
INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, VOL. 10, 161–180 (1997)

PERFORMANCE OF CELL LOSS PRIORITY
MANAGEMENT SCHEMES IN A SINGLE SERVER QUEUE

piet van mieghem1*, bart steyaert2 and guido h. petit1

1Alcatel Telecom Research Division, Francis Wellesplein 1, B-2018 Antwerpen, Belgium
2Laboratory for Communications Engineering, University of Gent, Sint-Pietersnieuwstraat 41, B-9000 Gent,

Belgium

SUMMARY

The throughput optimality of priority management strategies in a single buffer has been studied for a
general aggregate arrival law. The tight upper bounds found are useful to understand optimality in the
utilization of specific priority schemes such as push-out buffer (POB) and partial buffer sharing (PBS).
This paper further focuses on the maximum allowable loadrmax versus the priority mixa for a PBS
and a random push-out buffer (RPOB) of sizeK for a wide variety of arrival processes. The role of
priorities in a special type of bursty arrivals, the compound Poisson process with constant burst length
and random priority assignment within the burst is found to be less pronounced than that of ‘pure’
Poisson arrivals. On the other hand, the results for ON–OFF cell arrivals modelled by a MMPP(2),
MMPP(3), and higher order Markov modulated processes (MMP) closely follow the behaviour of the
maximum allowable load in the RPOB with Poisson arrivals, however, scaled to lower loads. The
results indicate that the priority mix distribution within the aggregate arrival flow influences the shape
of rmax(a)-curve more than the aggregate arrival distribution itself. 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION References 3 and 10) succeed in determining or
proposing a concrete CAC algorithm that is optimal

This work focuses on connection admission control
given a certain priority scheme. Hardly any paper

(CAC)1, 2 of a single buffer with a two-type (high
discusses the trade-off between the gain in perform-

and low) priority management.3 The quantity of
ance and the increase in complexity by introducing

interest for CAC is the maximum allowable load
a priority scheme. Open issues in CAC providing a

that a system can bear while still offering the
certain QOS are discussed in a broader scope by

requested quality of services (QOS). The QOS mea-
Kurose20, however, omitting the priority problem.

sure considered here is the cell loss ratio. Specifi-
The latter topic is given a closer look in this paper.

cally, subject to the required cell loss ratios for both
Among cell loss priority management (CLPM)

priorities, clrp
L and clrp

H, we determine the maximum
methods3, 8, 10, the push-out buffer (POB) and the

allowable traffic intensityrmax as a function of the
partial buffer sharing (PBS)21 are most well-known.

priority mix a and the buffer sizeK, where a
Although these priority schemes have been studieddenotes the probability that an arriving cell has
in the literature3, the optimality of a priority scheme

high priority.
for various queue sizes and cell loss ratio require-

The literature abounds in suggestions to tackle the
ments has not been discussed in detail. In a POB,

CAC problem in asynchrous transfer mode (ATM)
the push-out mechanism acts only if the buffer is

switches. A smaller number of articles concentrates
completely filled and a high priority cell arrives. If

on a priority management. Most among those discuss
there are low priority cells in the buffer, the arriving

a particular priority scheme and then proceed to
high priority cell pushes the low priority cell near-

evaluate the performance of the priority algorithm
est† to the server out, all cells behind the pushed-

in a single buffer3–13 or in a shared buffer,14–18 for
out low priority cell ripple through over one position

which we further refer to our work.19 Generally one
towards the server, and the arriving high priority

finds that the introduction of priorities enhances the
cell takes place at the tail of the queue in order to

number of customers that can be served adequately
preserve cell sequence integrity. A PBS mechanismat the expense of an increased complexity of the
is somewhat simpler: if the buffer occupancy is

control algorithm. However, relatively few (e.g.
below a thresholdT, both low and high priority

* Correspondence to: Piet van Mieghem, Alcatel Telecom
Research Division, Francis Wellesplein 1, B-2018 Antwerpen, † This push-out discipline is first-in/first-out (FIFO). Other alter-

natives are discussed in Section 2.Belgium.
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162 piet van mieghem, bart steyaert and guido h. petit

cells are allowed to enter, otherwise only high pri- They have computed the loss probability per class
where each class is modelled as a two-state MMPP.ority cells are accepted until complete buffer occu-

Recently, Chang and Tan34 have performed apation.
comparison between a push-out and partial bufferRecently, Cidonet al.22 have investigated optimal
sharing scheme with bursty (a three-state discrete-buffer sharing. They considered a shared buffer with
time Markov chain) arrivals. They have investigatedN independent, incoming links each carrying Poisson
the performance of both types as a function oftraffic with loadli. The priority mechanism operates
burstiness, buffer size and buffer sharing threshold.on the link indexi. Using continuous-time Markov
It was concluded that partial buffer sharing can bedecision theory and dynamic programming23, they
made superior to push-out for high priority trafficfound that the optimal scheme that maximizes the
at the expense of a dramatic increase in loss forthroughput is the threshold push-out strategy
low priority cells. In agreement with Garcia andexplained below. Their formalism involves cumber-
Casals27, they point out that the cell loss ratio issome notation and actually requires heuristics for
very sensitive to traffic details. For example, whenthe optimality criteria whereas our approach in
fixing the overall traffic load but increasing theSection 3 is particularly transparent and provides
number of sources in each priority class, the cellattainable upper bounds. Using stochastic fluid mod-
loss ratio was found to increase significantly.els, Elwalid and Mitra24 have analysed a two-buffer

The role of more than two priority types forsystem with prioritized queues that is of particular
congestion control was discussed by Bemmeletinterest for the emerging available bit rate (ABR)25,

al.35, Petr et al.36, and Yeganiet al.37 Chao et al.38
26 service in ATM. Briefly and only approximately,

have proposed a new cell discarding strategy: thethe CAC problem for their queueing model was
self-calibrating push-out. Other dynamic prioritytouched upon.
queueing approaches were presented by Renet al.39

Only a few articles present results of priority
and Jun and Cheng40. Suri et al.41 have proposedmanagement involving bursty sources. The published
the threshold push-out and thePow push-out. Theanalyses27–30 are more focussed on the art of
idea of both is similar: the push-out mechanism isobtaining a queueing model with priorities than on
made dependent on the cell loss ratio of both prioritya clear study of the benefits or gain of a priority
classes. In the threshold push-out, a high priorityscheme as a function of traffic parameters (such as
cell can only push out a low priority cell, if the

burstiness, traffic intensity, etc.).
number of low priority cells exceeds thresholdT,

