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Abstract Social networks, as well as many other real-world networks,

exhibit overlapping community structure. Affiliation networks, as a

large portion of social networks, consist of cooperative individuals: Two

individuals are connected by a link if they belong to the same organiza-

tion(s), such as companies, research groups and hobby clubs. Affiliation

networks naturally contain many fully connected communities/groups.

In this paper, we characterize the structure of the real-world affilia-

tion networks, and propose a growing hypergraph model with prefer-

ential attachment for affiliation networks which reproduces the clique

structure of affiliation networks. By comparing computational results

of our model with measurements of the real-world affiliation networks

of ArXiv coauthorship, IMDB actors collaboration and SourceForge

collaboration, we show that our model captures the fundamental prop-

erties including the power-law distributions of group size, group degree,

overlapping depth, individual degree and interest-sharing number of

real-world affiliation networks, and reproduces the properties of high

clustering, assortative mixing and short average path length of real-

world affiliation networks.
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1 Introduction

Social networks are currently widely studied (Albert and Barabási, 2002; Boc-
caletti et al., 2006; Girvan and Newman, 2002). Social networks are often defined
as networks where nodes are individuals and links are relations between individu-
als, reflecting acquaintances, friendships, sexual relations, collaboration, common
affiliation, etc. Most social networks possess common properties of the real-world
networks, such as high clustering coefficient, short characteristic path length and
power law degree distribution (Barabási and Albert, 1999; Watts and Strogatz,
1998). Particularly, they possess some special properties like assortative mixture,
community and hierarchical structure (Girvan and Newman, 2002; Ahn et al.,
2010; Newman, 2003; Van Mieghem et al., 2010). The communities are the sub-
nets, which exhibit relatively higher levels of internal connections. Community
structures feature important topological properties that have catalyzed researches
on community detection algorithms and on modularity analysis (Fortunato, 2010;
Newman and Girvan, 2004; VanMieghem et al., 2010). The communities overlap
with each other when nodes belong to multiple communities. The overlap of dif-
ferent communities exists widely in real-world complex networks, particularly in
social and biological networks (Palla et al., 2005; Evans and Lambiotte, 2009; Mc-
Daid and Hurley, 2010). Human beings have multiple roles in the society, and these
roles make people members of multiple communities at the same time, such as
companies, universities, families or relationships, hobby clubs, etc.
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In the movie actor network, where nodes are the actors and two actors are
connected if they have been casted together in one or more movie, we could regard
the set of actors in one movie as a community. According to the definition of movie
actor network, the communities of all the movies are cliques. These communities
overlap with each other if they have actors in common. The similar networks are
the science coauthorship networks (nodes represent the scientists and two nodes
are connected if they have coauthored one or more articles and the articles are
communities), the journal editor networks (nodes as the editors and two editors
are adjacent if they serve on the same editorial boards of journals) and sports
player networks (nodes as players and two players who played in the same games
are connected).

These types of social networks are known as affiliation networks. The affiliation
networks, an important and large type of social networks, are the focus of this ar-
ticle. The communities in affiliation networks are called groups. In the rest of this
paper, the terms “community” and “group” will be interchangeably used. Affilia-
tion networks naturally contain many fully connected subnetworks which are called
cliques or complete subgraphs in the language of graph theory, since the nodes of
the same group, such as a movie cast, are all connected with each other. The clique
structure of social networks increases largely the percentage of triangles among
the three hops walks, consequently resulting in high clustering coefficient. Besides
the statistics of individuals such as clustering coefficient, characteristic path length
and nodal degree, we are also interested to answer the following questions: the
number of groups, the number of individuals each group has, the groups each indi-
vidual belongs to, the number of individuals every pair of groups have in common,
the number of groups every pair of individuals join together, and the number of
groups each group is adjacent to (two groups are adjacent if they have individuals
in common).

