphs, hence including
the graph representation of the Internet, is presented which
quantifies the multicast reduction in network links compared to

times unicast. For two special types of graphs, the random
graph ( ) and the -ary tree, exact and asymptotic results
are derived. Comparing these explicit results with previously
published Internet measurements [13] indicates that the number
of routers in the Internet that can be reached from a root grows
exponentially in the number of hops with an effective degree of
approximately 3.2.

Index Terms—Efficiency, -ary tree, multicast, random graph.

I. INTRODUCTION

I T IS BELIEVED that multicast will grow substantially in
importance in the near future. Multicast will enable direct

marketing, pay TV, movie distribution, automatic update of
software releases, and many other services, besides the already
known applications such as video conferencing, teleclassing,
and electronic games. Although a large number of protocols
for multicast has been proposed, as recently reviewed by
Ramalho [11] and Almeroth [2], besides the classical group
multicast model, new types such as explicit multicast [18] and
source-specific multicast [15] are being investigated. These
new types are one-to-many and forward IP-packets along the
shortest-path source tree.

In this article, we focus on the efficiency or gain of multicast
in terms of network resource consumption compared to unicast.
Specifically, we concentrate on a one-to-many communication,
where a source distributes messages (packets) todifferent,
uniformly distributed destinations along the shortest path. In
unicast, these messages are senttimes from the source to each
destination. Hence, unicast uses on average
link traversals or hops, where is the average number of
hops of a message to a uniform location in the graph under con-
sideration containing nodes. One of the main properties of
multicast is that it economizes on the number of link traversals.
If we define for multicast to be the average number of
hops in the shortest-path tree rooted at a source torandomly
chosen distinct destinations, then, of course, .
The purpose here is to quantify the multicast efficiency .
We present general results valid forall graphs and more explicit
results valid for the random graph, which was proposed as a
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model for the hopcount in the Internet in [17] and for-ary
graphs [13]. Finally, using the same measurement data as in
[13], our analysis indicates that the Internet is an exponentially
growing graph (defined in Section VI) with an effective degree
of approximately 3.2.

Inspired by a remarkable paper by Phillips, Shenker, and
Tangmunarunkit [13], which was in turn triggered by the
work of Chuang and Sirbu [5], the present article extends and
complements their work. The extension lies in the fact that
we present general results for which show that the
empirical power law , coined by Phillips
et al. the Chuang–Sirbu scaling law,might be a reasonable
approximation for small , but cannot be valid for large
(meaning of the same order1 as the number of Internet routers,
i.e., , with ). This result is illustrated
in Figs. 4 and 6. The complementarity refers to the need of
considering their many multicast measurements on MBone
and Internet, which offer a reality check for the modeling of

or for the approximation of Chuang and Sirbu [5]. In
view of this reality check, we feel we ought to mention some
modeling assumptions also made by Phillipset al.and Chuang
and Sirbu. First, the multicast process is assumed to deliver
packets along the shortest path from source to each of the
destinations. The assumption ignores shared-tree multicast
forwarding such as core-based tree (CBT, see RFC2201). As
most of the current Internet protocols forward packets based
on the (reverse) shortest path, the assumption of shortest-path
tree delivery is quite realistic. The second assumption is that
the multicast group member nodes are uniformly chosen
out of the total number of nodes. This assumption has been
discussed by Phillipset al.They concluded that, if and are
large, deviations from the uniformity assumption are negligibly
small, as also follows from the close agreement with Internet
measurements. Also, the recent measurement of Chalmers and
Almeroth [4] seem to confirm the validity of the uniformity
assumption.

The paper is organized as follows. Section II states and
proves the general theorems. In Section III, the empirical
Chuang–Sirbu law is discussed. Sections IV and V apply the
general theory to random graphs of the class , where
the existence of links are independent of each others with
probability , and to -ary trees, respectively. Observations
concerning the exponential growth of a graph and a practical
method to deduce exponential growth from (measurements of)

is presented in Section VI. In Section VII, previously
published measurements on Internet are interpreted based

1Here,f � g means thatf is well approximated byg without any crite-
rion that specifies this approximation, whereasf � g for x ! x means
lim f(x)=g(x) = 1.

