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SUMMARY

The throughput optimality of priority management strategies in a single buffer has been studied for a
general aggregate arrival law. The tight upper bounds found are useful to understand optimality in the
utilization of specific priority schemes such as push-out buffer (POB) and partial buffer sharing (PBS).
This paper further focuses on the maximum allowable lpgg, versus the priority mixa for a PBS

and a random push-out buffer (RPOB) of siXefor a wide variety of arrival processes. The role of
priorities in a special type of bursty arrivals, the compound Poisson process with constant burst length
and random priority assignment within the burst is found to be less pronounced than that of ‘pure’
Poisson arrivals. On the other hand, the results for ON-OFF cell arrivals modelled by a MMPP(2),
MMPP(3), and higher order Markov modulated processes (MMP) closely follow the behaviour of the
maximum allowable load in the RPOB with Poisson arrivals, however, scaled to lower loads. The
results indicate that the priority mix distribution within the aggregate arrival flow influences the shape
of pmad{a)-curve more than the aggregate arrival distribution itdelfl997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION References 3 and 10) succeed in determining or

This work focuses on connection admission control proposing a concrete CAC algorithm that is optimal
(CAC)" 2 of a single buffer with a two-type (high given a certain priority scheme. Hardly any paper
and low) priority managemefit.The quantity of discusses the f[rade-off between th? gain in perfo_rm-
interest for CAC is the maximum allowable load 2"°S apd the increase n complgxny by mtrqd_ucmg
that a system can bear while still offering the a priority scheme. Open issues in CAC providing a

. ; _certain QOS are discussed in a broader scope by
requested quality of services (QOS). The QOS mea Kurose&®, however, omitting the priority problem.

sure considered here is the cell loss ratio. Specifi- A . .
X . . The latter topic is given a closer look in this paper.
cally, subject to the required cell loss ratios for both o
Among cell loss priority management (CLPM)

priorities, clrf andclry;, we determine the maximum method& ® 1° the push-out buffer (POB) and the

allowable traffic intensitypmax @s a function of the . .

- . . partial buffer sharing (PB$) are most well-known.
priority mix « and the buffer sizeK, where o Although these priority schemes have been studied
denotes the probability that an arriving cell has 9 P y sch L

in the literaturé the optimality of a priority scheme

hlqrhhgrlli?enrgt.ure abounds in suggestions to tackle the for various queue sizes and cell loss ratio require-
99 ments has not been discussed in detail. In a POB,

CAC problem in asynchrous transfer mode (ATM) i . ; !
X . the push-out mechanism acts only if the buffer is
switches. A smaller number of articles concentrates . . L )
> . completely filled and a high priority cell arrives. If
on a priority management. Most among those dISCUSSthere are low priority cells in the buffer, the arriving
a particular priority scheme and then proceed to ,. L )
high priority cell pushes the low priority cell near-

evaluate the performance of the priority algorithm . )
in a single buffet22 or in a shared buffer*-2 for est to the server out, all cells behind the pushed

which we further refer to our work® Generally one
finds that the introduction of priorities enhances the

number of customers that can be served adequately

at the expense of an increased complexity of the
control algorithm. However, relatively few (e.g.

* Correspondence to: Piet van Mieghem, Alcatel Telecom
Research Division, Francis Wellesplein 1, B-2018 Antwerpen,
Belgium.
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out low priority cell ripple through over one position

towards the server, and the arriving high priority
cell takes place at the tail of the queue in order to
preserve cell sequence integrity. A PBS mechanism

is somewhat simpler: if the buffer occupancy is
below a thresholdT, both low and high priority

T This push-out discipline is first-in/first-out (FIFO). Other alter-
natives are discussed in Section 2.



162 PIET VAN MIEGHEM, BART STEYAERT AND GUIDO H. PETIT

cells are allowed to enter, otherwise only high pri- They have computed the loss probability per class
ority cells are accepted until complete buffer occu- where each class is modelled as a two-state MMPP.
pation. Recently, Chang and T#h have performed a

Recently, Cidoret al?? have investigated optimal comparison between a push-out and partial buffer
buffer sharing. They considered a shared buffer with sharing scheme with bursty (a three-state discrete-
N independent, incoming links each carrying Poisson time Markov chain) arrivals. They have investigated
traffic with load\;. The priority mechanism operates the performance of both types as a function of
on the link indexi. Using continuous-time Markov  burstiness, buffer size and buffer sharing threshold.
decision theory and dynamic programmifgthey It was concluded that partial buffer sharing can be
found that the optimal scheme that maximizes the made superior to push-out for high priority traffic
throughput is the threshold push-out strategy at the expense of a dramatic increase in loss for
explained below. Their formalism involves cumber- low priority cells. In agreement with Garcia and
some notation and actually requires heuristics for Casal’, they point out that the cell loss ratio is
the optimality criteria whereas our approach in Very sensitive to traffic details. For example, when
Section 3 is particularly transparent and provides fixing the overall traffic load but increasing the
attainable upper bounds. Using stochastic fluid mod- Number of sources in each priority class, the cell
els, Elwalid and Mitr&* have analysed a two-buffer loss ratio was found to increase S|_gn_|f|cantly.
system with prioritized queues that is of particular ~ 'he role of more than two priority types for
interest for the emerging available bit rate (ABR) ~ congestion control was discussed by Bemnet|
26 service in ATM. Briefly and only approximately, al.3®, Petret al3¢, and Yeganiet al®” Chaoet al3®

the CAC problem for their queueing model was have proposed a new cell discarding strategy: the
touched upon. self-calibrating push-out. Other dynamic priority

gueueing approaches were presented by &eal.3°
gand Jun and Cherlyy Suri et al** have proposed
the threshold push-out and tHe,, push-out. The
idea of both is similar: the push-out mechanism is
made dependent on the cell loss ratio of both priority
classes. In the threshold push-out, a high priority
cell can only push out a low priority cell, if the
number of low priority cells exceeds threshold
otherwise it is discarded. Analogously, a low priority
cell can push out a high priority cell if the number
of high priority cells is larger thaik — T (whereK
is the buffer size). In theP,, push-out, the push-
out mechanism is triggered by a probabilRy,, that
a high priority cell is allowed to push out a low
one and similarly, a low priority cell may push out a
high priority cell with probability 1- P,,, provided
that the buffer is full. Clearly, varyingr and Py,

Only a few articles present results of priority
management involving bursty sources. The publishe
analyse¥—3° are more focussed on the art of
obtaining a queueing model with priorities than on
a clear study of the benefits or gain of a priority
scheme as a function of traffic parameters (such as
burstiness, traffic intensity, etc.).