Using a fluid flow model, Garcia and Casals27

otherwise it is discarded. Analogously, a low priority
report substantial statistical gains (over 200 per cent)

cell can push out a high priority cell if the number
obtained with partial buffer sharing operating on of high priority cells is larger thanK − T (whereK
bursty sources. However, their article concludes that is the buffer size). In thePow push-out, the push-
statistical gain is very sensitive to small changes in out mechanism is triggered by a probabilityPow that
the parameters of the total traffic but rather insensi- a high priority cell is allowed to push out a low
tive to changes in the probability mixa. Hou and one and similarly, a low priority cell may push out a
Wong28 present a queueing analysis including delay high priority cell with probability 1− Pow, provided
and loss priorities for mixed continuous-bit-rate that the buffer is full. Clearly, varyingT and Pow,
(CBR) and bursty traffic. Using a threshold type respectively, provides mechanisms for adjusting the
of priority mechanism, they demonstrate that their cell loss ratios of the two classes. Their analysis
recursive model is efficient and flexible, but no (considering Poisson arrivals) has compared these
details of the benefit of the priority mechanism on push-out variants with partial buffer sharing and
bursty sources are mentioned. Mitrou and Penda- shows that the push-out schemes could support a
rakis30 also touch on the priority problem and significantly higher maximum load subjected to a
present a rather approximate model and an analysisspecific set of cell loss ratio requirements.
based on a two-dimensional Markov chain. Unfortu- Combinations of several QOS metrics are pro-
nately, no clear conclusions regarding the effect of posed by Jeonet al.42 and by Dailianas and Bovo-
priorities are mentioned. Liao29 also presents a poulos43. Huang and Wu44, 45 propose a combined
queueing analysis of partial buffer sharing with Mar- loss and delay priority mechanism but conclude that
kov modulated Poisson arrivals and briefly points the exact analysis is hardly feasible due to the large
to benefits of priorities. An analytic effective band- dimensionality. Georgiadiset al.46 discuss different
width method for partial buffer sharing under bursty non-preemptive policies for various applications.
arrivals was proposed by Kulkarniet al.31, Saito32 They define a simple analytical model that permits
has modelled a push-out buffer with Markov modu- meaningful comparisons and that also allows the
lated Poisson process (MMPP(N)) arrivals in con- derivation of scheduling policies that are optimal in
tinuous-time. His method relies on that of Kro¨ner terms of delay and loss requirements. The existence
et al.3 in that he concentrates for the description of and characteristics of policies that are jointly delay
push-out on the probability that a low priority cell and buffer optimal are studied.
reaches the server. Fonseca and Silvester33 have The outline is as follows. First, we discuss differ-

ent push-out strategies and server disciplines. Inproposed a multiclass selective discard mechanism.
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163performance of cell loss priority management schemes in a single server queue

Section 3, we investigate the throughput optimality an arbitrary low priority cell is removed; each low
priority cell is equally likely as a candidate to go.of a priority system in a single buffer and derive

two upper bounds. In Section 4, we introduce the Whens= FIFO, the cell on position 1 (thus next
to the server) moves to the server irrespective ofrandom push-out buffer (RPOB) and compare for

Poisson arrivals the performance of partial buffer its priority. As= LIFO strategy serves the last
entered cell first. Fors = R, an arbitrary cell in thesharing to that of the push-out scheme. The main

advantage of introducing the RPOB is that, first, it queue is taken by the server. The probability that
the served cell has high priority equalsnH[k] /n[k]serves as an excellent approximation for the conven-

tional first-in/first-out (FIFO) push out, and second, wherenH[k] and n[k] are the number of high priority
cells and of the aggregate (high plus low) in theit allows us to perform exact calculations of the

maximum allowable load for very general arrival buffer, respectively, at time slotk. A s= HOL (head
of the line) scheme always serves high priority cellslaws. In Section 5, we introduce burstiness in the

arrival pattern for the RPOB: we start with a com- in the queue before any low priority cell.
For ATM applications, only thes= FIFO disci-pound Poisson process and then turn to arrivals

generated by a Markov modulated process withN pline is allowed since all other disciplines violate
the sequence integrity. Here we exclude thestates (MMP(N)). The performance of RPOB and

PBS are compared for an MMP(3). The detailed s= LIFO scheme because it fails to offer any attrac-
tion over the s = FIFO strategy from a stochasticderivation of the state equations for the RPOB with

MMP(N) cell arrivals are found in Appendix B. theoretical point of view.

2.2. The classs= FIFO2. PUSH-OUT STRATEGIES AND SERVER
DISCIPLINES When comparing a FIFO/FIFO POB with a

LIFO/FIFO and R/FIFO POB we can demonstrateIn this section, different push-out strategies and
the following:server disciplines are compared. For PBS, a similar

study is not relevant. The performance measure for Property 1. The best performance in the
the comparison is the cell loss ratio. An additional, s= FIFO class is achieved by ap = FIFO strategy
influencing and underlying factor is revenue optimiz-

I It is sufficient to show that neither a R/FIFOation. Clearly, a high priority service is more profit-
POB nor a LIFO/FIFO POB can serve moreable than a low priority one. The purpose of a
high priority cells on average over time than aCLPM system is just to combine both service categ-
FIFO/FIFO POB obeying theclrp constraints.ories according to their wishes (in terms ofclrp
Operating near the ‘allowable’ constraintsconstraints) to generate as much profit (related to
implies that push-out actions occur relatively‘load’) as possible. Under a push-out scheme
often.operating on a prioritized traffic stream, it is under-

I The difference between the FIFO/FIFO POBstood that high priority cells remove low priority
and the R/FIFO POB might occur wheni outcells from the queue provided the queue is full. In
of L low priority cells are at positions 1 toicase there are no low priority cells available for
and a high priority at positioni + 1 when ipush-out, the arriving high priority cell is lost.
push-out actions take place. In the FIFO/FIFO
POB, thesei low priority cells are certainly

2.1. Definition of the POB types removed and the high priority cell in position
i + 1 is certainly served the next time. In theBefore embarking on the discussion, it is instruc-
R/FIFO POB, one can only say that there is ative to recall the difference betweenp/s POB sys-

tems. The first qualifierp specifies the push-out probability of SL
i D21

that this high priority cell
method, whereas the second defines the service
discipline, which is always deterministic†. For the at positioni + 1 will be served the next time.

Comparing both systems, we observe inpush-out method, we examine the casesp = FIFO,
last-in first-out (LIFO) andR (random) in combi- addition that at the next time slot, probably

fewer low priority cells remain as candidatesnation to s= FIFO and R. We briefly outline the
operation of these types. for a push-out in the R/FIFO POB. Hence,

every time a low priority cell is served whereFor p = FIFO, the low priority cell with lowest
queue position, or equivalently, closest to the server a high priority cell could have been chosen,

this ‘wrong choice’ influences the performanceis pushed out with certainty. Ap = LIFO discipline
operates similarly: the latest entered low priority in both the current and the next time slots

badly.cell is removed with certainty. Forp = R (random)
I The situation forp = LIFO is analogous, and

even worse than forp = R, because the prob-
ability to have low priority cells close to the

† Deterministic means that at the end of a slot,k, there is
server is larger than for thep = R push-outprecisely one cell transferred from the queue to the server,

provided, of course, that the queue is not empty. mechanism.