1063–6692/01$10.00 © 2001 IEEE
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on our results. The Appendix contains some mathematical
derivations.

II. GENERAL RESULTS FOR

Theorem 1: For any connected graph with nodes

(1)

Proof: Clearly, we need at least one edge for each (dif-
ferent) user; therefore, and the lower bound are
attained in a star topology with the source at the center.

We will next show that an upper bound is obtained in a
topology on a line. Observe that it is sufficient to consider trees,
because multicast only uses shortest paths without cycles. If the
tree has not a line topology, then at least one node has degree 3
or the root has degree 2. Take the node closest to the root with
this property and cut and paste one of the branches at this node;
we paste the branch to a node at the deepest level. Through
this procedure, the multicast function stays unaltered
or increases. Continuing in this fashion until we reach a line
topology gives the claim.

For the line topology, we place the source at the origin and the
other nodes at the integers . The edges of the
graph are given by . Observe that

, where is the maximum of a sample of order
, without replacement, from the integers .

Obviously

Hence

where we used that , because it is a sum
of probabilities overall possible disjoint outcomes.

Fig. 1 shows the allowable state space for .
Theorem 2: For any connected graph with nodes, the map

is concave and the map is
decreasing.

Fig. 1. Allowable region (in white) ofg (m). Note that for exponentially
growing graphs defined in Section VI,E[H ] = c logN , implying that the
allowable region for these graphs is smaller and bounded at the left (in dotted
line) by the straight linem(c logN).

Proof: Define to be the random variable giving the
additional number of hops necessary to reach theth user when
the first users are already connected. Then, we have that

Moreover, let be the random number of additional hops nec-
essary to reach the th multicast group member, when we dis-
card all extra hops of the st group member. An example
is illustrated in Fig. 2. The random variable has the same dis-
tribution as , because both the th and the th group
member are chosen uniformly from the remaining
nodes.2 Obviously, in general, , but, for each ,
Pr Pr and, hence

(2)

Furthermore, we have by construction that with prob-
ability 1, implying that

(3)

Indeed, attaching the th group member to the reduced tree
takes at least as many hops as attaching that same group member
to the nonreduced tree because the former is contained in the
latter and the extra hops added by the group member can
only help us. Combining (2) and (3) immediately gives that

(4)

This is equivalent to concavity of the map .
In order to show that is decreasing, it suffices

to show that is decreasing, since is

2Two discrete random variablesX andY are equal in distribution if Pr[X =
k] = Pr[Y = k] for all k. For example, ifX is the outcome of a throw with a
red (fair) die andY the outcome of a green (fair) die, thenX andY are equal
in distribution, but, in general,X 6= Y .
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Fig. 2. Multicast session withm = 5 group members whereY = 1 (namely,
link C-5). To constructY , the three dotted lines must be removed, and we
observe thatY = 2 (A-C-5), which is referred to as the reduced tree. In this
example,Y = Y = 2 because A-C-4 and A-C-5 both consist of two hops. In
general, they are equalin distributionbecause the role of group member 4 and
5 are identical in the reduced tree.

proportional to . Defining , we can write
as a telescoping sum.

Then

and

where . By (4), the
sequence is decreasing and, hence

This proves the claim that is decreasing.
Next, we will give a representation for valid for all

graphs. We need the following definition. Let be the number
of joint hops thatall uniformly chosen and different group
members have in common. Then we have the identity:

Theorem 3: For any connected graph with nodes

(5)

Proof: Let be sets where consists of
all edges (hops) that constitute the shortest path from the source
to multicast group member. Denote by the number of
elements in the set . The multicast group members are chosen
uniformly from the set of all nodes except for the root. Hence

for

and

for

etc. Now, . Since
is a probability measure on the set of all edges, we

obtain from the inclusion–exclusion relation [8, Theorem, p. 99]
applied to and multiplied with afterwards

This gives the statement of the theorem.
Note that

so that the decrease in average hops (or “gain”) by using multi-
cast over unicast is precisely

However, computing for general graphs is a highly non-
trivial exercise.