Using a fluid flow model, Garcia and CasAls
report substantial statistical gains (over 200 per cent)
obtained with partial buffer sharing operating on
bursty sources. However, their article concludes that
statistical gain is very sensitive to small changes in
the parameters of the total traffic but rather insensi-
tive to changes in the probability mix. Hou and
Wong?® present a queueing analysis including delay
and loss priorities for mixed continuous-bit-rate

(CBR) and bursty traffic. Using a threshold type  oqpactively, provides mechanisms for adjusting the
of priority mechanism, they demonstrate that their co|| |oss ratios of the two classes. Their analysis

recursive model is efficient and flexible, but no (considering Poisson arrivals) has compared these
details of the benefit of the priority mechanism on ,sh-out variants with partial buffer sharing and
bursty sources are mentioned. Mitrou and Penda-shows that the push-out schemes could support a
rakis’ also touch on the priority problem and gignificantly higher maximum load subjected to a
present a rather approximate model and an analysisspecific set of cell loss ratio requirements.

based on a two-dimensional Markov chain. Unfortu- * compinations of several QOS metrics are pro-
nately, no clear conclusions regarding the effect of yosed by Jeomt al*? and by Dailianas and Bovo-
priorities are mentioned. Lidd also presents a poulog® Huang and Wif- 45 propose a combined
queueing analysis of partial buffer sharing with Mar- |oss and delay priority mechanism but conclude that
kov modulated Poisson arrivals and briefly points the exact analysis is hardly feasible due to the large
to benefits of priorities. An analytic effective band- dimensionality. Georgiadiet al*® discuss different
width method for partial buffer sharing under bursty non-preemptive policies for various applications.
arrivals was proposed by Kulkarrgt al3, Sait6* They define a simple analytical model that permits
has modelled a push-out buffer with Markov modu- meaningful comparisons and that also allows the
lated Poisson process (MMPR)) arrivals in con-  derivation of scheduling policies that are optimal in
tinuous-time. His method relies on that of Kwer terms of delay and loss requirements. The existence
et al® in that he concentrates for the description of and characteristics of policies that are jointly delay
push-out on the probability that a low priority cell and buffer optimal are studied.

reaches the server. Fonseca and Silvéstaave The outline is as follows. First, we discuss differ-
proposed a multiclass selective discard mechanism.ent push-out strategies and server disciplines. In

Int. J. Commun. Syst10, 161-180 (1997) 01997 by John Wiley & Sons, Ltd.
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an arbitrary low priority cell is removed; each low

of a priority system in a single buffer and derive priority cell is equally likely as a candidate to go.

two upper bounds. In Section 4, we introduce the

WherIFO, the cell on position 1 (thus next

random push-out buffer (RPOB) and compare for to the server) moves to the server irrespective of

Poisson arrivals the performance of partial buffer

its priority. s& LIFO strategy serves the last

sharing to that of the push-out scheme. The main entered cell first. Fos=R, an arbitrary cell in the

advantage of introducing the RPOB is that, first, it

queue is taken by the server. The probability that

serves as an excellent approximation for the conven-the served cell has high priority equatg[k]/n[K]

tional first-in/first-out (FIFO) push out, and second,

whietEk] and n[k] are the number of high priority

it allows us to perform exact calculations of the cells and of the aggregate (high plus low) in the

maximum allowable load for very general arrival

buffer, respectively, at timekslats=HOL (head

laws. In Section 5, we introduce burstiness in the of the line) scheme always serves high priority cells

arrival pattern for the RPOB: we start with a com-
pound Poisson process and then turn to arrivals
generated by a Markov modulated process whth
states (MMPN)). The performance of RPOB and

in the queue before any low priority cell.
For ATM applications, only thes=FIFO disci-

pline is allowed since all other disciplines violate
the sequence

integrity. Here we exclude the

PBS are compared for an MMP(3). The detailed s=LIFO scheme because it fails to offer any attrac-
derivation of the state equations for the RPOB with tion over thes=FIFO strategy from a stochastic

MMP(N) cell arrivals are found in Appendix B.

2. PUSH-OUT STRATEGIES AND SERVER
DISCIPLINES

In this section, different push-out strategies and
server disciplines are compared. For PBS, a similar
study is not relevant. The performance measure for

theoretical point of view.

2.2. The classs= FIFO

When comparing a FIFO/FIFO POB with a
LIFO/FIFO and R/FIFO POB we can demonstrate
the following:

Property 1. The best performance in the

the comparison is the cell loss ratio. An additional, 5= F|FO class is achieved by p=FIFO strategy

influencing and underlying factor is revenue optimiz-
ation. Clearly, a high priority service is more profit-
able than a low priority one. The purpose of a
CLPM system is just to combine both service categ-
ories according to their wishes (in terms ofr*
constraints) to generate as much profit (related to
‘load’) as possible. Under a push-out scheme
operating on a prioritized traffic stream, it is under-
stood that high priority cells remove low priority
cells from the queue provided the queue is full. In
case there are no low priority cells available for
push-out, the arriving high priority cell is lost.

2.1. Definition of the POB types

Before embarking on the discussion, it is instruc-
tive to recall the difference betwegn's POB sys-
tems. The first qualifierp specifies the push-out
method, whereas the second defines the service
discipline, which is always deterministicFor the
push-out method, we examine the cages FIFO,
last-in first-out (LIFO) andR (random) in combi-
nation to s=FIFO and R. We briefly outline the
operation of these types.

For p=FIFO, the low priority cell with lowest
gqueue position, or equivalently, closest to the server
is pushed out with certainty. A& =LIFO discipline
operates similarly: the latest entered low priority
cell is removed with certainty. Fgp =R (random)

T Deterministic means that at the end of a slkt, there is
precisely one cell transferred from the queue to the server,
provided, of course, that the queue is not empty.

[J 1997 by John Wiley & Sons, Ltd.

e |t is sufficient to show that neither a R/FIFO
POB nor a LIFO/FIFO POB can serve more
high priority cells on average over time than a
FIFO/FIFO POB obeying thelr+ constraints.
Operating near the ‘allowable’ constraints
implies that push-out actions occur relatively
often.

e The difference between the FIFO/FIFO POB
and the R/FIFO POB might occur whenout
of L low priority cells are at positions 1 to
and a high priority at position +1 wheni
push-out actions take place. In the FIFO/FIFO
POB, thesei low priority cells are certainly
removed and the high priority cell in position
i +1 is certainly served the next time. In the
R/FIFO POB, one can only say that there is a
probability of (I;)
at positioni + 1 will be served the next time.
Comparing both systems, we observe in

addition that at the next time slot, probably
fewer low priority cells remain as candidates

for a push-out in the R/FIFO POB. Hence,
every time a low priority cell is served where

a high priority cell could have been chosen,

this ‘wrong choice’ influences the performance

in both the current and the next time slots
badly.

e The situation forp=LIFO is analogous, and
even worse than fop =R, because the prob-
ability to have low priority cells close to the
server is larger than for thep=R push-out
mechanism.