1.1 Related works

Palla et al. (2005) defined four metrics to describe how the communities of net-
works overlap with each other: the membership number of an individual, the over-
lapping depth of two communities, the community degree and the community size.
Palla et al. (2005) showed that the communities of real-world networks overlap
with each other significantly. They reported that the membership number of an
individual and the overlapping depth of two communities and the community size
all follow a power law distribution, except that the community degree features a
peculiar distribution that consists of two distinct parts: an exponential distribu-
tion in the beginning and a power law tail. Poller et al. (2006) proposed a toy
model of which both the community size and the community degree follow a power
law distribution, by applying preferential attachment to community growth. There
have been many efforts devoted to the modeling of social networks (Newman et al.,
2002; Skyrms and Pemantle, 2000; Toivonen et al., 2006). The growing networking
model proposed by Toivonen et al. (2006) succeeds in reproducing the common
characteristics of social networks: community structure, high clustering coefficient
and positive assortativity. The degree distribution of this model is somewhat de-
viating from a power law distribution despite being heavy-tailed.
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1.2 Our contributions

We propose a complete set of metrics which can fully characterize the overlap-
ping community structure of networks. We represent social networks by hyper-
graphs. The hypergraph representation of networks facilitates the computations of
the characterizing metrics. We establish a hypergraph-based social network model
which exhibits innate tunable overlapping community structure. By comparing
simulation results of our model with results of real-world networks, we show that
our hypergraph model exhibits the common properties of large social networks:
the community (group) size, the community (group) degree and the community
(group) overlapping depth all follow a power law distribution, and our model pos-
sesses high clustering coefficient, positive assortativity, short average path length.
By tuning the input individual membership number to follow a power law distri-
bution, the individual degree and the interest-sharing number also follow a power
law distribution.

This paper is organized as follows: Section 2 introduces the hypergraph repre-
sentation of affiliation networks. In Section 3, we present the analytical properties
on the topology and spectra of the social networks. In Section 4, we characterize
the overlapping community structure of social networks in the cases of the ArXiv
coauthorship networks of subjects of ”General Relativity and Quantum Cosmol-
ogy” and ”High Energy Physics - Theory”, the IMDB movie actors collaboration
network and the SourceForge software collaboration network. In Section 5, we pro-
pose a preferential attachment based growing hypergraph model for social net-
works. The nodes of the hypergraph model represent the groups of social networks,
and the hyperedges, connecting multiple nodes, represent the individuals. Numeri-
cal analyses show that our hypergraph model reproduces all the properties of social
networks.

2 The representation of social networks with overlapping commu-
nities

2.1 Preliminaries

Suppose the network under consideration has N individuals and M groups, where
an individual may belong to multiple groups. The membership number mj of an
individual j is defined by the number of groups of which j is a member. The degree
dj of an individual j equals the number of individuals who have the same member-
ship in one or more groups. The interest-sharing number αi,j of individuals i and
j is defined by the number of groups to which they both belong, which indicates
how many common interests they share. The group size sk of group k is the num-
ber of individuals that belong to group k. The group degree uk of group k equals
the number of groups sharing individual(s) with group k. The overlapping depth
βk,l of two groups k and l equals the number of individuals that they share. An
affiliation network is linear if βk,l ≤ 1 for all k, l ∈ [1,M ], where M is the number
of groups. If the membership number mj = m for j ∈ [1, N ], the affiliation network
is called a m-uniform affiliation network.
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We use the graphs in Figure 1 to exemplify the definitions of dj , mj , αi,j , sk,
uk, and βk,l. The graph in Figure 1 (a) has labeled five nodes which are members
of at least two groups. Obviously, d1 = 24, d2 = 12, d3 = 10, d4 = 8 and d5 = 9.
Nodes 1− 5 belong to 5, 3, 2, 2 and 2 groups respectively, thus m1 = 5, m2 = 3 and
m3 = m4 = m5 = 2. Individual 1 and 2 belong to only one common group, hence
αi,j = 1. As shown in Figure 1 (b), the groups I − IV have 6, 5, 5 and 6 nodes
respectively, hence, sI = sIV = 6 and sII = sIII = 5. Evidently, the overlapping
widths: βI,II = 2, βI,III = 1, βI,IV = 3, βII,III = 2, βII,IV = 0 and βIII,IV = 1.
The group degree: uI = uIII = 3, uII = uIV = 2.

