CONCLUDING REMARKS

We have shown that the impulse response of a linear timenvariant filter $h(t)$ can be recovered from the covariance of the (nonstationary) process obtained when this filter is ion. Moreover, this is true even if the filter is not minimum phase or even unstable. We have also indicated how to estimate the required covariance function from (multichannel) output data alone.

There are still many practical difficulties that need to be resolved. First, it would desirable to extend our results to the
case of non-zero initial conditions. Second, our procedure case of non-zero initial conditions. Second, our procedure
should simplify for filters with a rational transfer function, attempting to produce directly the two polynomials rather than the (infinite) impulse response. Third, effects of measurement and computational errors need to be explicitly addressed.

REFERENCES

1. Astrom, K.J., P. Hazader and J. Sternby (1984). Zeros of sampled system.Automatica, Vol. 20, No. 1.
2. Benveniste, A., M. Goursat and G. Ruget (1980). Robust identification of a nonminimum phase: blind adjust of linear equalizer in data communication.
IEEE Trans. on Automatic Control. Vol. AC-25, No. 3.
3. Chu J. J. and Y. Wang (1985). Parameter estima-
tion and identification of nonminimum phase linea tion and identification of nonminimum phase linear stochastic systems.
IFAC Identification and System Parameter Estimation Ork, UK, 3-7 July 1985 991-996.
4. Kailath, T. (1973). Some new algorithms for recur-
sive estimation in constant linear systems. sive estimation in constant linear systems.
$\frac{\text { IEEE Trans. on Information Theory. Vol. IT-19, } 750-}{760 \text {. }}$
5. Kailath, T., S. Y. Kung and M. Morf(1979). Displac ment Ranks of Matrix and Linear Equations.
J. Math. Anal. and Appl. Vol. 68 , No. 2, 395
6. Kailath, T.,(1987). Signal Processing Applications of Some Moment Problems.
$\frac{\text { in Moments in Mathematics, ed. H. Landau }}{\text { Amer. Math. Society, Providence, RI, } 1987 .}$
7. Kormylo, J.J. and J. Mendel (1983). Maximum-likelionvolution IEEE Trans. on Geosci. Electron., Vol. GE-21, No.1,
8. Lev-Ari, H. (1983). Nonstationary lattice-filtering mod$\frac{\text { eling. }}{\text { Ph. dissertation, Stanford University, Stanford, CA, }} 1983$,
9. Lev-Ari, H. and T. Kailath, (1984). Lattice Filter Lev-Ari, H. and T. Kailath, (1984). Lattice Filter
Parametrization and Modeling of Nonstationary Processes.
$\frac{\text { IEEE Trans. on Information Theory. Vol. IT-30, No, }}{1,2-16}$
10. Lii, K.J. and M. Rosenblatt (1982). Deconvolution and estimation of transfer function phase and coeffi-
cient for non-Gaussian linear process The Annals of Statistics. Vol. 10, No. 4
11. Matsuoka,T. and T. J. Ulrych (1984). Phase estima. tion using the bispectrum.
Pocedings of the IEEE. October, 198
Rosenblatt, M. (1980). Linear processes and bispec. J. Appl. Prob. Vol. 17,, No. 2, 265-270.
Scargle,J.D. (1981). Phase-sensitive deconvolution to pplied Time Series Analysis Vol. 2, edited by D. F. Findley, Academic Press, 1981, 549-564.
12. Wang, Y., P. F. Yan, J. J. Chu and T. Chang,(1987). Identification of nonminimum phase system with multi.
channel nonstationary output data Reprinted Proceeding output data. $\frac{\text { Reprinted Proceeding of IFAC 10th Congress Vol. } 10}{\text { Munich, FRG. July 1987. pp } 346-351 .}$