1
that this high priority cell

Int. J. Commun. Syst10, 161-180 (1997)
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Intuitively, in p=FIFO, the low priority cells are, the number of low priority cells if there are any in
on average, moved further back in the queue com- the system. Therefore, if the number of low priority
pared top=LIFO, where they are encouraged to cells at a certain time is the same in both systems,
take place in front. The =R scheme fits somewhere the number of pushed out cells is equal.
in between these extremes. Now, serving more low In the timed$lotghere the buffer is full and
priority cells implies, on average, serving fewer high priority cells arrive, at the next timeslét+ 1,
high priority cells, supporting property 1 and the tee FIFO discipline certainly serves a high pri-
following corollary. ority cell, and in these timeslots= FIFO is superior
to the s=R discipline. On the other hand, at time-
Corollary 1. When s=FIFO, the performance slots j where the buffer is not completely filled,

for p=R is better than forp =LIFO the priority mechanism does not interfere. In these
This analysis suggests that introducing a random timeslotsj, there are situations whes= R is never
server discipline §= R) may boast the performance worse (with certainty) than a=FIFO. For

for p= R in order to achieve a comparable perform- instance, when, at the end of a slot, there are low
ance to that of a FIFO/FIFO POB. Although appar- priority cells located in the FIFO/FIFO POB before
ently only of academic interest, the R/R POB will high ones, the low ones will be served in the next

be studied because the computational burden is slot. Forsth® discipline, there is always a
much less heavy than for FIFO push-out (see chance that a high priority cell is served. In sum-
Section 4.2). mary, when averaging over all timeslots, the
presented qualitative discussion illustrates that the
23 The classs=R differences between both server disciplines cannot
be substantial.
Property 2. There is no difference in perform- Another argument is that of the self-regulation of
ance between the severplschemes a CLPM system subject toclr constraints
Proof: (clry, clIryy). Consider two work-conserving POB

strategies, POB1 and POB2, with a service discipline
equally fair treating low and high priority cells.
Suppose that POB1 systematically handles low pri-
ority cells more favourably than POB2. Hence,
POB1 will typically contain fewer high priority cells
than POB2. In case a push-out action occurs, POB1
possesses fewer low priority cell candidates with a
consequence thatlr,, > clr,;,. The cIr constraints
will interfere and generate the relevant feedback
with respect to the arrival intensity merely resulting
in a small difference in performance.

e The s=R discipline uniformly chooses a cell
from the queue. The type of the cell served
only depends on the number of high and low
priority cells.

e For all p-types, the number of push-out oper-
ations in each time slot is precisely the same,
and so is the number of high and low priority
cells. Hence, there is an equal chance for all
p-schemes that a high priority cell is served,
thus their performance is equal.

On property 2, we will simplify R/RPOB to

RPOB in the sequel. 3. GENERAL RELATIONS

2.4. The s=FIFO class versus the =R class 3.1. Definitions

We will confine ourselves to a comparison By virtue of the slotted nature of ATM, we
between the FIFO/FIFO POB and@RPOB. Since  concentrate on discrete-time systems where the ser-
the performance of the last class is independent of vers work deterministically. The time unit, also
the push-out schemp, we base the discussion on called a time slot, equals the time needed to serve
the p=R scheme. The performance of the precisely one cellpfdenotes the fraction of
FIFO/FIFO POB is very close to that of the R/R servedi priorities per time slot, we have
POB as demonstrated below and in Figure 1. At
first glance, this result is surprising because it Ha= M+ =1 (1)
implies that the sequence integrity is immaterial for
our performance standard. However, a closer look
reveals that the result is in fact quite natural.

In first order, a push-out action depends on the
number of low prlor!tles n the buffer .a'nd only in has high probability, the mean number of arrivals
second order to their precise cell position (that, of :

per time slot equals
course, depends on the sequence order). Further-
more, the arrivals of high priorities that are respon- M= Ay + AL (2)
sible for a possible push-out action are the same
for both buffer systems because arrivals at time where Ay =aly and N\, =(1 - a)\,. Defining the
are usually independent of the buffer content at that traffic intensity as usual by =N/, we observe
moment. In both cases, a push-out action diminishes that for a deterministic server, it holdg that

where the subscripts refer to the aggregaig, the
low priority cells (L) and the high priority cells
(H), respectively.

If « denotes the probability that an arriving cell

Int. J. Commun. Syst10, 161-180 (1997) 01997 by John Wiley & Sons, Ltd.
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Figure 1. The effect of the thresholfl on the performance of PBS in a relatively small buffer of sike 15 for the cell loss ratio

couple (10% 1071°. For comparison purposes, the

Since the system has a finite capacitykofjueue-
ing positions with an additional one for the server,
in general, cell loss will occur. The cell loss ratio
clr is defined as the mean number of cells lost per
time slot over the mean number of cells of that
type which have arrived. Again, the total number
of lost cells consists of both priorities. From this
fact we deduce a useful equatipn

Na Clra =N clr, + N Clry

clra(a) = (1 - a)clr (a) + a clry(a)

(4)

where

The last equation explicitly expresses the depen-
dence ona. In addition, since we can write the
aggregate cell loss ratio as a weighted mean,
clra=(\_ clr_ + Ay clrl)/(N +\y), we immediately
find thatclry(a) = clra(a) = clr(a) if we assume
that clry(a) = clr ().

The cell loss ratio of the aggregate cell stream,
clr 5, in the corresponding system without the priority
management is exactly described by the loss prob-
ability of that correspondings/D/1/K system (see
e.g. References 26, 47 and 48). Formally, fixing all
other traffic descriptors independent of the lgad
we have

N AN
Cer = fK (pA) (5)

T An alternative relation of the same nature is

Na(1 - clra) = (1 - q[0]) pa

where q[0] is the probability that the buffer is empty.

®3)

[J 1997 by John Wiley & Sons, Ltd.

performance of the POB is shown as a dotted line

wherd(x) is an increasing, continuous and positive

function of x bounded by G= fy(x) =1 and non-
increasing Kin A priority mechanism can never

lower the aggregate cell loss, hence, we have

/\
Clra = clra(a)

(6)
and alternatively, for the same aggregate cell loss

VAN
ratio requirementlr, = clr(a) = clri

oan = p(0) (7)

3.2. Formal solution

We are now in a position to treat the problem in
more detail: given a priority management protocol,
determine the maximal traffic intensify, subjected
to the wusers cell loss ratio requirements
(clry, clryy) such thatclr («) = clrf and clry(a) =
clry; <clri. The latter inequality means thatlr},
should be sufficiently smaller thaelr; in order for
the priority scheme to have impact. Indeed, when
clri; —clri, and hence,clr;, — clri, the priority
mechanism is abused since it is forced to be inde-
pendent of a (see footnote on page 166 for a
numerical example).