An affiliation network is usually described by a graph where the nodes repre-
sent the individuals and two nodes are connected by a link if they both belong to
a group or several groups. If a set CI of individuals belong to group I, the set CI
of individuals comprise a fully connected clique. If a set CII (CII ⊆ CI) of indi-
viduals also belong to another group II, we cannot represent the group II by this
graph description, because the set CII of individuals are already fully connected in-
side the group I. Scott (1991) discussed generating affiliation network with simple
graphs. Newman et al. (2001) suggested a bipartite graph model with all infor-
mation preserved by representing a group with one type of nodes and individuals
with the other type of nodes, where links only connect nodes of different types,
as shown in Figure 2. Lattanzi and Sivakumar (2009) proposed a bipartite-graph-
based generative model for affiliation networks. However, the bipartite-graph-based
model does not reproduce all the affiliation networks’ topological properties shown
in Section 3. Hence, we introduce the hypergraph representation of affiliation net-
works.

2.2 Hypergraph representation

A hypergraph is the generalization of a simple graph. A simple graph is an un-
weighted, undirected graph containing no self-loops nor multiple links between the
same pair of nodes. A hypergraph H (M,N) has M nodes and N hyperedges. We
use the term “hyperedge” instead of “hyperlinks” in order not to make confusion
with hyperlinks of WWW webs. Its nodes are of the same type as those of a sim-
ple graph, as shown in Figure 3 (a). The hyperedges of hypergraphs can connect
multiple nodes, like hyperedge A in Figure 3 (a) connecting nodes I, II, · · · , V .
A hypergraph is linear if each pair of hyperedges intersects in at most one node.
Hypergraphs where all hyperedges connect the same number m of nodes are de-
fined as m-uniform hypergraphs with the special case that 2-uniform hypergraphs
are simple graphs. If an affiliation network is linear, the representing hypergraph
is linear; if an affiliation network is m-uniform, the representing hypergraph is also
m-uniform.

We propose to describe an affiliation network with M groups and N individuals
by a hypergraph H (M,N): M nodes represent the M groups; N hyperedges rep-
resent N individuals; and an hyperedge is incident to a node if the corresponding
individual is a member of the corresponding group.

The line graph of a hypergraph H (M,N) is defined as the graph l (H), of
which the node set is the set of the hyperedges of H (M,N) and two nodes are con-
nected by a link of weight t, when the corresponding hyperedges share t node(s).
The degree dj of an individual j, defined in subsection 2.1, equals the number
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Table 1 The names and the members of all the communities of the exemplary social
network of NAS.

Index Names of communities Members (individuals)

I NAS-TU Delft A,B,C,D,E, F

II A research group-MIT A,A1, · · · , A5

III A research group-Cornell Univ. A,A6, · · · , A10

IV IEEE/ACM ToN editorial board A,A11, · · · , A15

V A research group-KSU A,A16, · · · , A20

V I A research group-Ericsson B,B1, · · · , B4

V II A research group-KPN C,C1, · · · , C4

V III Piano club C,C5, · · · , C8

IX A research group-TNO D,D1, · · · , D4

X A rock band D,D5, D6, D7, G

XI A soccer team E,E1, E2, E3, G

XII Bioinformatics-TU Delft F, F1, · · · , F4

of individuals that connect to j in the line graph l (H). The line graph l (H) is
an unweighted graph when the corresponding hypergraph is linear; otherwise is
weighted, and the weight of link i ∼ j equals the interest-sharing number αi,j .

2.3 An illustrative example

In this subsection, we give an exemplary affiliation network and then represent it
by a hypergraph. Table 1 describes an affiliation network based on the affiliations
of members of the NAS research group (Network Architectures and Services Group
at Delft University of Technology). Individuals A,B,C,D,E, F are members of
NAS and the other individuals are the members of groups which overlap with
the NAS group. Figure 2 depicts the bipartite graph representation of the NAS
affiliation network with the blue circles representing the groups and the solid blue
disks representing the individuals. Two nodes are linked when the corresponding
individual belongs to the corresponding group.