Copyright © IFAC Identification and System Parine

A GEOMETRIGAL STRATEGY FOR THE IDENTIFICATION OF STATE SPACE MODELS OF LINEAR MULTIVARIABLE SYSTEMS WITH SINGULAR VALUE DECOMPOSITION
B. De Moor, J. Vandewalle, M. Moonen*, L. Vandenberghe* and P. Van Mieghem
ESAT Katholieke Universitit Leuven, K. Mecierlaan 94, 3030 Heverleeu, Belgium
*Supported by the N.F.W.O. (Belgian National Fund for Scientific Research)

Abstract

In this paper, some geometrically inspired concepts are studied for the

 rom a geometrical point of view. The singular values allow to quan
ify these concepts. An example of an industrial plant identification is resented.
Keywordss Linear and Total linear leas
value decomposition, observable modes.

1 Introduction

The selection and the identification of appropriate mathematical represen-
tations are of central inportance in the analyssis, design and control of ruul htions are of central importance in the analysis, design and control of nul
tivariable systems. With acces only to the external input-outputbehavio

 plexity, reliable and robust general purpose identifcation schemes have
not yet become a standard tool. In most cases, (experimental) observa-

 cart of modern system and control theory, such as sthe design of observer
filters and optimal controllers regards this very efficient and conpa
and
 chenese wiil be presented. It mateks sese of the numenically reliable key
cechique of the singular value decmposition and allows to estimate et

 This paper is or oganised as follows: In section 2 , an important input
output matrix equation is derived, relting input measurements with out
 in terms of row spaces of the involved metrices, is emphasized. In sece
tion 3 , the main properties of the eningular value decomposion are rich
 technique are derived. Some more details about the eesults to be expected
when the input-output observations are noisy, are ereported in section 5 , ogethere with some robustress results of the new approach. In sec
ee present an example of an industrial plant identification.

2 An important input-output matrix equation and its geometrical interpretation.
In this section, a crucial input-output relation will be derived. It is esenn
tial for the identifction ppproach to be presented furtheron. We consider

$\left\{[k+1]_{n \times 1}=4 x^{2}+B_{x}\right.$

${ }_{(1)}^{(2)}$
(where necessary, matrix and vector dimensions will be indicated) The
matricee A, B, C, D ore real, the index k denotes the discrete time and the ectors $u[k], y(k]$ and $x[k]$ are the input, the output and the state ed the k. Furtherlore, we will alse frequently we the se of of Mertovparanuaters
matrices in this paper are assumed to be reel
From mani From manipulation of the state space system description, one can easily
obtain the following important input-output matrix equation :
$Y_{h}(k, i, j)=\Gamma(i) . X(k, j)+H_{u}(i) \cdot U_{h}(k, i, j)$
${ }^{(3)}$
(The subscript h denotes that the matrix has hlock Hankelstructure, t t is
block Toepitiz lower triengular, $t u$ liock Toepplitz upere triangular.) The bock
matrices have the following structure

$Y_{h}(k, i, j)=$	${ }^{\text {c }}$ [k]	$y^{[k+1]}$	${ }^{\text {a }}[k+j-1]$
		$y[k+2]$ $y[k+3]$	\cdots
	$\dddot{31 k}$	$\dddot{M}[\underline{[}+i]$	$\dddot{y[k+j+i-2]}$

 vectors. The matnix thit
trix that contains the i frst Markovparameters

$$
T(i)=\left[\begin{array}{l}
C \\
C A \\
C A^{2} \\
\dddot{C A} A^{-1}
\end{array}\right]
$$

nd $X(k, j)=[x[k]][k+1] \ldots x[k+j-1]]$ is the $n \times j$ matrix contain
 sight in the mechanism of estimating the dimension of the observabl
 (the matrices U_{h} and Y_{h} are chosen such that $j>\max (l i, m i)$ and $j-m i)>$ n. The matrix input - output relation can be interpreted a $-{ }^{-1}$ the row space of the row vectors of $\Gamma(i) \cdot X(k, j)$: $\quad \Gamma(i)$ makes linear on-observable parts of the state. Hence,
-his soo specace of the row vectors of H_{l}, U_{h}.
Hisgesemetrical visuaiization of the input-outputrelations immediately the dinension of the observable part of the state space can be estimated Com he dimension of the projection of the output rovspace upon the

 fite sytem. This information is not contained in the input. Hence, ontains information about the dynamics of the system. the mere of of U, The more orthogonal the rowspace of $X(k$,)) the towspace xpected and will be confurmed furtheron, that the inputs are satisfactory