Since fx(x) is monotonously increasing, the
inverse function exists justifying to rewrite

VAN AN

equation (5) aspaa = f (clra). Furthermore, the
inverse functiong™(x) of an increasing function
g(x) is increasing. Using equation (7), we have
p(a) = fit (clra). Hence, the maximum allowable
load p.{a) is found whereclr,(a) is maximal.
Specifically, from equation (4) and the requirements
on the cell loss ratios, we have

clra(a) = (1 - a)clri + a clry

(8)

Int. J. Commun. Syst10, 161-180 (1997)
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offering an upper bound for the maximal allow-
able load

pma{) = it ((1 - a)clr} + « clryy)

(9)

Since the right-hand side of equation (8) is decreas-
ing in a« due to the fact thaftclrj, <clri, so is
equation (9). The upper bound equation (9) does not

depend on the management protocol and indicates

that for every value o& e [0,1] both requirements,
clr (o) =clr{ and clry(a) = clryy < clrf are met. We
will now show that the equality sign in equation (9)
does not hold for albk emphasizing that equation (9)
forms an unattainable upper bound.

From the definition of the priority mixx and the
fact thatp, =\,, the following inequality arises

An(a) < An(1) - pa(1)

pa(a) = (10)
becausei,(a) is increasing ina. Notice that a
similar  condition for low priority cells
pala) =pa(0)/(1-a) is always fulfiled by
equation (9) since the left-hand side is decreasing
in a whereas the right-hand side increasesain
The inequality in equation (10) poses a lower upper
bound than equation (9) for am-region neara =1,
which can be achieved by one priority management
protocol as shown below. Invoking the characteristic
property of a deterministic server (equation (1)) we
can write

P (1~ pu(a)

(11)

The priority management algorithm that maximizes
equation (11) fora close to 1, will minimize the
number of served low priority cells. The extreme,
of course, is a zero service for the low priority cells
w =0 as almost realized in a head of the line
preemptive push-out discipline (HOL POB)nd
precisely met by a PBS scheme with thresh®ld O.

pr(a) pr(a) -

pa(a) = o

tIn a HOL POB, the high priorities are not influenced by the

PIET VAN MIEGHEM, BART STEYAERT AND GUIDO H. PETIT

In conclusion, the maximum allowable dgad
is bounded for lowa by equation (9) and for high
o by equation (10). The upper bounds in
equations (10) and (9) coincide at=1, but have

opposite curvatures fot. In addition around
o =1 the bound in equation (10) is smaller than in

equation (9). Hence, there must exist a certain value
a,0fx,, Where both upper bounds intersect. A
system that closely attains these upper bounds as a
HOL POB possesses a maximum allowable load
pma{@) that is not differentiable with respect ®
at.

Since the cell loss decreases with increasing
buffer size K both extremespma(0) and pmad1)
will tend to each other for sufficiently largk. As
a consequence, the critical point, will tend to
unity for large K. This demonstrates that a priority
management is almost useless for CAC when large
buffers can be utilized (e.g. when time delay con-
straints are unimportant). Hence, when two cell loss
ratio requirements are specified, the role of loss
priorities in ATM is questionable for large buffers
since the complexity of the control mechanism with
priorities is hardly compensated by the gain in per-
formance.

4. POISSON ARRIVALS

This section compares two standard priority
schemes, the POB and PBS for Poisson arrivals.
The emphasis lies on a newly introduced model, the
RPOB, that is further studied under bursty arrival
processes in the next section.

4.1. Partial buffer sharing

The maximum allowable load for PBS is strongly
dependent on the threshold= K. We have com-
puted the threshold,,, that maximizes the aggregate
load using the discrete-time version of the model of
Kroner et al® The effect of the threshold on the
performance is illustrated in Figure 2. For small
values ofT the low priority cell loss ratio require-

presence of the low ones because they are always served priorment clrj is dominating and the opposite is seen

to any low priority cell. Hence, a low priority cell is only served
if there are no high priorities in the buffer at a time slot. The
cell loss ratio for the high priority cells is given by the same
G/D/1/K expression that describes the aggregate. We have

clru(e) = fi(apa(a)) (12)

fc(pa(@)) — a f(apa(a))
1-«

clri(a) = (13)

Knowing thatfk(x) is increasing withx, we readily establish that

a HOL POB almost attains both discussed upper bounds in
equations (9) and (10) providedry, is sufficiently smaller than
clr;. Otherwise, puttingw, =0 can violate the low priority cell
loss requirement. A simple numerical example illustrates this
situation for clr; =10, clrj,=10° and a buffer sizeK =10.
When the aggregate arrivals process is Poisson Witk 0.4755
and «=0.99, we have for the M/D/1/K queue that
clr,(0.99)=clr,=1.0816 10°. The RPOB give<lr,(0.99)=1.0
10°® and cIr (0.99)=9.02 10° whereas the HOL POB
(equations (12,13))  offers c¢Ir,(0.99)=9.30 10”7 and

clr (0.99)=1.61 10°. Hence, the RPOB meets the requirements
whereas the ‘normally superior’ HOL POB fails to obey them.

Int. J. Commun. Syst10, 161-180 (1997)

for high values ofT. The intermediate values clearly
introduce two « regions similar to those of the
POB. The desired maximum allowable load is the
maximum envelope of all these curves and is a
concatenation of regions alternately dominated by
the high and low priority cell loss requirement. The
normalized optimal thresholdl,,/K versus a is
shown in Figure 3 for variouK values. Together
with Figure 2, the plot illustrates that, due to the
integer character of, analytic optimization is hardly
feasible for small values d. The longer the buffer
size K, the more integer values of there are
available, resulting in a smoother maximum allow-
able curve. Figure 4 plots the maximum allowable
load pa{a) versusa for large values oK and the
minimum of the upper bounds in equations (10) and
(9). This graph clearly demonstrates how closely

01997 by John Wiley & Sons, Ltd.
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PBS (with optimized threshold) approaches the best

possible performance for large, but also that it
fails to treat the low priorities in an optimal way.

4.2. The puskout buffer

For small o, the aggregate cell loss ratio will be
mainly determined bylr, (a) since there are hardly
any high priority cells. Moreover, since generally
clriy<clrf, we have from equation (4) that
clr () = cIr{ (1 - «). Invoking equation (9) we con-
clude that the maximal allowable load is dominated
by the cIrj requirement. In this region, the cell loss
ratio requirement for the low priority cell is precisely
met (CIr () =clry), whereas for the high priority
cells clry(a) <clry. Increasinga or the average
number of high priority cells causeslr,(a) to

[J 1997 by John Wiley & Sons, Ltd.

increase alnt{l) =clr{,. At this point, denoted
asa,, both cell loss ratio requirements are precisely

met (and this point is unique as follows by a
continuity argument).