Corollary 4: For any connected graph with nodes

(6)

The corollary is a direct consequence of the inversion formula
for the binomial [12, Ch. 2]. Alternatively, in view of the Gre-
gory–Newton interpolation formula [10, Ch. 4, Sec. 2] for

we can write where is the differ-
ence operator, .

III. T HE CHUANG–SIRBU LAW

Let us consider the Chuang–Sirbu scaling law,
in more detail.

Corollary 5: For any connected graph, the multicast effi-
ciency is bounded by

(7)

where is the average number of hops in unicast.
Proof: We give two demonstrations.

1) From (all nodes, source plus
destinations, of the graph are spanned by a tree consisting of
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links) and the monotonicity of
(see Theorem 2), we obtain

2) Alternatively, Theorem 1 indicates that ,
which, with the identity , immediately
leads to (7).

Corollary 5 means that for anyconnectedgraph, including
the graph describing the Internet, the ratio of unicast over
multicast efficiency is bounded by the expected hopcount in
unicast ( ). Corollary 5 implies that the empirical law
of Chuang–Sirbu cannot hold true for all . Indeed, if

, we obtain from the inequality (7) and
the identity , that . Write

for a fixed and independent of .
Hence, we have shown that:

Corollary 6: For all graphs satisfying the condition that
, for large , the empirical Chuang–Sirbu

law does not hold in the region with and
sufficiently large .

The most realistic graph models for the Internet (see [13, Sec.
4.2]) assume that , since this implies that the
number of routers that can be reached from any starting desti-
nation grows exponentially with the number of hops. For these
realistic graphs, Corollary 6 states that empirical Chuang–Sirbu
law does not hold for all . On the other hand, there are more
regular graphs (such as a-lattice, where )
with (and ) for which the mathematical
condition is satisfied for all and . How-
ever, these classes of graphs, in contrast to random graphs, are
not leading to realistic shortest-path trees, as shown in [17].

For the random graph , we know from [17], for large

where is Euler’s constant. Below, in Theoreom 7, we prove
that for the random graph and for large and

(8)

The above scaling explains the empirical Chuang–Sirbu law for
: for small with respect to , the graphs of

and look very
alike in a log–log plot as illustrated in Fig. 3.

For small to moderate values of , (as observed for
Internet-like topologies in [13]) is very close to a straight
line in a log–log plot. This “power law behavior” implies that

, which is a first-order
Taylor expansion of in . It further suggests to
compute3 as effective power exponent

(9)

3Although (5) only has meaning for integerm, analytic continuation to a
complex variable is possible and, hence, differentiation can be defined.

Fig. 3. The Chuang–Sirbu power law versus the exact results for the random
graph withN = 10 on a log–log scale. The insert shows the same data on a
linear scale.

Only for a straight line, the differential operator can be replaced
by the difference operator such that , where

(10)

In general, for small , the effective power exponent (9) is not
a constant 0.8 as in the Chuang–Sirbu law, but is dependent on

. Finally, since is concave by Theorem 2, is
the maximum possible value for an effective exponent. A di-
rect consequence of Theorem 1 is that the effective power ex-
ponent . From recent Internet measurements,
Chalmers and Almeroth [4] found that .

In summary, many properties in nature seem linear on an in-
sensitive log–log scale (see, e.g., [7]). However, deriving from
these plots simple and attractive power laws for complicated
matter seems a little oversimplified. Many recent articles devote
attention to power law behavior but most of them [9], [4] seem
prudent: just recall the immense interest (or hype?) a few years
ago in the long-range and self-similar nature of Internet traffic
and the relation to the “simple” power law with only the Hurst
parameter (comparable to here) in the exponent.