3 The singular value decomposition (SVD), While the geometrical visuliiat tion is crucial from a conceptual point of
view, hes singular value decomposition (SVD) is the key instrument in the
 will olly give a brief
can be found in
The Auton
The Autonne-Eckart-Young theorem (restricted to real matrices)
Every real $m \times n$ matrix A can bed decomposed in three red

$$
A_{m \times n}=U_{m \times m} \cdot \Sigma_{m \times n} \cdot V_{n \times n}^{\prime}
$$

$$
\Sigma=\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & 0
\end{array}\right]
$$

with $\Sigma_{1}=\operatorname{diag}\left(\sigma_{i}\right), \sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$ and r is the algebraic rank
of the matrix A.

4 The identification algorithm for noise

 free data.In this section, 2 versions of the SVD based identification approadh are
derived (section 4.2 and 4.3 . They are both obtained starting from an
din
 re noisefree. However, in ing section 5, the e effect of noise corrupting the
 pretation between the first and
spproach will be studied there.
4.1 The shift structure of the observability space. At will become clear furtheron, the observability matrix $\Gamma(i)$ or rather
ist columpanace will play an important role. The space spanned by its
columns wiil be called the obscrubilt
.

Theorem 1 If a $p \times q$ matrii Y is of the form $Y=\Gamma(i), M$ with $\Gamma(i)$
the extended observability matrii and if if rank $(Y)=$ rank $\Gamma(i))=n<n$
 Proof: Straightforward but omitted
 the $n \times n$ matrix T satisfy ing P. $T=\bar{P}$ are matrices similar to to C and A in $T(i)$.i.e. there exists a nonsingular $n \times n$ matrix R such that $P_{1}=C . R$
and $T=R_{1} .1 . A . R$.

4.2 Identification algorithm : version 1 It is not dififult to see from the input - out put matrix equation that the
projection of
row row space space of $Y_{\text {h }}$ upon the orthogonal complemento of the row space of $U_{\text {h }}$ is under general conditions athogonat complement of the
property of the observability matrix. This obserectation poseses the slift
 $\quad \begin{aligned} & \text { matrix equation (3) } \\ & - \text { Choose the num }\end{aligned}$
 1o be identififed, while aloo $(j-$ mi) $>n$
Denote by
U_{\hbar}^{h} the orthonormal matrix whose columnspace is the o

$\left.Y_{h} \cdot U_{n}^{1} \cdot\left(U_{n}^{1}\right)^{t}=\Gamma(i) \cdot X(k, j)\right) \cdot U_{n}^{\perp} \cdot\left(U_{n}^{1}\right)^{t}$

This is of course equivalent with orthonormalizing (e.g., with some Grant

 dimension is generically equal tot the dimenension of then ooce ofrrable part of
the system. The precise condition for this result to be true is discused in
section 5 .