The situation is more complex for high values of
a. For sufficiently higha, pma{a) follows from
equation (11). The problem is how to determine the

service rage(a) for the low priority cells. For
values of a just exceedingw,, the load will be

limited by the high priority requirement such that
clry(a) =clry;, whereas clr (a) <clrj. However,
sidlcg < clry, we find thatclr, («) still dominates
the aggregate cell loss ratidr,(a). When a > «,

the loss in low priority cells will be substantial due
to the push-out mechanism leading to
clr (o) = clrpo(a). The calculation of the push-
out probability is exceedingly complicated, and we

Int. J. Commun. Syst10, 161-180 (1997)
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Figure 4. The maximum allowable load versus the priority mixfor a FIFO POB and an RPOB of siz&k =40 for the cell loss
requirementsclry = 10 and clri; =107. We have also drawn both the upper bounds of equations (9) and (10)

believe it is only possible through solving the tran-
sition probability matrix.

We have investigated two types of POB: a con-
ventional FIFO POB (as studied by Krer et al
in continuous tim& and a RPOB. The delimiter
refers to the service discipline as well as to the

4B0B versus PBS

In Figures5 and 6, we preseph.a{a) for the
RPOB and PBS with optimized thresholdl We
show two sets of cell loss ratiosl(;, clryy): (1074,
107), (104, 10'°) as suitable representative priority

push-out strategy. Clearly, the RPOB does not obey ¢lasses in ATM. For small buffer sizek, POB is

the sequence integrity. However, as argued above,SUPerior over the whole priority mix region. How-
since the cell loss ratio only weakly depends on the €Ver, in caseK is large, PBS can be controlled
sequence order, the maximum allowable load of the closer to the upper bounds in equations (9) and (10)
RPOB is expected to approach that of the FIFO POB than a POB, and we observe that PBS can guarantee
closely, provided the cell loss ratio requirements are @ Slightly higher load for the high priorities in an

sufficiently stringent ¢lr* < 0-1). Indeed, for both
POB types and for Poisson arrivalthe comparison
in the maximum allowable loag,,.(a) versusa
shows, as illustrated in Figure 4 that both priority
management systems exhibit very similar perform-
ances forpmax

The main reason for introducing the RPOB is the
drastic simplification of computation. For a RPOB,
the computation of the occupancy probability density
function in a buffer of sizeK requires solving a set
of K(K+1)/2 linear equations (see Appendix B.2),
whereas for the FIFO POB, the effort consists of
solving a set of 2 linear equations. The reason
for the difference lies in the sequence integrity. For
the FIFO POB in contrast to the RPOB, we have
to keep track of the order in which both types of
priority cells are queued. This number of possible
configurations in the buffer is equivalent to the
highest binary number we can form witK +1
digits (K for the buffer and one for the server),
hence, 8.

T Also for MMP(N) arrivals, we found via simulations that the
agreement is very good.

Int. J. Commun. Syst10, 161-180 (1997)

a-region close to unity. This fact was also observed
by Chang and Taf. However, once the priority
mix o < oy, the POB approaches the upper bound
in equation (9) and is undoubtedly the better strat-
egy. As an overall conclusion, the POB offers a
better treatment of low priorities, whereas PBS can
be engineered (by adjusting the threshold to
obtain a higher load for high priorities when> «,.

This analysis shows that a priority strategy com-
bining the benefits of both POB and PBS such as
the threshold push-out proposed by Sefrial.®® can
result in a higher performance for all. However,
the implementation of the latter, more refined pri-
ority schemes is undoubtedly more complex than
that of the conventional POB.

4.4. RPOB fit for pa)

Since p.{a) of a RPOB in the [Qy,] interval
is sufficiently closely approximated by equation (9)
as illustrated in Figure 4, our objective is to find an
estimate in §,1] accurate to within 1 per cent.

Suppose for the moment that the value ogf is
known. We found that the data of the maximum
allowable load determined via a matrix solution of
the RPOB (see Appendix B) is well fitted by

01997 by John Wiley & Sons, Ltd.
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[
(o +p)?

Introducing the additional information
pma{1) = fi(clryy)
pmax(ak) = fﬁl((l - Olk)Clrt + OLkC|I':i|)

pma)(a) = pl + (14)

equation (14) can be specified as

1 1 1
pmal) = {pma*(l) ((a +pP T (act p)2>

1 1
*onede) (1 e ]| 09

0 1997 by John Wiley & Sons, Ltd.

where D=1/(1+p)?>-1/(a+p)> An elegant
approximation forf!(x) in a discrete-timeM/D/1/K
is given in Appendix A.

The proposed fit in equation (15) is a kind of
weighted mean betweemx =« and a=1 with
weight function @+ p)™2. Apart from o, the only
unknown isp for which we found 0-5= p=1. The
result is not very sensitive to variations i (in
contrast toa,) when aiming at an accuracy of 1
per cent. The remainder is therefore devoted to the
study of a.

For a fixed ratiop =clrij/clr{ but variableK, we
observed that logxy,= A/K + B. On the other hand,
for a fixed buffer sizeK, we found that logay is
linear in log B for both the high and low asymptotic

Int. J. Commun. Systl0, 161-180 (1997)
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values. In practical applicationg is often smaller of the others. Figure 8 plots the maximum allowable
than 10° and the low asymptotic regime is adequate \ for both cases.
to use. After rather extensive fitting this regime can In the case of random priority assignment, the
be properly modelled as result shown in Figure 8 demonstrates that introduc-
= = % ing ‘uncorrelated burstiness’ makgs,.,=B\ less
~ 10" ()™ B (16)
Ok L dependent orx for burst lengthsB small compared

to the buffer sizeK, a conclusion previously drawn

Figure 7 compares the quality of the fit procedure by Garcia and Casa®s.When the burst lengttB
described above with the FIFO P©Bnd the RPOB. approachesK, the dependence ofp,. ON «

This plot exhibits that approximately a 1 per cent increases slightly.

accuracy is achieved. In the case of the same priority assignment in a

burst, the performance is, as expected, always lower

5 INTRODUCING BURSTINESS IN THE than in the random priority assignment case. Actu-
ARRIVAL PROCESS ally, we found that the performance.(,) in the