 1997 by John Wiley & Sons, Ltd. Int. J. Commun. Syst.,10, 161–180 (1997)
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Intuitively, in p = FIFO, the low priority cells are, the number of low priority cells if there are any in
the system. Therefore, if the number of low priorityon average, moved further back in the queue com-

pared to p = LIFO, where they are encouraged to cells at a certain time is the same in both systems,
the number of pushed out cells is equal.take place in front. Thep = R scheme fits somewhere

in between these extremes. Now, serving more low In the timeslotsk where the buffer is full and
high priority cells arrive, at the next timeslotk + 1,priority cells implies, on average, serving fewer

high priority cells, supporting property 1 and the thes = FIFO discipline certainly serves a high pri-
ority cell, and in these timeslotss= FIFO is superiorfollowing corollary.
to the s= R discipline. On the other hand, at time-
slots j where the buffer is not completely filled,Corollary 1. When s = FIFO, the performance

for p = R is better than forp = LIFO the priority mechanism does not interfere. In these
timeslotsj, there are situations wheres= R is neverThis analysis suggests that introducing a random

server discipline (s= R) may boast the performance worse (with certainty) than as= FIFO. For
instance, when, at the end of a slot, there are lowfor p = R in order to achieve a comparable perform-

ance to that of a FIFO/FIFO POB. Although appar- priority cells located in the FIFO/FIFO POB before
high ones, the low ones will be served in the nextently only of academic interest, the R/R POB will

be studied because the computational burden is slot. For thes= R discipline, there is always a
chance that a high priority cell is served. In sum-much less heavy than for FIFO push-out (see

Section 4.2). mary, when averaging over all timeslots, the
presented qualitative discussion illustrates that the
differences between both server disciplines cannot2.3. The classs= R
be substantial.

Another argument is that of the self-regulation ofProperty 2. There is no difference in perform-
ance between the severalp-schemes a CLPM system subject to clr constraints

(clrp
L, clrp

H). Consider two work-conserving POBProof:
strategies, POB1 and POB2, with a service disciplineI The s= R discipline uniformly chooses a cell
equally fair treating low and high priority cells.

from the queue. The type of the cell served
Suppose that POB1 systematically handles low pri-only depends on the number of high and low
ority cells more favourably than POB2. Hence,

priority cells.
POB1 will typically contain fewer high priority cellsI For all p-types, the number of push-out oper-
than POB2. In case a push-out action occurs, POB1

ations in each time slot is precisely the same,
possesses fewer low priority cell candidates with a

and so is the number of high and low priority
consequence thatclrH1 . clrH2. The clr constraints

cells. Hence, there is an equal chance for all
will interfere and generate the relevant feedback

p-schemes that a high priority cell is served,
with respect to the arrival intensity merely resulting

thus their performance is equal.
in a small difference in performance.

On property 2, we will simplify R/RPOB to
RPOB in the sequel.

3. GENERAL RELATIONS

3.1. Definitions2.4. The s= FIFO class versus thes = R class

We will confine ourselves to a comparison By virtue of the slotted nature of ATM, we
concentrate on discrete-time systems where the ser-between the FIFO/FIFO POB and ap/RPOB. Since

the performance of the last class is independent of vers work deterministically. The time unit, also
called a time slot, equals the time needed to servethe push-out schemep, we base the discussion on

the p = R scheme. The performance of the precisely one cell. Ifmi denotes the fraction of
servedi priorities per time slot, we haveFIFO/FIFO POB is very close to that of the R/R

POB as demonstrated below and in Figure 1. At
mA = mH + mL = 1 (1)first glance, this result is surprising because it

implies that the sequence integrity is immaterial for
where the subscripts refer to the aggregate (A), the

our performance standard. However, a closer look
low priority cells (L) and the high priority cells

reveals that the result is in fact quite natural. (H), respectively.
In first order, a push-out action depends on the

If a denotes the probability that an arriving cell
number of low priorities in the buffer and only in

has high probability, the mean number of arrivals
second order to their precise cell position (that, of

per time slot equals
course, depends on the sequence order). Further-
more, the arrivals of high priorities that are respon- lA = lH + lL (2)
sible for a possible push-out action are the same
for both buffer systems because arrivals at timek where lH = alA and lL = (1 − a)lA. Defining the

traffic intensity as usual byr = l/m, we observeare usually independent of the buffer content at that
moment. In both cases, a push-out action diminishes that for a deterministic server, it holds thatlA = rA.

Int. J. Commun. Syst.,10, 161–180 (1997)  1997 by John Wiley & Sons, Ltd.



165performance of cell loss priority management schemes in a single server queue

Figure 1. The effect of the thresholdT on the performance of PBS in a relatively small buffer of sizeK = 15 for the cell loss ratio
couple (10−4, 10−10). For comparison purposes, the performance of the POB is shown as a dotted line

Since the system has a finite capacity ofK queue- wherefK(x) is an increasing, continuous and positive
function of x bounded by 0# fK(x) # 1 and non-ing positions with an additional one for the server,

in general, cell loss will occur. The cell loss ratio increasing inK. A priority mechanism can never
lower the aggregate cell loss, hence, we haveclr is defined as the mean number of cells lost per

time slot over the mean number of cells of that
type which have arrived. Again, the total number clr

`
A # clrA(a) (6)

of lost cells consists of both priorities. From this
and alternatively, for the same aggregate cell lossfact we deduce a useful equation†,

ratio requirementclr
`

A = clrA(a) = clrp
AlA clrA = lL clrL + lH clrH

clrA(a) = (1 − a)clrL(a) + a clrH(a) (4)
rA

`

A $ r(a) (7)
where

3.2. Formal solutionSa =
lH

lA
D

We are now in a position to treat the problem in
more detail: given a priority management protocol,

The last equation explicitly expresses the depen- determine the maximal traffic intensityrA subjected
dence ona. In addition, since we can write the to the user’s cell loss ratio requirements
aggregate cell loss ratio as a weighted mean, (clrp

L, clrp
H) such thatclrL(a) # clrp

L and clrH(a) #
clrA = (lL clrL + lH clrH)/(lL + lH), we immediately clrp

H , clrp
L. The latter inequality means thatclrp

Hfind that clrH(a) # clrA(a) # clrL(a) if we assume should be sufficiently smaller thanclrp
L in order for

that clrH(a) # clrL(a). the priority scheme to have impact. Indeed, when
The cell loss ratio of the aggregate cell stream, clrp

H → clrp
L, and hence,clrp

H → clrp
A, the priority

clrA, in the corresponding system without the priority mechanism is abused since it is forced to be inde-
management is exactly described by the loss prob- pendent of a (see footnote on page 166 for a
ability of that correspondingG/D/1/K system (see numerical example).
e.g. References 26, 47 and 48). Formally, fixing all Since fK(x) is monotonously increasing, the
other traffic descriptors independent of the loadrA, inverse function exists justifying to rewrite
we have

equation (5) asrA

`

A = f−1
K (clr

`

A). Furthermore, the
inverse function g−1(x) of an increasing functionclr

`

A = fK (rA

`
) (5)

g(x) is increasing. Using equation (7), we have
r(a) # f−1

K (clrp
A). Hence, the maximum allowable

load rmax(a) is found whereclrA(a) is maximal.
† An alternative relation of the same nature is Specifically, from equation (4) and the requirements

on the cell loss ratios, we havelA(1 − clrA) = (1 − q[0])mA (3)

where q[0] is the probability that the buffer is empty. clrA(a) # (1 − a)clrp
L + a clrp

H (8)