$$
\left.\left.Y_{h}, U_{L}^{\frac{1}{2}} \cdot\left(V_{\hbar}^{1}\right)^{t}\right)^{t}=\left[P_{1} P_{2}\right)\right] \cdot\left[\begin{array}{ll}
S_{1} & 0 \tag{}\\
0 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
Q_{1}^{2} \\
Q_{2}^{2}
\end{array}\right]
$$

where P_{1} is $l i \times n, P_{2} l i \times(l i-n), S_{1} n \times n, Q_{1} j \times n$ and $Q_{2} j \times(j-n)$.
It now follows from the corollary in section 4.1. that the matrices A_{i}
 of the matrices A and C of the model.
The computation of the matrices B and D is straightor ward though less Using the matrix $P_{\text {d }}$ defined in the sVD (5) and the psesud-inverse U^{+}
of U_{n}, it can be found from the second input. -outputrelation that

$$
P_{2}^{t} \cdot Y_{h} \cdot U^{+}=P_{2}^{t} \cdot H_{u}
$$

Define $K=P_{2}^{t} . H_{u, t}$, then the matrix K can be partitioned in i hlocks of
dimension $(i-n) \times m$, satistying

This can be solved for the unknown matrices B and D
Although the computational requir

4.3 Identification algorithm : version 2

While the identifcation approach derived in section 4.2 .2 esentitilly makes
computations on the input block Hankel metrix $U_{h} k(k, i, j)$, the identifif. cation algorithm derived in this section will operate on the concatenate $\underset{\text { matrix }}{\operatorname{man}}\left[\begin{array}{c}Y_{h}(k, i, j) \\ U_{k}(k, i, i)\end{array}\right]$
Here $U_{h}\left(Y_{h} h\right.$, is a mix m block Hankel matrix where $m(l)$ is the number
of system inputs (outputs). It is assumed from now on that $j>(m+l)$. i
Theorem 2 If the matrices U_{h} mix (m) and $Y_{h}(l i \times j)$ with $j>\max (m i, l i)$
contain input and output vectors of the system, then the concotenated $m a-$
trix $\left[\begin{array}{l}Y_{h} \\ U_{h}\end{array}\right]$ will satisisy the following properties:
$1 /$ rank| $\left[\begin{array}{l}Y_{h} \\ U_{n}\end{array}\right]=m i+n$ if the condition for rank-cancellation is
satiosed (see section 5.1). n is the order of the observable system part.
2/ Partition the S

$$
\begin{aligned}
& \text { :1).n is the order a } \\
& \left.V D \text { of } \begin{array}{l}
Y_{h} \\
U_{h}
\end{array}\right] \text { as: }
\end{aligned}
$$

$\left[\begin{array}{l}Y_{h} \\ U_{h}\end{array}\right]=\left[P_{1} P_{2}\right] \cdot\left[\begin{array}{cc}S_{1} & 0 \\ 0 & 0\end{array}\right] \cdot\left[\begin{array}{l}Q_{i}^{2} \\ Q_{2}^{2}\end{array}\right]$
where

$$
\left[\begin{array}{lll}
\left.P_{1} P_{2}\right]
\end{array}\right]=\left[\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right]
$$

The dimensions are: $S_{1}(m i+n) \times(m i+n) ; P_{11}(l i) \times(m i+n) ; P_{12}$

plement of the columnopace of $\Gamma(i)$
equation (3), from proof essentially follows from the input- output matixix
therem 1.

Theorem 2 is a key tool in the identification of a state space model
A, B, C, D from input-output data:
 $\left.\begin{array}{l}\text { ces } A, B_{i}, C, D, \text { all we need is the left singular vectors of the concatenated } \\ \text { matrix } \\ Y_{h} \\ U_{h}\end{array}\right]$, which is a $(m+l) i \times j$ matrix with $j>(m+l) i$ The ngular values allow to estimate the observable order of the sys
If the efft singuler matrix of $\left[\begin{array}{l}Y_{h} \\ U_{h}\end{array}\right]$ is partitioned as:

$$
\left[\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right]
$$

as in theorem 2
Uhen A and C can be computed from the shiftstructure of $P_{1.1} \cdot P_{2}^{1} B$ and
D follow from a similiar observation as was used in section $4.2: 1$
 locks.
Partition $-P_{22}=\left(\Gamma(i)^{\perp}\right)^{\ell} \cdot H_{14}$ as $\left[Z_{1} \quad \ldots \quad Z_{i}\right]$ where the blocks Z_{k} are