IV. THE RANDOM GRAPH

There exists an astonishingly large amount of literature on
properties of random graphs. We refer to Bollobas [3] and to
[17] for additional references. The class of random graphs de-
noted by consists of all graphs with nodes in which
the edges (or links) are chosen independently and with proba-
bility . Although random graphs arenotmodeling realistic net-
work topologies well, computations in of the shortest
path from a source to an arbitrary destination result in a re-
markably good model of the hopcount (i.e., the number of links)
from that source to a destination, as demonstrated theoretically
in [16] and verified with Internet measurements in [17]. The
explanation for the quality of a random graph with exponen-
tially distributed link weights can be understood when reasoning
from the source node on. The view of the source node is a



VAN MIEGHEM et al.: ON THE EFFICIENCY OF MULTICAST 723

shortest-pathtree. In [16], [17], we find that the shortest-path
problem in with exponentially distributed link weights
can be reformulated into a Markov discovery process with an
associated uniform recursive tree [14]. The uniform recursive
tree thus seems a quite natural shortest-path tree as seen by the
source node. For this uniform tree, the corresponding multicast
gain is computed in this section.

We further found in [17] that 1) other topologies and 2) other
link weight distributions do not fit the Internet data so well,
which led us to suggest that the random graph model is a rea-
sonable model for shortest-path behavior. Moreover (see [6]),
the resulting hopcount distribution (13) possesses the remark-
able property of almost sure behavior, which implies a high de-
gree of robustness. Finally, from a modeling perspective, even
though the model describes reality less accurately, the main ben-
efit of the random graphs lies in the fact that it provides relatively
simple analytic results and first-order estimates of difficult phe-
nomena that are unlikely to be obtained from more sophisticated
models.

In this section, we confine to the random graphs of the
class with independent identically and exponentially
distributed link weights with mean and where
Pr , . Previously [16], [17], we
have shown that the hopcount of the shortest path foralmost
all connected graphs of and independent of the link
density can be computed asymptotically. In summary, we
find that , where is
the digamma function [1, Sec. 6.3] or, for large

(11)

Var (12)

Pr (13)

where are the Taylor coefficients of listed in [1,
6.1.34].

Theorem 7: For the class of random graphs with
independent, identically and exponentially distributed link
weights

(14)

where is the digamma function.
Proof of Theorem 7:See Appendix A.

We observe that and that, since
, .

Using the asymptotic properties of the digamma function,
we obtain (8) as an excellent approximation for large(and all

) or, in normalized form with and

(15)

The normalized Chuang–Sirbu law is
. It is interesting to note that the Chuang–Sirbu law is

“best” if , since then both endpoints

Fig. 4. Multicast efficiency forN = 10 with j = 3; 4; . . . ; 7. The endpoint
of each curveg (N�1) = N�1 determinesN . The insert shows the effective
power exponent versusN .

and coincide with (15). This optimum is achieved when
, which is close to the current estimated number

of routers of the Internet (as deduced from measurements of the
hopcount in [17]). This observation may explain the fairly good
correspondence (on a less sensitive log–log scale) with Internet
measurements. At the same time, it shows that for a growing
Internet, the fit of the Chuang–Sirbu law will deteriorate.

Fig. 4 compares and
for various values of on a log–log

scale. For , the Chuang–Sirbu law underestimates
for all . The effective power exponent as

defined in (9) for the random graph is

while, according to (9)

The difference monotonously decreases and is
largest, 0.048 at while 0.008 31 at and 0.0037
at . This effective power exponent is drawn
in the insert of Fig. 4, which shows that is increasing and
not a constant close to 0.8. More interestingly, for large, we
find with (11) and (12) that and
that . In [17], the ratio
pops up naturally as the extreme value index of the distribu-
tion of the link weights in a topology. Since measurements of
the hopcount in Internet indicate that ,
this index strongly favors the model of the hopcount based on
shortest paths in , although random graphs donotmodel
the Internet topology well.