 1997 by John Wiley & Sons, Ltd. Int. J. Commun. Syst.,10, 161–180 (1997)
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offering an upper bound for the maximal allow- In conclusion, the maximum allowable loadrmax

is bounded for lowa by equation (9) and for highable load
a by equation (10). The upper bounds in

rmax(a) # f−1
K ((1 − a)clrp

L + a clrp
H) (9)

equations (10) and (9) coincide ata = 1, but have
Since the right-hand side of equation (8) is decreas- opposite curvatures fora # 1. In addition around
ing in a due to the fact thatclrp

H , clrp
L, so is a # 1 the bound in equation (10) is smaller than in

equation (9). The upper bound equation (9) does not equation (9). Hence, there must exist a certain value
depend on the management protocol and indicates ofa, ac, where both upper bounds intersect. A
that for every value ofa P [0,1] both requirements, system that closely attains these upper bounds as a
clrL(a) = clrp

L and clrH(a) = clrp
H , clrp

L are met. We HOL POB possesses a maximum allowable load
will now show that the equality sign in equation (9) rmax(a) that is not differentiable with respect toa
does not hold for alla emphasizing that equation (9) atac.
forms an unattainable upper bound. Since the cell loss decreases with increasing

From the definition of the priority mixa and the buffer size K both extremesrmax(0) and rmax(1)
fact that rA = lA, the following inequality arises will tend to each other for sufficiently largeK. As

a consequence, the critical pointac will tend to
unity for large K. This demonstrates that a priorityrA(a) =

lH(a)
a

#
lH(1)

a
=

rA(1)
a

(10)
management is almost useless for CAC when large
buffers can be utilized (e.g. when time delay con-becauselH(a) is increasing in a. Notice that a
straints are unimportant). Hence, when two cell losssimilar condition for low priority cells
ratio requirements are specified, the role of lossrA(a) # rA(0)/(1− a) is always fulfilled by
priorities in ATM is questionable for large buffersequation (9) since the left-hand side is decreasing
since the complexity of the control mechanism within a whereas the right-hand side increases ina.
priorities is hardly compensated by the gain in per-The inequality in equation (10) poses a lower upper
formance.bound than equation (9) for ana-region neara = 1,

which can be achieved by one priority management
protocol as shown below. Invoking the characteristic 4. POISSON ARRIVALS
property of a deterministic server (equation (1)) we

This section compares two standard prioritycan write
schemes, the POB and PBS for Poisson arrivals.
The emphasis lies on a newly introduced model, therA(a) =

rH(a) mH(a)
a

=
rH(a)

a
(1 − mL(a))

RPOB, that is further studied under bursty arrival
(11) processes in the next section.

The priority management algorithm that maximizes
equation (11) fora close to 1, will minimize the 4.1. Partial buffer sharing
number of served low priority cells. The extreme,

The maximum allowable load for PBS is stronglyof course, is a zero service for the low priority cells
dependent on the thresholdT # K. We have com-mL = 0 as almost realized in a head of the line
puted the thresholdTopt that maximizes the aggregatepreemptive push-out discipline (HOL POB)† and
load using the discrete-time version of the model ofprecisely met by a PBS scheme with thresholdT = 0.
Kröner et al.3 The effect of the thresholdT on the
performance is illustrated in Figure 2. For small
values ofT the low priority cell loss ratio require-† In a HOL POB, the high priorities are not influenced by the

presence of the low ones because they are always served priorment clrp
L is dominating and the opposite is seen

to any low priority cell. Hence, a low priority cell is only served for high values ofT. The intermediate values clearly
if there are no high priorities in the buffer at a time slot. The

introduce two a regions similar to those of thecell loss ratio for the high priority cells is given by the same
G/D/1/K expression that describes the aggregate. We have POB. The desired maximum allowable load is the

maximum envelope of all these curves and is a
clrH(a) = fK(arA(a)) (12)

concatenation of regions alternately dominated by
the high and low priority cell loss requirement. TheclrL(a) =

fK(rA(a )) − a fK(arA(a))
1 − a

(13)
normalized optimal thresholdTopt/K versus a is
shown in Figure 3 for variousK values. TogetherKnowing thatfK(x) is increasing withx, we readily establish that

a HOL POB almost attains both discussed upper bounds in with Figure 2, the plot illustrates that, due to the
equations (9) and (10) providedclrp

H is sufficiently smaller than
integer character ofT, analytic optimization is hardlyclrp

L. Otherwise, puttingmL = 0 can violate the low priority cell
loss requirement. A simple numerical example illustrates this feasible for small values ofK. The longer the buffer
situation for clrp

L = 10−5, clrp
H = 10−6 and a buffer sizeK = 10. size K, the more integer values ofT there are

When the aggregate arrivals process is Poisson withlA = 0.4755
available, resulting in a smoother maximum allow-and a = 0.99, we have for the M/D/1/K queue that

clrA(0.99)= clrA = 1.0816 10−6. The RPOB givesclrH(0.99)= 1.0 able curve. Figure 4 plots the maximum allowable
10−6 and clrL(0.99)= 9.02 10−6 whereas the HOL POB load rmax(a) versusa for large values ofK and the
(equations (12,13)) offers clrH(0.99)= 9.30 10−7 and

minimum of the upper bounds in equations (10) andclrL(0.99)= 1.61 10−5. Hence, the RPOB meets the requirements
whereas the ‘normally superior’ HOL POB fails to obey them. (9). This graph clearly demonstrates how closely

Int. J. Commun. Syst.,10, 161–180 (1997)  1997 by John Wiley & Sons, Ltd.



167performance of cell loss priority management schemes in a single server queue

Figure 2. The normalized optimal thresholdTopt/K in PBS for various buffer sizesK but fixed cell loss ratio couple (10−4, 10−10)

Figure 3. The maximum allowable load in PBS with optimized threshold versusa and the minimum of the upper bounds in equations (10)
and (9) for various large buffer sizesK but fixed cell loss ratio couple (10−4, 10−10)

PBS (with optimized threshold) approaches the best increase untilclrH(a) = clrp
H. At this point, denoted

as ak, both cell loss ratio requirements are preciselypossible performance for largea, but also that it
fails to treat the low priorities in an optimal way. met (and this point is unique as follows by a

continuity argument).
The situation is more complex for high values of

4.2. The push-out buffer
a. For sufficiently high a, rmax(a) follows from
equation (11). The problem is how to determine theFor small a, the aggregate cell loss ratio will be

mainly determined byclrL(a) since there are hardly service ratemL(a) for the low priority cells. For
values of a just exceedingak, the load will beany high priority cells. Moreover, since generally

clrp
H ! clrp

L, we have from equation (4) that limited by the high priority requirement such that
clrH(a) = clrp

H whereas clrL(a) , clrp
L. However,clrA(a) < clrp

L(1 − a). Invoking equation (9) we con-
clude that the maximal allowable load is dominated sinceclrp

H ! clrp
L, we find thatclrL(a) still dominates

the aggregate cell loss ratioclrA(a). When a . ak,by the clrp
L requirement. In this region, the cell loss

ratio requirement for the low priority cell is precisely the loss in low priority cells will be substantial due
to the push-out mechanism leading tomet (clrL(a) = clrp

L), whereas for the high priority
cells clrH(a) , clrp

H. Increasing a or the average clrL(a) < clrLpo(a). The calculation of the push-
out probability is exceedingly complicated, and wenumber of high priority cells causesclrH(a) to
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Figure 4. The maximum allowable load versus the priority mixa for a FIFO POB3 and an RPOB of sizeK = 40 for the cell loss
requirementsclrp

L = 10−4 and clrp
H = 10−7. We have also drawn both the upper bounds of equations (9) and (10)

believe it is only possible through solving the tran- 4.3.POB versus PBS
sition probability matrix.