RPOB of sizeK with a compound Poisson arrival
So far, a Poisson arrival law has been considered.with parametern and burst sizeB (same priority
Since ATM traffic is very likely to be bursty, assignment in a burst), is precisely the same as the
inclusion of this characteristic is in order. First, we performance in a RPOB of siz&/B, when this
will confine ourselves to a compound Poisson arrival fraction is an integer.
process, described on a slot-per-slot basis by the
generating functione™(*"8@) where the generating _
function B(z) specifies the distribution of the number 5-2- Markov modulated Poisson process

of cells within a (Poissonean) burst. Then the per- e refer to Appendix B for the detailed derivation
formance of the RPOB and PBS is investigated for of the RPOB with MMPQ) arrivals in discrete-

arrivals generated by a Markov modulated processtime. The MMPP-PBS has been computed by

with N states (MMPR)). extending the results of Krer et al3
A possible way to relate the characteristics of
5.1. Compound Poisson process the actual arrival process to the set of parameters

describing arN-state MMP, is to consider the arrival
As an example, we tak8(z) =z° meaning that  process as a succession of ON and OFF slots.
each burst consists precisely Bfcells and the bursts During an OFF slot, no cells are generated, whereas
arrive according to a Poisson law with parameer  qyring an ON slot, the number of cell arrivals in
hence the load (traffic intensity) equaleB. We each ON-state is assumed to be Poisson distributed,
have compared, only for the RPOB, two extreme yjth mean\. Let o denote the probability that an
cases of priority distribution within a burst. In the arbitrary slot is an ON slot.
first case, all cells in a burst have precisely the |y the caseN =1, the cell arrival process is i.i.d.
same priority and the probability to have a high and can be described on a slot-per-slot basis by the

priority burst is . In the second case, the cells probability generating function (PGF)
within a burst have high priority with probability

a, and each cell is assigned a priority independent A@=1-o+odt® )
T T ! I l |
0.92 |
T 0.90 |
3
(o)
=
g 0.88 |
2
<
< _
é 0.86
I ——R POB (exact)
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o

Figure 7. Comparison of the maximum allowable loggl,, versus the priority mixa computed via different methods: the FIFO POB
by Kroner et al.? the RPOB and our proposed fit in equation (15) or (53)
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Defining an ON (OFF) period as a consecutive
number of ON slots, then each ON period is fol-
lowed by an OFF period (and vice versa), and the
length of the respective ON and OFF periods
expressed in units of time slots is geometrically
distributed with parameter and mean X, respect-
ively parameter * o and mean 1/(* o). For fixed
values of the overall loadr\, low values of o
means that all cell arrivals are grouped into a rela-
tively small number of slots, whereas values ®f
close to 1 imply that the cell arrivals are spread
over virtually all slots. Numerical examples
(Figures 9 and 10) illustrate the strong impactoof
on the admissible aggregate load.

In a two-state model (Figure 11) with modulator

a 1- oc)
1-B B
and Poisson arrival rate$(2) =diag{\, 0} (defined
in Appendix B), the length of the ON periods is
geometrically distributed with parameterand mean
1/(1-«), whereas the length of the OFF periods is
geometrically distributed with parametgrand mean
1/(1-B). Hence, whemx =1 - B = ¢, the two-state
model reduces to the previous casé¢=1) of i.i.d.

arrivals. The probability that an arbitrary slot is an
ON slot is given by

P(2) = (

__1-8B
T2-a-B

o (18)
Notice that the steady state vecterof the modu-
lator P(2) equalsm, =¢ andm,=1-0. We further
define k as the ratio of the mean length of an ON
(OFF) period to the mean length of an ON (OFF)
period in the case of i.i.d. arrivals,

>

l-0_ o
1-a 1-PB

K

(19)

[J 1997 by John Wiley & Sons, Ltd.

The parametewrs&t, () can now be used instead
of (o, B, \) to characterize the two-state MMPP.

Large valuedraficate that on average successive
ON and OFF periods are long compared to the i.i.d.

cadbe=(). Therefore,x can be regarded as a
measure for the burstiness in the arrival pattern.

In the three-state MMPP (Figure 12) with modu-
lator

o 0 1- o
PE)=| o o, 1-a,
q1-B) Q1-a)(1-B) B

and Poisson arrivals rates(3) = diag{\, \, 0}, we
confine ourselves to a model with two types of
ON periods, represented by ON1 and ON2, both
geometrically distributed, with parameter and as,
respectively. As before, the length of the OFF per-
iods is geometrically distributed with parameter
Each OFF period is followed either by an ON1
period, with probabilityg, or by an ON2 period,
with probability 1-qg. The overall distribution of
the length of an ON period is a weighted sum
of two geometric distributions which allows us to
investigate the impact of the variance in the distri-
bution of the length of an ON period on the admiss-
ible load. To that extent, we define as the ratio
of the variance of the length of an ON period in
this model to the variance of the length of an ON
period in the previous casd =2,

A (1-0) B 1

C(k+1l-0)k [q(l q)(l—al 1—a2>
oy (1-0)a,

fa-ar - az)Z] (20)

where
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Figure 9. The maximum allowable loag,., in the RPOB versus the priority mix. The arrival process is generated by a MMPP(2)
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q 1-¢q -1_9
l—a1+1—a2 =t K (22)
o= (21)
1, g ,1-g
1—B 1_0Ll 1_(12 1 = 1
L l-a; 1-0
_a q -q 1-
= G)[l—a1+1—0l2] (22) [“\/zqq(R_l)K(“G_l)
(24)

Alternatively, the parameter sef{, oo, B, A) can
be expressed in terms ofr( k, R, \) as
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1 1

:1—0'
- -9 (r- k(k + o —
|:K \/2(1_q) (R-1)k(k + 1)

1-a,

(25)

For fixed values ofr, k and g, the variance of the
ON periods and, hencR, is bounded by

[J 1997 by John Wiley & Sons, Ltd.

l1-gk+o-1

R-1<2~— 26
q (26)

K

By choosing a value off which is sufficiently small,
equation (26) indicates that any value & can
be realized.
Figures 9 and 10 show the behaviour @f,, for
RPOB versusa for various combinations of the
parametess k and R for a relatively small buffer
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Figure 11. The Markov chain foN =2

Figure 12. The Markov chain foN =3

K =10. As the shape is similar to that with pure
Poisson arrivals, the results may hint that a
MMPP(N) with Bernoulli distribution with para-

meter « for the priorities can be replaced by a
corresponding Poisson process, however, with a
adjusted parametex. In addition, the scaling rules

in K proposed in Section 4.4 seem applicable. For

the three-state model, the performance of PBS is

also shown (Figure 10) clearly demonstrating a still
higher superiority of RPOB as burstiness is involved.