Thus, if the number of nodes in the Internet is still growing
and well modeled by the random graph, we suggest,only for
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Fig. 5. The left-hand side tree (k = 2) hasN = 31 andD = 4, while the right-hand side (k = 5) hasN = 31 andD = 2.

small to moderate values of , to consider as a power law ap-
proximation

instead of the Chuang–Sirbu law.

V. -ARY TREES

Let us consider, as in [13], the-ary tree of depth4 with
the source at the root of the tree andreceivers at randomly
chosen nodes (see Fig. 5). In a-ary tree, the total number of
nodes satisfies

(16)

so that .
Theorem 8: For the -ary tree

(17)

Proof of Theorem 8:See Appendix B.
Unfortunately, the summation seems difficult to express in

closed form. Observe that , because all
binomials vanish. The sum extends over all levels ,
for which the remaining number of nodes in the lower levels
(i.e., ) is larger than nodes. In some sense, we
may regard (17) as an (exact) expansion around .
Explicitly

(18)

4The depthD is equal to the number of hops from the root to a node at the
leaves.

which shows that is a polynomial in of degree
. Moreover, the terms in the-sum rapidly decrease;

their ratio equals

Fig. 6 indicates that (17), although derived subject to (16), also
seems valid when

where is the largest integer smaller than or equal to. This
suggests that the deepest levelneed not be filled completely
to count nodes and that (17) may extend to “incomplete”

-ary trees. As further observed from Fig. 6, is mo-
notonously decreasing in.

Conjecture 9: The map is decreasing in
.

After rewriting (18) with , we find
for

which is clearly monotonously decreasing inand independent
of for . From the explicit expression (19) for

and (21) for , the corollary is verified for
and . Although verified numerically, a rigorous proof

for all and is difficult. Intuitively, Conjecture 9 can be
understood from Fig. 5. Both the and tree have
an equal number of nodes. We observe that the deeper(or
the smaller ), the more overlap is possible, hence, the larger

.
Theorem 1 can also be deduced from (17). The lower bound

is attained in a star topology where , , and
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Fig. 6. Multicast functiong (m) computed for thek-ary tree with four values
of k, the random graph (with “effective”k = e = 2:718 . . .), and the
Chuang–Sirbu power law forN = 10 on a linear scale where the prefactor
E[H ] is given by (11).

. The upper bound is attained in a line topology
where , , and . Further, for
real values of , the set of curves specified by (17)
covers the total allowable state space of , as shown in
Fig. 1. This suggests to consider (17) for estimatingin real
topologies (see Section VI).

The asymptotic form for is deduced from (17) as
follows. If is large

and similarly

Then, using (16)

This is somewhat deviating from [13, eq. (21)], that, written in
our notation, is

The difference lies in the term in [13, eq. (21)] instead
of . As the complexity of this asymptotic result is not
much lower than that of the exact (17), no additional insight is
gained.

Since , the average hopcount in a-ary tree
follows from (17) as

(19)

For large , we find with

that

(20)

Since

(21)

or, for large

the effective power exponent , as defined in (10), equals
for the -ary tree and large

(22)
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Comparing (20) with the average hopcount in the random
graph (11) shows equality to first order if . Moreover,
both the second-order terms and

are and independent of .