In Figures 5 and 6, we presentrmax(a) for theWe have investigated two types of POB: a con-
RPOB and PBS with optimized thresholdT. Weventional FIFO POB (as studied by Kro¨ner et al.
show two sets of cell loss ratios (clrp

L, clrp
H): (10−4,in continuous time3) and a RPOB. The delimiter

10−7), (10−4, 10−10) as suitable representative priorityrefers to the service discipline as well as to the
classes in ATM. For small buffer sizes,K, POB ispush-out strategy. Clearly, the RPOB does not obey
superior over the whole priority mix region. How-the sequence integrity. However, as argued above,
ever, in caseK is large, PBS can be controlledsince the cell loss ratio only weakly depends on the
closer to the upper bounds in equations (9) and (10)sequence order, the maximum allowable load of the
than a POB, and we observe that PBS can guaranteeRPOB is expected to approach that of the FIFO POB
a slightly higher load for the high priorities in anclosely, provided the cell loss ratio requirements are
a-region close to unity. This fact was also observedsufficiently stringent (clrp , 0·1). Indeed, for both
by Chang and Tan33. However, once the priorityPOB types and for Poisson arrivals† the comparison
mix a # ak, the POB approaches the upper boundin the maximum allowable loadrmax(a) versusa
in equation (9) and is undoubtedly the better strat-shows, as illustrated in Figure 4 that both priority
egy. As an overall conclusion, the POB offers amanagement systems exhibit very similar perform-
better treatment of low priorities, whereas PBS canances forrmax.
be engineered (by adjusting the thresholdT) toThe main reason for introducing the RPOB is the
obtain a higher load for high priorities whena . ak.drastic simplification of computation. For a RPOB,

This analysis shows that a priority strategy com-the computation of the occupancy probability density
bining the benefits of both POB and PBS such asfunction in a buffer of sizeK requires solving a set
the threshold push-out proposed by Suriet al.39 canof K(K + 1)/2 linear equations (see Appendix B.2),
result in a higher performance for alla. However,whereas for the FIFO POB, the effort consists of
the implementation of the latter, more refined pri-solving a set of 2K+1 linear equations. The reason
ority schemes is undoubtedly more complex thanfor the difference lies in the sequence integrity. For
that of the conventional POB.the FIFO POB in contrast to the RPOB, we have

to keep track of the order in which both types of
priority cells are queued. This number of possible

4.4. RPOB fit for rmax(a)configurations in the buffer is equivalent to the
highest binary number we can form withK + 1

Since rmax(a) of a RPOB in the [0,ak] intervaldigits (K for the buffer and one for the server),
is sufficiently closely approximated by equation (9)hence, 2K+1.
as illustrated in Figure 4, our objective is to find an
estimate in [ak,1] accurate to within 1 per cent.

Suppose for the moment that the value ofak is
known. We found that the data of the maximum
allowable load determined via a matrix solution of† Also for MMP(N) arrivals, we found via simulations that the

agreement is very good. the RPOB (see Appendix B) is well fitted by
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Figure 5. Calculation of the maximum allowable loadrmax for various buffer sizesK versus the priority mixa for the cell loss
requirementsclrp

L = 10−4 andclrp
H = 10−7. The curves are obtained for the RPOB

Figure 6. Calculation of the maximum allowable loadrmax for various buffer sizesK versus the priority mixa for the cell loss
requirementsclrp

L = 10−4 andclrp
H = 10−10. The curves are obtained for the RPOB

where D = 1/(1 + p)2 − 1/(ak + p)2. An elegant
rmax(a) = p1 +

p2

(a + p)2
(14) approximation forf−1

K (x) in a discrete-timeM/D/1/K
is given in Appendix A.

Introducing the additional information The proposed fit in equation (15) is a kind of
weighted mean betweena = ak and a = 1 with

rmax(1) = f−1
K (clrp

H) weight function (a + p)−2. Apart from ak, the only
unknown isp for which we found 0·5# p # 1. Thermax(ak) = f−1

K ((1 − ak)clrp
L + akclrp

H)
result is not very sensitive to variations inp (in

equation (14) can be specified as contrast toak) when aiming at an accuracy of 1
per cent. The remainder is therefore devoted to the
study of ak.rmax(a) =

1
D Frmax(1) S 1

(a + p)2 −
1

(ak + p)2D For a fixed ratiob = clrp
H/clrp

L but variableK, we
observed that logak = A/K + B. On the other hand,
for a fixed buffer sizeK, we found that logak is+ rmax(ak) S 1

(1 + p)2 −
1

(a + p)2DG (15)
linear in logb for both the high and low asymptotic
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values. In practical applications,b is often smaller of the others. Figure 8 plots the maximum allowable
l for both cases.than 10−3 and the low asymptotic regime is adequate

to use. After rather extensive fitting this regime can In the case of random priority assignment, the
result shown in Figure 8 demonstrates that introduc-be properly modelled as
ing ‘uncorrelated burstiness’ makesrmax = Bl less

ak < 10
−3
2K

(clrp
L)

1
4K

b

1
K

(16) dependent ona for burst lengthsB small compared
to the buffer sizeK, a conclusion previously drawn

Figure 7 compares the quality of the fit procedure by Garcia and Casals.27 When the burst lengthB
described above with the FIFO POB3 and the RPOB. approachesK, the dependence ofrmax on a
This plot exhibits that approximately a 1 per cent increases slightly.
accuracy is achieved. In the case of the same priority assignment in a

burst, the performance is, as expected, always lower
than in the random priority assignment case. Actu-5. INTRODUCING BURSTINESS IN THE
ally, we found that the performance (rmax) in theARRIVAL PROCESS
RPOB of sizeK with a compound Poisson arrival

So far, a Poisson arrival law has been considered.with parameterl and burst sizeB (same priority
Since ATM traffic is very likely to be bursty, assignment in a burst), is precisely the same as the
inclusion of this characteristic is in order. First, we performance in a RPOB of sizeK/B, when this
will confine ourselves to a compound Poisson arrival fraction is an integer.
process, described on a slot-per-slot basis by the
generating functione−l(1−B(z)), where the generating

5.2. Markov modulated Poisson processfunction B(z) specifies the distribution of the number
of cells within a (Poissonean) burst. Then the per- We refer to Appendix B for the detailed derivation
formance of the RPOB and PBS is investigated for of the RPOB with MMP(N) arrivals in discrete-
arrivals generated by a Markov modulated process time. The MMPP-PBS has been computed by
with N states (MMP(N)). extending the results of Kro¨ner et al.3

A possible way to relate the characteristics of
the actual arrival process to the set of parameters5.1. Compound Poisson process
describing anN-state MMP, is to consider the arrival