We represent this network by the hypergraph H (12, 53) shown in Figure 3 (a).
The nodes of the hypergraph denote the groups and the individuals are denoted
by the hyperedges. There are 12 groups as described in Table 1, corresponding
to the 12 nodes of the hypergraph in Figure 3 (a), and there are 53 individuals
among whom 6 NAS members with the membership number mA = 5, mC = mD =
3, mB = mE = mF = 2. If an individual belongs to multiple groups, the corre-
sponding nodes are connected by the hyperedge specifying that individual.

Figure 3 (b) depicts the line graph l (H) of the hypergraph H (12, 53) in Figure
3 (a), which represents the exemplary NAS affiliation network. In the line graph
l (H), the individuals are denoted by nodes and the groups are denoted by links
of the same color and the nodes which are incident to those links. The line graph
l (H) is unweighted since the NAS affiliation network is linear.
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3 Properties of social networks with overlapping communities

3.1 Topological properties

The line graph l (H) has N nodes and L links. The topology of l (H) can be de-
scribed by its adjacency matrix A, a N ×N matrix, where the element aij equals
the linkweight of link i ∼ j if there is a link between node i and node j, else aij =
0. Since l (H) is undirected, the adjacency matrix A is symmetric.

The following equalities are valid for all affiliation networks,

N =

M∑
k=1

sk −
M∑

k=1,l=1

βk,l (1)

L =
1

2

N∑
j=1

dj =

M∑
k=1

sk (sk − 1)

2
−

M∑
k=1,l=1

βk,l (βk,l − 1)

2
(2)

N∑
j=1

(mj − 1) =

M∑
k=1,l=1

βk,l (3)

If βk,l ≤ 1 for all k, l ∈ [1,M ], where M is the number of groups, which implies
that the affiliation networks are linear, we have,

dj =
∑

All the groups to
which individual j belongs

(s− 1) (4)

where s is the group size; And

uk =
∑

All the individuals
that group k contains

(m− 1) (5)

where m is the membership number of an individual. When the affiliation net-
work is linear, we also have αi,j ≤ 1.

The adjacency matrix A
l(H)
N×N of the line graph l (H) of a hypergraph H (M,N)

which represents an affiliation network with M groups and N individuals, can be
expressed by the unsigned incidence matrices RM×N of H (M,N)

A
l(H)
N×N =

(
RTR

)
N×N − diag(RTR) (6)

where the entry rij of R is 1 if node i and hyperedge j are incident, otherwise
rij = 0. Basically, the adjacency matrix Al(H) equals the matrix RTR setting all
the diagonal entries to zero. The interest-sharing number αi,j of individual i and

j equals the entry a
l(H)
ij of Al(H)

αi,j = a
l(H)
ij (7)
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The membership number mj of an individual j equals,

mj =

M∑
i=1

rij = (RTR)jj (8)

The group size sk of group k is

sk =

N∑
l=1

rkl = (RRT )kk (9)

Let WM×M =
(
RRT

)
M×M − diag(RRT ), then the overlapping depth βk,l of two

groups k and l equals,

βk,l = wkl (10)

where wkl is an entry of WM×M .
The individual degree dj equals the number of nonzero entries in the jth

row/column of A
l(H)
N×N , with the special case dj =

N∑
i=1

a
l(H)
ij when the affiliation net-

work is linear. Similarly, the group degree uk equals the number of nonzero entries
in the kth row/column of WM×M .

3.2 Spectral properties

3.2.1 The adjacency spectra of the line graph of m-uniform affiliation
networks

A m-uniform affiliation network can be represented by m-uniform hypergraphs
Hm (M,N), of which the unsigned incidence matrix R has exactly m one-entries
and M −m zero-entries in each column. Thus, all the diagonal entries of RTR are
m. The adjacency matrix of the line graph of Hm (M,N) can be written as,

A
l(Hm)
N×N = RTR−mI (11)

where RTR is a Gram matrix (Van Mieghem, 2011)(Cvetković et al., 2007).