VI. EFFECTIVE NODAL DEGREE ANDEXPONENTIAL GROWTH

OF A GRAPH

Let us denote by the number of nodes at precisely
hops from a source in a shortest-path tree. If we take
to include the source, then . The usual def-
inition of exponential growth of a graph states that a tree
grows exponentially in the number of nodes with degreeif

or, equivalently, , for large . The
fundamental problem with this definition is that it only holds
for infinite graphs . For real (finite) graphs, there must
exist a for which the sequence
ceases to grow because of . This
boundary effect complicates the definition of exponential
growth in finite graphs. The second complication is that even
in the finite set not necessarily all with

need to obey , but “enough” should. Without
the limit concept, we cannot specify the precise conditions of
exponential growth in a finite shortest-path tree. If we assume
in finite graphs that for , then
with . Indeed, for , the highest hopcount level
possesses by far the most nodes since
which cannot be larger than a fraction of the total number
of nodes. Thus, from which . The relation
for the average hopcount5 (20) indicates that .
The argument also shows that only very few levels around

play a role in the determination of exponential
growth. These considerations invite us to propose a definition
which takes the size of the graph more naturally into account.

By extending to real numbers in (20), the parametercan
be interpreted as an effective nodal degree

(23)

In a -ary tree (where is an integer), the parameterprecisely
equals the outdegree and, apart from the source node, is
the nodal degree. Hence, (23) reflects the average number of
“new” nodes (the outdegree) that can be reached from a node
in one hop. If, for and large , the average hopcount

, the graph is not exponentially growing
( , whereas if , the graph is su-
perexponentially growing ( ). An example of a nonex-
ponentially growing graph is the regular-lattice, while a tree
that expands at each level with growing, thus the root has
children, these each have children and so on, is an ex-
ample of a superexponentially growing graph. A value of
would indicate that the graph is not connected. The-ary tree
can be regarded as the most regular, exponentially growing tree,
whereas the uniform tree (the shortest-path tree in a random
graph with exponentially distributed link weights) is an
example of a highly nonregular, exponentially growing tree with

5In general, for any graph holds thatE[H ] = (1=N) jQ .

Fig. 7. Internet measurements [13, Fig. 1b] whereN = 56317 and
g (m), computed for thek-ary tree withk = 3:2 and for the random
graph on a linear scale. The insert shows the same data on a log–log plot.

. One may expect that realistic shortest-path trees lie in
between these extremes.

As a practical method, we propose thatif for a graph
[specified in(17)] for all values of and

some , then the graph grows exponentially with effective
degree at least . Since the whole state space of can be
covered by the family (for real ), all
possible outcomes that any graph may produce in the-domain,
can be bounded from above by a -curve where is the
smallest value for which . Conjecture 9
states that the map is increasing which indicates
that such a exists. The definition (23) further suggests that
from the measurements in-domain on the shortest-path tree
of the source, the growth of that tree is at least.

VII. M EASUREMENTS OF

Precisely the same data as in [13, Fig. 1b] has been fitted6

with (17) yielding for the MBone and for the
Internet . For the Internet, the difference be-
tween measurement and fit is hardly visible on a linear or on
a logarithmic plot as illustrated in Fig. 7. Using (23), we can
compute the value of for any graph. From the measurement
data and for Internet
and MBone, respectively, and , (23) gives
the values , , where the su-
perscript refers to the unicast hopcount ( ). The exact
formula (19) leads to slightly smaller values ,

. Although the effective nodal degree is related
at first glance to the average degree, defined by
and where is the number of links in the graph, these-values
have little in common with the reported [13] average degree of
the graph, and . In fact, for
any graph with links and nodes containing no cycles, we
have that and, hence, . Thus,
for large , the deviation of the average degree from 2 can be
interpreted as a measure of the number of cycles in the graph.

6The value ofk is the minimizer of (g (m) � g (m)) where
g (m) are the Internet measurements and withg (m) given by (17).
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Fig. 8. MBone measurement from [13] whereN = 4179 andg (m)
computed for thek-ary tree for various values ofk. The upper curve corresponds
to k = 2; the curves decrease monotonuously for increasingk. The best fit
corresponds tok = 4:2. The insert shows the same data on a log–log scale.