The computational requirements for this second version of the identi-
fication algorithm are even less than for the first one (section 5.3)
5 Properties of the new identification approach

As will be explained in this section, the optimal choice for the matrix
lock dimensions i and j to be used in the construction of the block lock cimentions i and j to be used in the construction of the block
Hankel matrices $U_{h}\left(k, i, j\right.$ and $~_{h} k(k, i, j)$ is essential. For the identification
should be satisifid:

sould be satisfed:
$-i>i_{0}$, where io is the system observability index

For the identification version 2 (section 4.3.) the following inequalities

In both cases, the conditions are such that i is sufficiently large, in order to slow enough space 't e estimate the obser vable dynamical order n. Once
is fixed, j should be sufficienty yarge for orthognal row complements

 io require that j and i be chosen such that the bock Hankel matrice
$\left.Y_{h} k, i, j\right)$ and $U_{n}(k, i, j)$ are largely overdetermined, i i.e. have much more olumns than rows.
hthis paper, we dis

 section 5.3 .
.1 The condition of rank-cancellation.
The succes of the order estimation procedure via the singular value de-
composition in both versions of the SVD identijication approach, depends
 With respect to the row space of the input block Hankel matrix $U_{k}(k, i, j)$,
or better with respect to the ortognal complement of the row space of
 orthogonal complement $U \hbar$ of the row space of the matrix U_{h}, should be b
equal to the correct observable dimension n. Ideally, the row space of

 cept of principal angles between subpaces, which is a generaliation of
he angle between two vectors $(3$). Interesting enoubht, the computation
 sition. The laterger hhe prinicipal angles between span row $(X(k, j)$) and
span row $\left(U_{h}(k, i, j)\right.$, the more information is contained in the dynamical

 corresponds precisely to the intuitive idea of an impulse as being the o
imal identification excitation signal. The main conclusion is

 occurs decreases, for fixed i, with increasing j. Since in a io of iden-
tifcation experiments, the input sequence cannot be frecly chosen, this resull is inport tent.
A citical e exmple

 of the number of columns j and for r fixed number of blockrww $s=5$.
The smallest canonical angle is approximately constant (10° and is is no shown).

Observe that the largest canonical angle decreases with increasing overdetermination $j / /$. Extensive sinulations on several systems have shown
that his behavior is enercic. It constitutes one of the reasons to choose j / i large.
5.2 Overdetermination j / i decreases noise sensitivity
Till now, it was assumed that the available input-output data are noise-
free. In noust practical circumstances however, measurenenent noise cor-

$$
U_{h}=U_{k}(k, i, j)=\widehat{U_{k}}(k, i, j)+\widetilde{U_{h}}(k, i, j)=\widehat{U_{k}}+\widetilde{U_{n}}
$$

$Y_{h}=Y_{h}(k, i, j)=\widehat{Y_{h}}(k, i, j)+\widetilde{Y_{h}}(k, i, j)=\widehat{Y_{h}}+\widetilde{Y_{h}}$
Threce effects for fius nios the overdeternination $j /:$ it
-1. It can rigoroussly be proven [14], that, the probabiity that the pure
.

 total linear least sguares approaches $(2][13]$, because
noise and exact spaces then allows to separate them).

 the system singular values from those caused by only the noise. A full
explanation and mathematical demonstration of this observation is now

 STSo system, where the output mesurerements ser corrupted by 11 noise.

 from the
determin
$j /$ i.

- 3. Strong consistency results can be proven that allow to conlude that
 ture of increasing overdetermination j / i. By theorem 1, the shifststruc.
ture this columspace allows a realization of the model matrices A and

In the case where the data are corrupted by additive noise, one cai Tow make a meaningful distinction between the two identification versions
(section 4.2 versus section 4.3). It the input data are noise free,

 When both input and output measuruementsts are noisy corrutented b] ble
 le used. This cor
5.3 The computational requirements.