Lemma 3.1: For all matrices AN×M and BM×N with N ≥M , it holds that
λ (AB) = λ (BA) and λ (AB) has N −M extra zero eigenvalues

λN−M det (BA− λI) = det (AB − λI)

Lemma 3.1 and (11) yields,

det
(
A
l(Hm)
N×N − (λ−m) I

)
= λN−M det

((
RRT

)
M×M − λI

)
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The adjacency matrix A
l(Hm)
N×N has at least N −M eigenvalues −m. We have

xT
(
RTR

)
x = (Rx)

T
Rx = ‖Rx‖22 ≥ 0

and

xT
(
RRT

)
x =

(
RTx

)T
RTx =

∥∥RTx∥∥2
2
≥ 0

where xL×1 is an arbitrary vector. Hence, both
(
RTR

)
N×N and

(
RRT

)
M×M are

positive semidefinite, hence all eigenvalues of
(
RTR

)
N×N are non-negative. Due

to (11), the adjacency eigenvalues of A
l(Hm)
N×N are not smaller than −m.

3.2.2 The adjacency spectra of the line graph of non-uniform affiliation
networks

A non-uniform affiliation network with maximum membership number mmax can
be represented by a non-uniform hypergraph H (M,N). The unsigned incidence
matrix R of H (M,N) has at most mmax one-entries in each column. Therefore,
the largest diagonal entry of RTR is mmax. The adjacency matrix of the line graph
of non-uniform hypergraph H (M,N) is,

A
l(H)
N×N = RTR+ C −mmaxI (12)

where C = diag
(
c11 c22 · · · cLL

)
and cjj = mmax − (RTR)jj ≥ 0 for j ∈ [1, N ].

Since

xT
(
RTR+ C

)
x = xT

(
RTR

)
x+ xT

(√
C
T√

C
)
x

= ‖Rx‖22 +
∥∥∥√Cx∥∥∥2

2
≥ 0

where xL×1 is an arbitrary vector and
√
C = diag

(√
c11
√
c22 · · ·

√
cLL

)
, RTR+

C is also positive semidefinite, thus, the adjacency eigenvalues of A
l(Hm)
N×N are not

smaller than −mmax.

4 Characterizing the real-world social networks with overlapping
communities

4.1 ArXiv coauthorship networks

In this section, we use the terms “community” and “group” interchangeably. We
analyze the arXiv data of subjects of ”General Relativity and Quantum Cosmol-
ogy” (GR-QC) and ”High Energy Physics - Theory” (HEP-TH) in the period from
January 1993 to April 2003, which were collected by Leskovec et al. (2007). We
construct the hypergraph with the papers as nodes and the authors as hyperedges.
A hyperedge is incident to a node if the corresponding author authors/coauthors
the corresponding paper. In this manner we construct the hypergraph of the arxiv
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GR-QC coauthorship network with 5855 authors and 13454 papers, and the hyper-
graph of the arXiv HEP-TH coauthorship network with 9877 authors and 21568
papers. We fit the data of s, β, m, d and α with the power function f (x) = x−γ .
The values of γ are shown in Table 2. The group size s follows a power-law distri-
bution. In this case of coauthorship network, the group size s means the number of
authors a paper has. As shown in Figure 4 and 5, We see that, in the coauthorship
networks of both subjects, the papers with only one author and with more than
ten authors are very rare. Most of papers have two or three authors. The group
degree u in both Figure 4 and 5 has a power-law tail. The group overlapping depth
β follows a power-law distribution. Most of the pairs of groups have no overlap.
We only consider the group pairs which overlaps with each other. The membership
number m of an individual here means the number of papers he or she authors and
coauthors. It also follows a power-law distribution. The interest-sharing number α,
denoting the number of papers in which two individuals participate together, fol-
lows a power-law distribution. Only the individual pairs who have nonzero interest-
sharing number are considered. The ArXiv coauthorship networks of both subjects
possess high clustering coefficient, large assortativity coefficient and short average
path length as shown in Table 3.