However, it is easy to produce graphs that are not exponentially
increasing, but that have an arbitrarily large average degree as

grows large. On the other hand, a distribution of the outde-
gree at each level of the tree relates better to. Chalmers and
Almeroth [4, Figs. 8–11] present measurements of average de-
gree per level. Their values agree in magnitude with the-values
we found from the data of [13].

Based on the measurement data, the two differently computed
-values agree for the Internet, which seems to indicate that the

Internet is exponentially growing with effective degree approxi-
mately 3.2. Also the quality of the fit on both linear and log–log
scale in Fig. 7 over the whole -range is persuasive. This is an
important consequence, since it is difficult to judge whether a
graph is exponentially increasing without knowing its precise
topological structure. The above considerations clearly indicate
that this fact cannot be decided upon the information of the av-
erage degree solely. In contrast to the Internet data, the Mbone
data is not so well fitted, as illustrated in Fig. 8. The insert on
a log–log scale shows that the MBone shifts gradually when
increases toward higher-curves. The discrepancy by almost a
factor 2 between derived from the unicast hopcount at

and fitted from the entire -range of the multi-
cast gain may be explained by the abundant use of IP
tunnels in the MBone [2]. Tunnels may be viewed as an overlay
tree: they shortcut branches in the shortest-path tree and de-
crease the possible overlap in paths which diminishes .
The more group members are subscribed, the more tunnels seem
to effect the structure of the shortest-path tree. Chalmers and
Almeroth [4] also report differences in the unicast hopcount and
multicast hopcount and assign the origin to tunnels in the multi-
cast architecture, but also hint to the possible influence of policy
routing (as a deviating factor from shortest-path routing) in in-
terdomain multicast routing. Although the Mbone is a connected
subgraph of the Internet, exponential growth in the Internet does
not necessarily imply exponential growth in the MBone. How-
ever, the practical method in previous section is applicable with

which suggests exponential growth in the MBone, al-

though we cannot determine the precise growth rate as
for the Internet.

To understand the close relation of the Internet to tree-like
graphs, note that any shortest path started from a single source
will give rise to a graph containing no cycles, i.e., a tree. This
is because we will always take the shortest path along any
cycle, and disregard the links that are not used. Hence, even
though the -ary tree is clearly not an accurate model for the
Internet topology as a graph, it might be a good model for that
portion of the Internet used by shortest-path routing from a
single source.

VIII. C ONCLUSION

In this paper, general results are presented on the multicast
efficiency , which are valid forall connected graphs and
where is the number of multicast group members. Using these
general theorems, we show that the so-called Chuang–Sirbu
power law, , cannot generally hold if

grows logarithmically in and the number of multi-
cast group members is of the same order as the number of
nodes in the graph. Moreover, we define the effective power
exponent and show that, in general, is not a con-
stant equal to 0.8.

We have also derived exact and asymptotic expressions
for in the case of random graphs of the class
and for -ary trees. These expressions generalize previous
results obtained in [13]. They confirm thatonly for small
and moderate values of the number of multicast group
members the Chuang–Sirbu law is a reasonable approximation
for . Based on computations for the random graph, we find
that the Chuang–Sirbu law is 1) best for , but 2)
degrades for . In addition, the analysis for random
graphs suggests,only for small to moderate values of , to
consider instead of the
Chuang–Sirbu law because the effective power exponent

is not constant, but slowly increases
from 0.71 at toward 1 as . Our proposed
power law depends on the size, which is important since
the Internet is still in evolution. A similar expression can be
deduced from our computations on the-ary tree where
is replaced by in (22).

Finally, previously reported Internet measurements have been
fitted with the exact expression of for the -ary tree. Based
on these measurement data, our analysis seems to indicate that
the Internet is growing exponentially with an effective degree
approximately . As far as we are aware, this is the first
time the exponential growth of the Internet has been quantified.

APPENDIX A
PROOF OFTHEOREM 7

Before embarking with the proof of Theorem 7, we first proof
the following lemma.