Although computational details will be reported elsewhere, we briefly
summarize in this paper some important observations.

 could be explogoted
-The resulting

 rthonormal) and then oomputing theompon of ofe matrix R
Hentifcation approach version 2 (section 4.3)

nated matrix $\left[\begin{array}{l}Y_{i} \\ U_{i}\end{array}\right]$
$]$ is required. This can again be achieved by frist
computing the $R . Q$ factorization, followed by the SVD of R.
$-A n$ adapptive version of the presented identification algo
may be used for the ididentifcation of of timedeverying linear systems, is actu-
 and a rank one updating mechanism of the SVD via the R.Q factorization,
reliminary results are promining.
6 Some real life examples
 adopted from [6] [7] [8].
 noise with standard deviation equal to 10% of the standard deviation
berrved on the single identifcation whes sarried exact out. input-out put components was added before

 then valided by comparing original and simulated out puts, using the
exact original inputs. Fig.3 shows the exact inputs while fig. 4 shows both the exact and simulaleced outputs.

7 Conclusions
In this paper, a survey was given of geonetrical concepts for a new iden-
tification strategy The properties of the singular value de are exploitedect to. ocmpute aroperties of the singular value decompositio
 linear least squares interpetation, a second which has more the charatee
 composition for structured matrices.

8 Acknowledgement.

References

(1] Budin M.A. Minimal realization of discrete linear systens input-
output observations. IEEE Trans. on Automatic Control, Vol. AC-1 no.5, october, p.395-401, 1971. De Moor B., Vandewalle J.
Ceast squares identification terchtiviques. Subunitted.
Golub. Matrix computations. Northo Oxford Acadenic Publishint 44 Gopinath B. On the identification of linear time invariant systems,
from input-outputdata. The Bell System Technical Journal, Vol.48, from input-outputdata. The Bell System Technical Journal, Vol.48,
May.-June, no.5.,.p. $11101-1113$, 1969. [5] Guidorizi R.P. Invariants and canonical forms for systems. structural
and pramernetric identification. Automatica, Vol.17, no.1, p.117-133,
1981. (6) R.P. Guidorzi, M.P. Losito and T .Muratori. The range error test in
the structural identification of linear multivariable systems. IEEE
 R.P. Guidorzi, M.P.L.Losito and T.Muratori. On the last eigenvalue test in the structural identification of linear multivariable systems. Proc.
of he he
Vien European Meeting on Cybernetics and Systems Research, of the 5 Sth European Meeting on Cybernetics and Systems Research.
Vierna, April 1980.
[8] R.P. Guidori, P.R.osi. Identification of a power plant from nor-
mal operating records. Autonatic Control Theory and Applications, mal operating records. Autonatic Control Theory and Applications,
Vol.2, no.3, September 1974.
(9] Ho B.L.,. Kalman R.E. Efective construction of linear state variable 548, 1966.
10) Kung S.Y. A new identifiction and model reduction algorithn via
singular value decounosition. Proc. of the 12 th A Asiomar Conf. Circ.
Syst Cone. Syst. Comp., Nov., 1978 .
input-outputsecucences. IEEE Trsens.on Automatic Control, Vol.AC.
non, ,april p.227-232, 1977. ,no., april p.227-232, 19
[12] Ljunt L. and T.Soderstrom. Theory and practice of recursive ident:
fication. MIT Press, Combridge, Nessachusetts, 1983 .
133) Van Huffel S. Analysis of the Total Least Sqaures problem and its use in parameter estimation. Doctoral Thesis, ESAT,
Engineering, Katholieke Universiteit Leuven, 1987
[14] Van Mieghem Piet, Vandenberghe Lieven. Een nieuw alooritne voor
 Universiteit Leuven, 1987 .

Figure 4