4.2 IMDB actor collaboration network

The data of IMDB movie actors collaboration network with 127823 movies and
392340 actors, were collected by Hawoong Heong from Internet Movie Database
(based on www.imdb.com). We construct the hypergraph of IMDB movie actors
collaboration network with the movies as nodes and the actors as hyperedges. A
hyperedge is incident to a node if the corresponding actor appears in the corre-
sponding movie. We fit the data of s, u, β, m, d and α with the power function
f (x) = x−γ , as shown in Figure 6 and Table 2. The data of s are fitted with two
power functions in different regions. The group degree u appears also to follow two
power-law distribution in two regions. All the values of γ are shown in Table 2.
The IMDB movie actors collaboration network exhibits high clustering, assortative
mixing and short average path length as shown in Table 3.

4.3 The SourceForge software collaboration network

SourceForge is a web-based project repository assisting programmers to develop
and distribute open source software projects. SourceForge facilitates developers by
providing a centralized storage and tools to manage the projects. Each project
has multiple developers. We construct the hypergraph of the SourceForge software
collaboration network by taking software projects as nodes and the developers as
hyperedges. A hyperedge is incident to a node if the corresponding developer par-
ticipates in the corresponding software project. The SourceForge software collab-
oration network has 259252 software projects and 161653 developers. We fit the
data of s, u, β, m, d and α with the power function f (x) = x−γ . As shown in Fig-
ure 7, the pdfs of all the six metrics dj , mj , αi,j , sk, uk, and βk,l are well fitted by
power law functions with exponents γ shown in Table 2. The SourceForge network
also has a high clustering coefficient, a high assortativity coefficient and an small
average path length, which are shown in Table 3.
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5 Modeling of social networks with overlapping communities

5.1 Model description

In this section, we use the terms “community” and “group” interchangeably. As
stated before, we use the nodes of hypergraph to represent the groups and the
hyperedges to represent the individuals. In the description of our model, the nodes
and groups, the hyperedges and individuals are used interchangeably. Our model
is a growing hypergraph model, starting with a small hypergraph which represent
the initial groups and individuals. Later on, new individuals and new groups are
added to the network in the growing process.

We notice that the number of group M is larger than the number of individ-
uals N in ArXiv networks and Sourceforge network, and M is smaller than N in
IMDB network. Making a movie needs more efforts and labor force than writing
a paper or developing an open-source software. In our model, we take M

N = 1, as-
suming that each coming individual start a new group. Note that the group size
of real-world affiliation network follow a power-law distribution. We employ pref-
erential attachment of individual to the existing groups to achieve the power-law
distributed group size. The tricky issue is to determine the membership number
of each new coming individuals, namely to decide how many nodes that a new
hyperedge should connect to. The analysis of real-world affiliation networks tells a
power-law distribution of the membership number, hence we preproduce a power-
law distributed sequence of numbers, taking them as the membership numbers of
new coming individuals.

Our hypergraph model is described by the following procedure:

1. Start with a seed hypergraph H0 (M0, N0) with M0 groups and N0 hyper-
edges.

2. Suppose that the desired number of individuals (hyperedges) of the network
to be generated is N +N0. Determine the membership numbers for the N
new hyperedges: Γ =

[
m̄1 m̄2 · · · m̄N

]
. Note that the membership number

vector Γ is the input parameter of our hypergraph model.

3. At growing step j, j = 1, 2, · · · , N , add a new hyperedge j and a new group
to the hypergraph. Make the new hyperedge j and the new group incident,
and the membership number of j becomes 1.

(a) Connect the new hyperedge j to the existing group k with probability

pk = sk/
∑j−1
i=1 si, where sk is the group size of group k and

∑j−1
i=1 si is

the sum of group sizes of all the existing groups.

(b) Repeat 3a) m̄j − 1 times so that the membership number of the hyper-
edge j increases to the expected membership number m̄j .