Lemma 10: For ,
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and

Proof: We start by writing

Since and
by the recurrence for the binomial

we have that

After iterations, we have

and, if , the recursions stops with result

from which the lemma follows.
Proof of Theorem 7:We will investigate

on the uniform tree with nodes. Here is the number
of joint hops in a multicast shortest-path tree from the root to

uniformly chosen nodes in the uniform tree and where all the
group member nodes are different from the root. Let be
the same quantity where we allow the group member nodes to
be the root. Then

Fig. 9. The two contributing clusters leading to theE[ ~X ] recursion.

since there arepossibilities each with probability that one
of the nodes equals the root, in which case .

The average number of joint hops is deduced from
Fig. 9, where two clusters are shown each with, respectively,

and nodes. The first cluster with nodes does not
possess the root (dark shaded), but it contains themulticast
group members (light shaded). There is already at least one joint
hop because the link between the root and node, which can
be viewed as the root of the first cluster, and is used by all
group members lying in the first cluster. Given the sizeof the
first cluster, the probability that all uniformly chosen group
members belong to the first cluster equals

, because the probability that
the first group member belongs to that cluster which is , the
probability that the second group member also belongs to the
first cluster which is and so on. Since the size
of the first cluster connected to the root is uniform in between 1
and , the probability that the size isequals .
When all nodes are in that first cluster of size, is at least
1, and the problem restarts, but with replaced by and
being the root. Hence, if allgroup members belong to the first
cluster, the average number of joint hops is

because we must sum over all possible sizes for the first cluster.
If notall group member nodes are in the first cluster, the group
member nodes are divided over the two clusters. But, in that
case, we have no joint overlaps or . Thus, if not all
group members nodes are in the first cluster, the only way that
there are possible joint overlaps ( , is that all group
member nodes are in the second cluster. However, by removing
the first cluster, we are left again with a uniform recursive tree
of size . The average number of joint hops in this case is



VAN MIEGHEM et al.: ON THE EFFICIENCY OF MULTICAST 729

Adding both contributions results in the recursion formula

(24)

We next write

then the above recurrence equation (24) turns into

Subtracting

from which we obtain

(25)

Iterating (25) gives

Since , because the root is then always one
of the group member nodes, we finally obtain

(26)

It can be shown that, for large

Because

we have that

(27)

and, for large

Invoking Theorem 3, the average number of multicast hops
for uniformly chosen, distinct group members is

The -summation can be executed as follows. Consider

Differentiating times yields

Expanding the right-hand side around gives
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Evaluation at only leads to a nonzero contribution if
. Hence

and

Rewrite the first summation as

Then

Using Lemma 10

(28)

finally leads to (14).

APPENDIX B
PROOF OFTHEOREM 8

Let be the number of joint hops fordifferentmulticast
group members (we allow the root to be a user in which case

), then Pr is the probability that all group
members belong to the same cluster connected to the root. Due
to the structure of the-ary tree, this probability Pr
equals times the probability that all group members belong
to thefirst cluster connected to the root. Thus

Pr

(29)

By self-similarity of -ary trees, we obtain

Pr

because each cluster extending from the root is itself a-ary
tree of depth . In general, we have Pr Pr

Pr . Hence, by iteration

Pr (30)

Note that for the probability Pr , because
if some destinations must be identical. From the well-
known identity that Pr , we obtain for

(31)
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Since , we find

(32)

For the value of and , we find

and

Invoking Theorem 3 yields

Writing and reversing the- and
-summation yields using (16)

Concentrating on the inner sum with lower sum bound ,
denoted as , and substituting , we have

Invoking the Taylor series of the hypergeometric function [1,
15.1.1]

is the coefficient in of the Cauchy product of

and

Hence

Invoking the differentiation formula [1, 15.2.7], denoted by

we have, since and

Thus

from which (17) is immediate.
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