As an example, we takeB(z) = zB, meaning that process as a succession of ON and OFF slots.
each burst consists precisely ofB cells and the bursts During an OFF slot, no cells are generated, whereas
arrive according to a Poisson law with parameterl, during an ON slot, the number of cell arrivals in
hence the load (traffic intensity) equalslB. We each ON-state is assumed to be Poisson distributed,
have compared, only for the RPOB, two extreme with meanl. Let s denote the probability that an
cases of priority distribution within a burst. In the arbitrary slot is an ON slot.
first case, all cells in a burst have precisely the In the caseN = 1, the cell arrival process is i.i.d.
same priority and the probability to have a high and can be described on a slot-per-slot basis by the
priority burst is a. In the second case, the cells probability generating function (PGF)
within a burst have high priority with probability
a, and each cell is assigned a priority independent A(z) = 1 − s + s el(z−1) (17)

Figure 7. Comparison of the maximum allowable loadrmax versus the priority mixa computed via different methods: the FIFO POB
by Kröner et al.,3 the RPOB and our proposed fit in equation (15) or (53)
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Figure 8. The maximum allowablel (the load per burstB) in the RPOB versus the priority mixa for various burst lengthsB but
fixed buffer sizeK = 40 and fixed cell loss ratiosclrp

L = 10−4 andclrp
H = 10−10. Curves with random priority assignment within a burst

are drawn as an unbroken line, whereas the dotted line represents the case where all cells in a burst have the same priority

Defining an ON (OFF) period as a consecutive The parameter set (s, k, l) can now be used instead
of (a, b, l) to characterize the two-state MMPP.number of ON slots, then each ON period is fol-

lowed by an OFF period (and vice versa), and the Large values ofk indicate that on average successive
ON and OFF periods are long compared to the i.i.d.length of the respective ON and OFF periods

expressed in units of time slots is geometrically case (N = 1). Therefore,k can be regarded as a
measure for the burstiness in the arrival pattern.distributed with parameters and mean 1/s, respect-

ively parameter 1− s and mean 1/(1− s). For fixed In the three-state MMPP (Figure 12) with modu-
latorvalues of the overall loadsl, low values of s

means that all cell arrivals are grouped into a rela-
tively small number of slots, whereas values ofs
close to 1 imply that the cell arrivals are spread

P(3) = 1 a1 0 1 − a1

0 a2 1 − a2

q(1 − b) (1 − q)(1 − b) b
2over virtually all slots. Numerical examples

(Figures 9 and 10) illustrate the strong impact ofs
on the admissible aggregate load.

and Poisson arrivals ratesL(3) = diag{ l, l, 0}, weIn a two-state model (Figure 11) with modulator
confine ourselves to a model with two types of
ON periods, represented by ON1 and ON2, bothP(2) = S a 1 − a

1 − b b
D geometrically distributed, with parametera1 and a2,

respectively. As before, the length of the OFF per-
and Poisson arrival ratesL(2) = diag{ l, 0} (defined iods is geometrically distributed with parameterb.
in Appendix B), the length of the ON periods is Each OFF period is followed either by an ON1
geometrically distributed with parametera and mean period, with probabilityq, or by an ON2 period,
1/(1 − a), whereas the length of the OFF periods is with probability 1− q. The overall distribution of
geometrically distributed with parameterb and mean the length of an ON period is a weighted sum
1/(1 − b). Hence, whena = 1 − b = s, the two-state of two geometric distributions which allows us to
model reduces to the previous case (N = 1) of i.i.d. investigate the impact of the variance in the distri-
arrivals. The probability that an arbitrary slot is an bution of the length of an ON period on the admiss-
ON slot is given by ible load. To that extent, we defineR as the ratio

of the variance of the length of an ON period in
s =

1 − b

2 − a − b
(18) this model to the variance of the length of an ON

period in the previous caseN = 2,
Notice that the steady state vectorp of the modu-
lator P(2) equalsp1 = s and p2 = 1 − s. We further

R 5
g (1 − s)2

(k + 1 − s)k Fq(1 − q)S 1
1 − a1

−
1

1 − a2
Ddefine k as the ratio of the mean length of an ON

(OFF) period to the mean length of an ON (OFF)
period in the case of i.i.d. arrivals, +

qa1

(1 − a1)2 +
(1 − q)a2

(1 − a2)2G (20)

k 5
g 1 − s

1 − a
=

s

1 − b
(19)

where
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Figure 9. The maximum allowable loadrmax in the RPOB versus the priority mixa. The arrival process is generated by a MMPP(2)
for three values ofs in equation (18). In each plot,k in equation (19) increases fromk = 1, 2, 4 to 8. The buffer sizeK = 10 as well

as the cell loss ratiosclrp
L = 10−4 andclrp

H = 10−10 are the same for all curves

b = 1 −
s

k
(23)

s =

q
1 − a1

+
1 − q
1 − a2

1
1 − b

+
q

1 − a1
+

1 − q
1 − a2

(21)

1
1 − a1

=
1

1 − s

k = (1 − s) F q

1 − a1
+

1 − q

1 − a2
G (22) Fk + !1 − q

2q
(R − 1)k(k + s − 1)G

(24)
Alternatively, the parameter set (a1, a2, b, l) can

be expressed in terms of (s, k, R, l) as
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Figure 10. The maximum allowable loadrmax in the RPOB and PBS versus the priority mixa. The arrival process is generated by a
MMPP(3) for three values ofs in equation (21). In each plot,k = 2 andq = 0·2 are constant, whereasR increases asR= 1, 2, 3 and

5. The buffer sizeK = 10, as well as the cell loss ratiosclrp
L = 10−4 andclrp

H = 10−10, are the same for all curves

1
1 − a2

=
1

1 − s
R − 1 , 2

1 − q
q

k + s − 1
k

(26)

By choosing a value ofq which is sufficiently small,Fk − ! q

2(1 − q)
(R − 1)k(k + s − 1)G

equation (26) indicates that any value ofR can
be realized.(25)

Figures 9 and 10 show the behaviour ofrmax for
RPOB versusa for various combinations of theFor fixed values ofs, k and q, the variance of the

ON periods and, henceR, is bounded by parameterss, k and R for a relatively small buffer
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Furthermore, this paper has focussed on the
maximum allowable loadrmax for RPOB and PBS
versus the priority mixa for a wide variety of
arrival processes. The priority distribution within

Figure 11. The Markov chain forN = 2 bursts and the details of the aggregate arrival process
are decisive quantities for the performance. The
latter strongly influences (lowers) the value ofrmax

for a certaina, but hardly the shape ofrmax versus
a. The priority assignment within the aggregate cell
flow is found to change the form of thermax versus
the a-curve.