4. Repeat 3) until the number of hyperedges increases to N +N0.

The model is also presented with pseudo-codes in Algorithm 1. Compute the
metrics dj , mj , αi,j , sj ,uj and βi,j using the methods given in Section 3.1 including
the formulas (6) to (10).
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ALGORITHM 1: Growing hypergraph model

Input: A seed hypergraph H0(M0, N0) with M0 nodes and N0 hyperedges,
The membership numbers for new hyperedges Γ = [m̄1 m̄2 · · · m̄N ]

Output: A hypergraph H(N +M0, N +N0)
1: H ← H0(M0, N0)
2: for each j ∈ {1, 2, 3, · · · , N} do
3: add a new hyperedge j to H
4: mj ← 0
5: add a new node to H and let it be incident to the hyperedge j
6: mj ← mj + 1
7: while mj < m̄j do
8: k ← a random natural number between 1 and j − 1
9: r ← a random real number between 0 and 1

10: if r < sk/
∑j−1
i=1 si then

11: let the hyperedge j be incident to the node k
12: mj ← mj + 1

5.2 Properties of the growing hypergraph model

5.2.1 Simulation settings

We use a hypergraph H (20, 20) with the membership number mj = 1, j =
1, 2, · · · 20, as the starting seed. We add 5000 new hyperedges (individuals) and
5000 new nodes (groups) to the starting seed through 5000 growing steps. Hence,
all the hypergraphs we generate have 5020 nodes and 5020 hyperedges.

In the growing process, we first apply the constant membership number mj =
2, j = 1, 2, · · · , 5000, obtaining the uniform hypergraph H2. In the same way, we
construct H3, H5, H7, H10 and H15. Then we construct the hypergraph HU [1,100]

with a uniformly distributed membership number in the interval [1, 100]. We con-
struct these hypergraphs in order to study by comparison the properties of Hpow

which is obtained by applying the sequence of membership numbers with the pdf
Pr [Γ = m] = m−2.02. We construct Hpow in this way: generating a sequence of nat-
ural numbers following a power-law distribution with the pdf Pr [Γ = m] = m−2.02,
and applying this sequence of natural numbers as the membership numbers in the
growing process.

We denote the group size and group degree of a random group by S and U , the
group overlapping depth of a random pair of groups by B, the individual degree
of a random individual by D, and the interest-sharing number of a random pair of
hyperedges by Φ.

5.2.2 Results and discussion

Due to the principle of preferential attachment (Barabási and Albert, 1999), we
expect that the group size of all the generated hypergraphs follow power law dis-
tributions, which are confirmed by Figure 8. The exponents of the power laws are
shown in Table 2.
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Table 2 The exponents γ of power-law fittings f(x) = x−γ of s, u, β,m, d and α of
the arXiv GR-QC and HEP-TH coauthorship networks, the IMDB actor
collaboration network, the SourceForge software collaboration network, and
the growing hypergraph model with different sequences of membership
numbers.

Network γ (s) γ (u) γ (β) γ (m) γ (d) γ (α)

ArXiv GRQC 5.50 2.14 3.93 1.95 1.84 3.56

ArXiv HEP-TH 6.24 1.63 3.56 1.72 1.68 2.86

IMDB actors 2.04/5.35 0.407/3.40 4.80 1.81 1.91 3.62

SourceForge 3.91 2.45 3.76 3.48 2.61 4.60

H2 2.12 2.39 3.38 n.a. 2.35 n.a.

H3 2.55 2.46 3.07 n.a. 2.16 n.a.

H5 2.38 2.09 3.19 n.a. 2.12 n.a.

H7 3.06 2.81 3.11 n.a. 2.59 n.a.

H10 3.22 2.22 3.53 n.a. 2.38 n.a.

H15 2.90 1.95 3.34 n.a. 2.66 n.a.

HU [1,100] 3.66 2.85 3.82 n.a. 3.01 n.a.

Hpow 3.91 2.45 3.76 3.48 2.61 4.60

Table 3 The clustering coefficients C, the assortativity coefficients ρD and the
average path lengths l of the arXiv GR-QC and HEP-TH coauthorship
networks, the IMDB actor collaboration network, the SourceForge software
collaboration network, and the growing hypergraph model with different
sequences of membership numbers.