5.3. Conclusions on priorities and burstiness in
the RPOB

Our study found that the shape of the performance
curve of the RPOB was less sensitive to the bursty

PIET VAN MIEGHEM, BART STEYAERT AND GUIDO H. PETIT

Furthermore, this paper has focussed on the
maximum allowable loach.x for RPOB and PBS
versus the priority mixa for a wide variety of
arrival processes. The priority distribution within
bursts and the details of the aggregate arrival process
are decisive quantities for the performance. The
latter strongly influences (lowers) the value ©f..
for a certaina, but hardly the shape af,,.. versus
«. The priority assignment within the aggregate cell
flow is found to change the form of thg,., versus
the a-curve.

In Section 3.2, it was shown that for large buffer
sizes, CLPM schemes become useless. Hence,
CLPM techniques are typically attractive for real-
time services that require short buffers
(approximately 100 cells). Currently, data services,
fuelled by the Internet, are growing very fast,
demanding large buffers of several 10,000 cells.
Buffer engineering efforts are now concentrating
more on intelligent packet discard strategies (tall

npa(:ket or early packet discard) rather than CLPM

techniqgues and on non-FIFO cell scheduling
technique® -1 in order to guarantee end-to-end cell
delay variation bounds and throughput fairness.
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character of the aggregate arrival process than to the APPENDIX A. APPROXIMATE EXPRESSION

priority distribution process. The compound Poisson
arrival process with each arrival consisting of a
packet of B cells with random priority assignment
in a burst has a definitely different behaviour than
that of a Poisson or MMRY) process. For Markov
chains with a larger number of statbis> 3 or with

a cell emission process different from Poisson (e.g.
statei always emits exactha, cells), we found an
analogous behaviour as in the MMPP(2) or
MMPP(3). The results seem to indicate that for
increasing burstiness or correlation in the priority
distribution (as in the compound Poisson process),
the optimal performance is less influenced by pri-
ority information (a flatter behaviour gf..« versus

FOR clra(p)

The importance of equation (9) suggests a closer
study of the cell loss ratio in #M/D/1/K system

in order to find an analytic approximation for the
inversefil. We propose a simple approximation for
clra(p) and the inversdir. A 1 per cent accuracy
is obtained for traffic intensities exceeding
0-85<p < 1. The detailed derivation is presented
elsewher®&. The approximative expression for the
aggregate cell loss ratio reads

clra(p) = (1 -p) p* (27)
Our approximate equation (27) is always a lower

«). On the other hand, as expected, the value of Pound. Equation (27) is particularly well suited to

pmax fOr a given value ofx is very sensitive to the

details (e.g. burstiness) of the aggregate arrival pro-

give fast estimates of the required number of buffer
positions K given p>08 and clr, as

cess and a Poisson arrival law leads to the best perK = [(log(clrs) —log(1-p))/2 log p] where []

formance.

6. CONCLUSIONS

The optimality of cell loss priority strategies for a
single buffer under a general arrival law has been
studied. The tight upper bounds found are useful to
understand optimality in utilization of specific pri-
ority schemes, as illustrated for Poisson arrivals in
the case of the POB and PBS.

Int. J. Commun. Syst10, 161-180 (1997)

denotes the integral part of The inverse function
X(w) for equation (27) isfit(w) =lim, ... f.(w)
where

W2K
W) =———
[1 = s (W)X
fy(w) = wex (28)

This continued fraction converges rapidly.
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APPENDIX B. STATE EQUATIONS FOR THE RPOB

B.1. The Markov modulated process

A Markov modulated process witN states (MMPRN)) is characterized by the transition probability matrix
Puwxn @and the emission process in each state. dledenote the stochastic variable describing the number of
cells emitted in staté. The random variabléf[Kk] denotes the state at discrete titkend the corresponding
state vectorg[ k] =[s,[k] s[k] --- s\[K]] at discrete timek obeys

gk+1]=9K]. P (29)
wheregk].e" = 3¥; 1s[k] =1 withe=[11... 1] and, henc&l, P; =1 for all i. Written explicitly, we have
Upin Pz Pz - Puna 1 St py O

Dp21 P22 P2z - Pan-z 21'111 Py D
P32 P33 - Pan-1 1_2}1_11 Ps; 0 (30)

B)N—l;l Pn-1:2 Pn-13 -+ Prean-a 1 EJN_ll Prn-1j D
UPn: Prnz Pnz oo Pagnet Ele Png O

The transition probability matri® is composed witH\? - N probabilitiesp; = Prob[f[k + 1] = j|¥[K] = ].
The general solution of equation (29) is

skl =50]. P (31)
The steady state vectar =lim,_... k] follows from
m=m.P (32)

with m.e"=1. Since the steady state vector does not depend on the initial $titeit follows from
equation (31) that the rows ok=lim,_.P* should all be the same so that=[a;; a;, ... a;3], because
m =2N, s[0]a; = a; N, s[0] = a;. Hence, lim_.P<=€e".w. On the other hand, equation (32) is an
eigenvalue equation with eigenvalue=1. Except for the trivial case where is the identity matrixl, the
solution of 7 is obtained from

O, O O
Ebll_ 1 pa Pz1 - Prn-1;1 Pz O '
D Pz P2-1 p32 o Pn-12 P2 D Dﬂz H [ED
0 p.13 p.gs p33 pN 1:3 pr:\la 1'53 O= DO 0 (33)
DplNl P2:n-1 p3N1' leNl leNlDDanﬂ B)D
n 1 1
Oomn O MO
The steady state emitting process leads to a lvad
N
)\:’IT.A.eTzE)\ini (34)

i=1
where \, =E[4|¥ =i] = E[s4;] and A = diag{E[s4,], E{s4,], ..., E[s4\]}. The distribution of the random
variable 4, is characterized by the set of generating functions, fors(1 = N),
A Sﬂ . = . -
A2 = E[zW\ =] = 2 a() 2 (35)
j=0
The number of high priority cells arriving during slétis denoted bysd,,,. Since each arriving cell has a
high priority with probability «, we have
- A . -
Yi(j) = Probfdi = j|sdi =]
= (J') (1 - o) (36)
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B.2. The RPOB

We define Q and #, as the total number of buffer positions occupied and the number of high priority
cells, respectively, evaluated at the beginning of time kldthese random variables can never exckedl.
The random service discipline, i.e. the random selection of a cell in the queue at each time slot, considerably
lowers the state space dimension. The state space can be described by three random vagidflean®
¥\ that constitute a Markov process. We define two additional random variahleend I, as the number
of cells and the number of high priority cells, respectively, that leave the buffer at the end of time slot
Both %, and 7, are either zero or one. The deterministic server discipline means that

ProbfR, = 1|Q, + #,=n] =1 - 3(n) (37)

where d8(n) =1 if n=0 and zero elsewhere. Due to the random service order, each cell in the buffer has
equal probability to be served. Hence,