In Section 3.2, it was shown that for large buffer
sizes, CLPM schemes become useless. Hence,
CLPM techniques are typically attractive for real-
time services that require short buffersFigure 12. The Markov chain forN = 3
(approximately 100 cells). Currently, data services,
fuelled by the Internet, are growing very fast,K = 10. As the shape is similar to that with pure
demanding large buffers of several 10,000 cells.Poisson arrivals, the results may hint that a
Buffer engineering efforts are now concentratingMMPP(N) with Bernoulli distribution with para-
more on intelligent packet discard strategies (tailmeter a for the priorities can be replaced by a
packet or early packet discard) rather than CLPMcorresponding Poisson process, however, with an
techniques and on non-FIFO cell schedulingadjusted parameterl. In addition, the scaling rules
techniques49–51 in order to guarantee end-to-end cellin K proposed in Section 4.4 seem applicable. For
delay variation bounds and throughput fairness.the three-state model, the performance of PBS is

also shown (Figure 10) clearly demonstrating a still
acknowledgementshigher superiority of RPOB as burstiness is involved.

The authors are much indebted to J. David and are
grateful to H. Kröner for the data in Figure 1. This5.3. Conclusions on priorities and burstiness in
work has been sponsored by the Flemish Institutethe RPOB
for the Promotion of Scientific and Technological

Our study found that the shape of the performance Research in Industry (IWT 950141).
curve of the RPOB was less sensitive to the bursty
character of the aggregate arrival process than to the APPENDIX A. APPROXIMATE EXPRESSION
priority distribution process. The compound Poisson FOR clrA(r)
arrival process with each arrival consisting of a

The importance of equation (9) suggests a closerpacket of B cells with random priority assignment
study of the cell loss ratio in aM/D/1/K systemin a burst has a definitely different behaviour than
in order to find an analytic approximation for thethat of a Poisson or MMP(N) process. For Markov
inversef−1

K . We propose a simple approximation forchains with a larger number of statesN . 3 or with
clrA(r) and the inversef−1

K . A 1 per cent accuracya cell emission process different from Poisson (e.g.
is obtained for traffic intensities exceedingstate i always emits exactlyai cells), we found an
0·85, r , 1. The detailed derivation is presentedanalogous behaviour as in the MMPP(2) or
elsewhere52. The approximative expression for theMMPP(3). The results seem to indicate that for
aggregate cell loss ratio readsincreasing burstiness or correlation in the priority

distribution (as in the compound Poisson process), clrA(r) < (1 − r) r2K (27)
the optimal performance is less influenced by pri-

Our approximate equation (27) is always a lowerority information (a flatter behaviour ofrmax versus
bound. Equation (27) is particularly well suited toa). On the other hand, as expected, the value of
give fast estimates of the required number of bufferrmax for a given value ofa is very sensitive to the
positions K given r . 0·8 and clrA asdetails (e.g. burstiness) of the aggregate arrival pro-
K = [(log(clrA) − log(1 − r))/2 log r] where [x]cess and a Poisson arrival law leads to the best per-
denotes the integral part ofx. The inverse functionformance.
f−1
K (w) for equation (27) is f−1

K (w) = limn→` fn(w)
where

6. CONCLUSIONS

The optimality of cell loss priority strategies for a fn(w) =
w

1
2K

[1 − fn−1(w)]
1

2K
single buffer under a general arrival law has been
studied. The tight upper bounds found are useful to
understand optimality in utilization of specific pri- f1(w) = w

1
2K (28)

ority schemes, as illustrated for Poisson arrivals in
the case of the POB and PBS. This continued fraction converges rapidly.
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APPENDIX B. STATE EQUATIONS FOR THE RPOB

B.1. The Markov modulated process

A Markov modulated process withN states (MMP(N)) is characterized by the transition probability matrix
PN×N and the emission process in each state. Let!i denote the stochastic variable describing the number of
cells emitted in statei. The random variable6[k] denotes the state at discrete timek and the corresponding
state vectors[ k] = [s1[k] s2[k] % sN[k]] at discrete timek obeys

s[k + 1] = s[k] . P (29)

wheres[k].eT = SN
i=1 1.si[k] = 1 with e = [1 1 % 1] and, henceSN

j=1 Pij = 1 for all i. Written explicitly, we have

P =










p11 p12 p13 % p1;N−1 1 − SN−1
j=1 p1j

p21 p22 p23 % p2;N−1 1 − SN−1
j=1 p2j

p31 p32 p33 % p3;N−1 1 − SN−1
j=1 p3j

:· :· :· % :· :·

pN−1;1 pN−1;2 pN−1;3 % pN−1;N−1 1 − SN−1
j=1 pN−1;j

pN;1 pN;2 pN;3 % pN;N−1 1 − SN−1
j=1 pN;j 








(30)

The transition probability matrixP is composed withN2 − N probabilitiespij = Prob[6[ k + 1] = ju6[k] = i ].
The general solution of equation (29) is

s[ k] = s[0] . Pk (31)

The steady state vectorp = limk→` s[k] follows from

p = p . P (32)

with p . eT = 1. Since the steady state vector does not depend on the initial states[0], it follows from
equation (31) that the rows ofA = limk→` Pk should all be the same so thatp = [a11 a12 % a1N], because
pj = SN

i=1 si[0]aij = a1j SN
i=1 si[0] = a1j. Hence, limk→` Pk = eT . p. On the other hand, equation (32) is an

eigenvalue equation with eigenvaluel = 1. Except for the trivial case whereP is the identity matrixI, the
solution of p is obtained from









p11 − 1 p21 p31 % pN−1;1 pN1

p12 p22 − 1 p32 % pN−1;2 pN2

p13 p23 p33 − 1 % pN−1:3 pN3

:· :· :· % :· :·

p1;N−1 p2;N−1 p3;N−1 % pN−1;N−1 − 1 pN;N−1

1 1 1 % 1 1 

















p1

p2

p3

:·

pN−1

pN 








=









0

0

0

0

0

1 








(33)

The steady state emitting process leads to a loadl,

l = p . L . eT = ON
i=1

li pi (34)

where li = E[!u6 = i ] = E[!i ] and L = diag{E[!1], E{!2], %, E[!N]}. The distribution of the random
variable !k is characterized by the set of generating functions, for (1# i # N),

Ai(z) 5
g

E[z!ku6k = i ] = O`
j=0

ai(j ) zj (35)

The number of high priority cells arriving during slotk is denoted by!kH. Since each arriving cell has a
high priority with probability a, we have

gi(j ) 5
g

Prob[!kH = ju!k = i ]

= SijD aj(1 − a)j−i (36)
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B.2. The RPOB

We define Qk and *k as the total number of buffer positions occupied and the number of high priority
cells, respectively, evaluated at the beginning of time slotk. These random variables can never exceedK − 1.
The random service discipline, i.e. the random selection of a cell in the queue at each time slot, considerably
lowers the state space dimension. The state space can be described by three random variables, Qk, *k and
6k that constitute a Markov process. We define two additional random variables5k and 7k as the number
of cells and the number of high priority cells, respectively, that leave the buffer at the end of time slotk.
Both 5k and 7k are either zero or one. The deterministic server discipline means that

Prob[5k = 1uQk + !k = n] = 1 − d(n) (37)

where d(n) = 1 if n = 0 and zero elsewhere. Due to the random service order, each cell in the buffer has
equal probability to be served. Hence,

Prob[7k = 1uQk + !k = n, *k + !kH = m]

= 5min(n, K)
min(m, K)

n . 0

0 n = 0

(38)

The evolution in time of the number of cell in the buffer is governed by two system equations