Prob[7, = 1|Qu + sl = n, ¥, + iy = M|

min(n, K)
— {min(m k) " =0 (38)
0 n=0

The evolution in time of the number of cell in the buffer is governed by two system equations
Qk+1 = min [Qk + &Qk, K] - %k (39)
%k+l = min [%k + &QKH! K] - gk (40)

Equation (40) indicates that high priority cells will be accepted by possibly pushing low priority cells as
long as ¥, + Ay = K. Whenever# + Ay > K, high priority cells are lost. We concentrate on the steady
state and define

g(n, m, 1) =1lim Prob[Q.; =n/\ Hy =mANA L.y =1] (41)
k—o0

The state equations are determined as follows. For the empty state, we have,

q(0, 0,1) = > pua(0)[q(, 0,t) + q(1, 1,1)]

t=1

+ [a(0) +a(1)]a(0, 0,1) (43)

This equation is the same for a conventional POB. Furthermore, as long as the occupied buffer space is less
than K-1, all arriving cells are accepted. Hence, from the system equations we derive the transition
probabilities satisfying, for 6 n < K -1,

Prob[Que1 = N, #Hpr = M, Py =11Q =i, #Hy =, Fi =1]
=Prob[dyy = T =m=j|Qc=1i, =], de=n+1-ila(n+1-i)
= Prob[T, = 1|Qc + sy = n+ 1, Hy + Ayy = M+ 1]ypep(m+1-j)
+ Probf = 0|Qu + A =n+ 1, H + Ayy = m|
Yes-i(M = J)]a(n + 1 -1i)

defining &)™ =max(, 0), we thus find the following state equations

mnmn=im2 >

n+l rmin(i, m+1) +1 +1-i . X .
[ m (n | )aml_J(l _ 0L)nﬂ—m—lq(i’ j, t)

: n+1\m+1-]j
=1 i=0 " jz(men+i)*
min(i, m) .
n-m+1/n+1-i . . .
E - - m=j — nH+1-m=i~(i b 1
' i=(m—n+i—1)+ n+1 ( m-j )0‘ (1) 0.5 y)xaln+1-1y (44)

The push-out mechanism is only active if the buffer is entirely filled. Since we describe the process at the
beginning of a new time slot while the server just acts at the end of a timekslae only have a full

Int. J. Commun. Syst10, 161-180 (1997) 01997 by John Wiley & Sons, Ltd.
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buffer if Q.1 =K -1. In this case, low priority cells may occur, whereas high priority cells are only lost if

#w1 =K —1. Therefore, as before, the state equations for the transifidghis 1, m, 1) and 0O=m <K -1 are

o K-1 |: min(i, n+1)

N 1 i ) ) )
ak-1mn=3p33 |3 M N7 e armea

- , A m+ 1-—j
t=1 n=Ki=0 “j=(m-n+i+1)
min(i, m) K-m n—i ‘ ' |
+ 2 T (m—]) ami (1—(x)n+1—m—|q(i,j, t):| X a(n—i, t) (45)
j=(m-n+i, 0)

Finally, the last block row, describing those situations where high priority cells are lost, is given by

o n K-1 i

aqK-1L,K-1,1)=Dp> > > > +<rr:]—_|1) a™i(1 - o)™ ™ q(i, j, a(n — i, t) (46)

t=1 n=K m=K i=0 j=(m—n+i)
The normalization conditions yields the final equation,

K-

> 2 2anmt) =1 (47)

t=1 n=0 nm~0

[N

and reveals that we have a total ®F NK(K+1)/2 states. Equations (43), (44), (45) and (46) are sufficient
to determine the steady-state probabilitags, m, I).

The cell loss ratios have been computed from the mean number of cells rejected due to buffer overflow.
This leads to

N K-1 n ]

clra(o) = E[lgg] S m 1y > (k+n-K)a(k) (48)
1 N K-1 n cS] k
Clr(@) = gy 22 2anm D X ak) X (mt- Ky (49)

Losses only occur if two or more cells arrive, because at the beginning of a slot time, pds&iiiorthe
buffer is always free. Both the cell loss ratio of the high priorities and the aggregate cell loss has been
determined in this way. The cell loss ratio of the low priorities is found using= 1%, (clra(a) — aclry(a)).

B.3. The compound Poisson process

We merely give the state equations for the case where all cells in a burst have the same priority. The
derivation for the case where the priority of cells is randomly distributed with probabkilifgpllows from
the previous section whernd =1 anda,(k) =e™ AKBI/[k/B]!

Assuming thatB > 1 and defining

g(n, m) = lim Prob[Q..; =n /A %,,, =m|
k—so0

(50)
a(j) = Prob[d =j] = e™ J)\: (51)

X@ = [;] +1 (; : not integea

X X .
= [B} (B : mteger)
=0 (x<0) (52)
we have

q(0, 0)=a(0)[q(0, 0) +q(1, 0) +q(1, 1)] (53)

and for 0<n< K -1,

[J 1997 by John Wiley & Sons, Ltd. Int. J. Commun. Syst10, 161-180 (1997)
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q(n,m):Z[ > n+11(?)ocj(l—oc)“jq(n+1—Bi,m+1—Bj)

=0 "j=(@i-n+m)@

+

&) .
S P wa -+ 1- 81 m- 8 e (54)
j=(Bi—n+m—1)@

whereas forn=K -1 and 0=m<K -1,

ST U R
K -1,m=> > [ >

N=Ki=(n-k+1)@ “j=(Bi-n+m+1)@

(})aj(l - a)7g(n - Bi, m+ 1- Bj)

C1E)
oy K . m (J') oi(1 - «)ig(n - Bi, m- Bj)]a(i) (55)
i=(Bi—n+m)@

The last equation fog(K -1, K-1) is replaced by the normalization condition. The relations for the cell
loss ratio are

K-1 n I
ABcly=>>qnm > (Bj+n-K)a() (56)
n=0m=0 j=(K—n)@
K-1 n ©
arBclry= > > g(n,m) > (Bj+m-K) a,(j) (57)
n=0m=0 i=(K-m) @

where a,(j) =e™* (a\) jl. These relations can be simplified when we introdaggém) as the occupancy
probability that there are precisemn high priority cells and similarlyg,(m) as the occupancy probability
for an aggregate of precisen cells. Clearly, we have

qu(m) = > q(n, m) (58)
au(m) = >, q(n, m) (59)

We can immediately substitute equation (59) in (56) whereas the same holds for equation (58) in (57) after
reversing then and m summations. The result is

K-1 o
ABclra= D da(n) >, (B +n-K)a() (60)
n=0 i=(k-n)®
K-1 o0
aABclry = 2gu(n) X (B +n-K) au(j) (61)
n=0 j:(K—n)@
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