Qk+1 = min [Qk + !k, K] − 5k (39)

*k+1 = min [*k + !kH, K] − 7k (40)

Equation (40) indicates that high priority cells will be accepted by possibly pushing low priority cells as
long as*k + !kH # K. Whenever*k + !kH . K, high priority cells are lost. We concentrate on the steady
state and define

q(n, m, l ) = lim
k→`

Prob[Qk+1 = n ` *k+1 = m ` 6k+1 = l ] (41)

The state equations are determined as follows. For the empty state, we have,

q(0, 0, l ) = ON
t=1

ptlat(0)[q(1, 0, t) + q(1, 1, t)]

+ [at(0) + at(1)]q(0, 0, t) (43)

This equation is the same for a conventional POB. Furthermore, as long as the occupied buffer space is less
than K − 1, all arriving cells are accepted. Hence, from the system equations we derive the transition
probabilities satisfying, for 0, n , K − 1,

Prob[Qk+1 = n, *k+1 = m, 6k+1 = luQk = i, *k = j, 6k = t]

= Prob[!kH − 7k = m − juQk = i, *k = j, !k = n + 1 − i ]at(n + 1 − i )

= Prob[7k = 1uQk + !k = n + 1, *k + !kH = m + 1]gn+1−i(m + 1 − j )

+ Prob[7k = 0uQk + !k = n + 1, *k + !kH = m]

gn+1−i(m − j )]at(n + 1 − i )

defining (x)+ = max(x, 0), we thus find the following state equations

q(n, m, l ) = ON
t=1

ptlOn+1

i=0

F Omin(i, m+1)

j=(m−n+i)+

m + 1
n + 1 Sn + 1 − i

m + 1 − jDam+1−j(1 − a)n+j−m−iq( i, j, t)

+ Omin(i, m)

j=(m−n+i−1)
+

n − m + 1
n + 1 Sn + 1 − i

m − j Dam−j(1 − a)n+j+1−m−iq( i, j, t)G × a(n + 1 − i, t) (44)

The push-out mechanism is only active if the buffer is entirely filled. Since we describe the process at the
beginning of a new time slot while the server just acts at the end of a time slotk, we only have a full
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buffer if Qk+1 = K − 1. In this case, low priority cells may occur, whereas high priority cells are only lost if
*k+1 = K − 1. Therefore, as before, the state equations for the transitionsq(K − 1, m, l ) and 0# m , K − 1 are

q(K − 1, m, l ) = ON
t=1

ptlO`
n=K

OK−1

i=0

F Omin(i, m+1)

j=(m−n+i+1)
+

m + 1
K S n − i

m + 1 − jD am+1−j (1 − a)n+j−m−i−1 × q(i, j, t)

+ Omin(i, m)

j=(m−n+i, 0)
+

K − m

K Sn − i

m − jD am−j (1 − a)n+j−m−iq( i, j, t)G × a(n − i, t) (45)

Finally, the last block row, describing those situations where high priority cells are lost, is given by

q(K − 1, K − 1, l ) = ON
t=1

ptlO`
n=K

On
m=K

OK−1

i=0

Oi

j=(m−n+i)
+Sn − i

m − jD am−j(1 − a)n+j−m−i q( i, j, t)a(n − i, t) (46)

The normalization conditions yields the final equation,

ON
t=1

OK−1

n=0

On
m=0

q(n, m, t) = 1 (47)

and reveals that we have a total ofs= NK(K+1)/2 states. Equations (43), (44), (45) and (46) are sufficient
to determine the steady-state probabilitiesq(n, m, l ).

The cell loss ratios have been computed from the mean number of cells rejected due to buffer overflow.
This leads to

clrA(a) =
1

E[!] O
N

l=1

OK−1

n=0

On
m=0

q(n, m, l ) O`
k=K+1−n

(k + n − K)al(k) (48)

clrH(a) =
1

a E[!] O
N

l=1

OK−1

n=0

On
m=0

q(n, m, l ) O`
k=K+1−n

al(k) Ok

t=K+1−m

(m + t − K)gk(t) (49)

Losses only occur if two or more cells arrive, because at the beginning of a slot time, positionK in the
buffer is always free. Both the cell loss ratio of the high priorities and the aggregate cell loss has been
determined in this way. The cell loss ratio of the low priorities is found usingclrL = 1

1−a (clrA(a) − aclrH(a)).

B.3. The compound Poisson process

We merely give the state equations for the case where all cells in a burst have the same priority. The
derivation for the case where the priority of cells is randomly distributed with probabilitya follows from
the previous section whereN = 1 and a1(k) = e−l l[ k/B]/[k/B]!

Assuming thatB . 1 and defining

q(n, m) = lim
k→`

Prob[Qk+1 = n ` *k+1 = m]

(50)

a( j ) = Prob[! = j ] = e−l
lj

j!
(51)

xK = Fx
BG + 1 Sx

B
: not integerD

= Fx

BG Sx

B
: integerD

= 0 (x , 0) (52)

we have

q(0, 0) = a(0)[q(0, 0) +q(1, 0) +q(1, 1)] (53)

and for 0, n , K − 1,
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q(n, m) = OF
n+1
B G

i=0

F OSi, Fm+1
B GD

−

j=(Bi−n+m)
K

m + 1
n + 1 Si

jD aj(1 − a)i−jq(n + 1 − Bi, m + 1 − Bj)

+ OSi, Fm
BGD

−

j=(Bi−n+m−1)K

n − m + 1
n + 1 SijD aj(1 − a)i−jq(n + 1 − Bi, m − Bj)Ga( i ) (54)

whereas forn = K − 1 and 0# m, K − 1,

q(K − 1, m) = O`
n=K

OF
n
BG

i=(n−K+1)K

F OSi, Fm+1
B GD

−

j=(Bi−n+m+1)K

m + 1
K SijDaj(1 − a)i−jq(n − Bi, m + 1 − Bj)

+ OSi, Fm
BGD

−

j=(Bi−n+m)K

K − m

K Si

jD aj(1 − a)i−jq(n − Bi, m − Bj)Ga( i ) (55)

The last equation forq(K − 1, K − 1) is replaced by the normalization condition. The relations for the cell
loss ratio are

lB clrA = OK−1

n=0

On
m=0

q(n, m) O`
j=(K−n)

K

(Bj + n − K) a( j ) (56)

alB clrH = OK−1

n=0

On
m=0

q(n, m) O`
j=(K−m)K

(Bj + m − K) aH(j ) (57)

where aH(j ) = e−al (al)j j!. These relations can be simplified when we introduceqH(m) as the occupancy
probability that there are preciselym high priority cells and similarlyqA(m) as the occupancy probability
for an aggregate of preciselym cells. Clearly, we have

qH(m) = OK−1

n=m

q(n, m) (58)

qA(m) = On
m=0

q(n, m) (59)

We can immediately substitute equation (59) in (56) whereas the same holds for equation (58) in (57) after
reversing then and m summations. The result is

lB clrA = OK−1

n=0

qA(n) O`
j=(K−n)K

(Bj + n − K) a( j ) (60)

alB clrH = OK−1

n=0

qH(n) O`
j=(K−n)K

(Bj + n − K) aH(j ) (61)
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