Network C ρD l

ArXiv GRQC 0.637 0.584 6.50

ArXiv HEP-TH 0.289 0.382 4.89

IMDB actors 0.762 0.682 4.29

SourceForge 0.636 0.401 7.06

H2 0.616 0.508 6.13

H3 0.581 0.576 6.71

H5 0.491 0.498 7.85

H7 0.613 0.644 7.62

H10 0.686 0.519 6.89

H15 0.722 0.478 6.56

HU [1,100] 0.566 0.422 7.22

Hpow 0.636 0.401 7.06
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The group degree of all hypergraphs also follows a power-law distribution, as
illustrated in Figure 9, where the proper bin size has been used. The exponents
are shown in Table 2. The intriguing thing is if the bin size of 1 is chosen, the
oscillation appears in the curves of group degree distribution for H3, H5, H5, H7,
H10, H15 and HU [1,100], as shown in Figure 10. Fortunately, not depending on the
bin size, the group degree of Hpow always follow a power law distribution.

The group overlapping depths of all hypergraphs follow power law distributions
with exponents which are relatively larger in absolute values,as depicted in Figure
11. All the exponents are reported in Table 2.

Nacher et al. (2005) and Manka et al. (2010) showed that the nodal degree of
line graphs of simple graphs with power law degree distribution follows a power
law distribution. The individual degree distribution of H2 is just the degree dis-
tribution of line graphs of scale-free graphs. The first of plot in Figure 12 verifies
the conclusion of Nacher et al. (2005) and Manka et al. (2010). Figure 12 shows
that the individual degree of H3 still can be said to follow a power-law and is
quite similar to that of H2. The distributions of the individual degree of H5, H7

and H10 do not follow any power law. The individual degree of H15 and HU [1,100]

seem to follow power laws f(x) = x−γ with negative γ (the exponent −γ would be
positive). Above all, the individual degree of Hpow perfectly follows a power law
distribution, as shown in Figure 12. The distribution transition from H2 to H15 is
shown in linear-linear scale in Figure 13, where we see the peak of the curve goes
from left to right as the membership number increases from 2 to 15.

The interest-sharing number α of only Hpow follows a power-law distribution,
as illustrated in the 4th plot on the first row of Figure 14. In H15 and HU [1,100],
the beginning part is linear and the tail is exponential (insets in the two plots on
the second row of Figure 14).

The clustering coefficients C, the assortativity coefficients ρD and the aver-
age path lengths l of all the generated hypergraphs H2, H3, H5, H7, H10, H15,
HU [1,100] and Hpow are reported in Table 3. All the generated hypergraphs exhibit
high clustering coefficient, high assortativity coefficient and short average path
lengths as what real-world affiliation networks show.

6 Conclusion

Many real-world networks, especially social networks, exhibit an overlapping com-
munity structure. Affiliation networks are an important type of social networks.
We propose a hypergraph representation which reproduces the clique structure
of affiliation networks. We give analytically the topological and spectral proper-
ties of affiliation networks. We also present formulas which facilitate the compu-
tation for characterizing the real-world affiliation networks of ArXiv coauthorship,
IMDB actors collaboration and SourceForge collaboration. We propose a preferen-
tial attachment based growing hypergraph model for affiliation networks. Numeri-
cal analyses show that our hypergraph model with power-law distributed member-
ship numbers reproduces the power-law distributions of group size, group degree,
overlapping depth, individual degree and interest-sharing number of real-world af-
filiation networks, and reproduces the properties of high clustering, assortative
mixing and short average path length of real-world affiliation networks.
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Figure 1 The example graph to illustrate the community structure. The nodes denote
individuals. The communities consist of links of the same color and the
shared thick black link(s), and the nodes incident to the links of both colors.
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Figure 2 The bipartite graph representation of the affiliation network of the NAS
group.
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Figure 3 (a) The hypergraph representation of the network described in Table 1. The
hyperlinks are the blue ellipse-like closed curves. The nodes are the disks with
different colors marked with Roman numerals. A node and a hyperlink are
incident if the node is surrounded by the hyperlink. The hyperlinks and nodes
represent the individuals and the communities respectively. Individuals
participate in multiple communities, implying that the communities overlap
with each other. (b) The line graph of the hypergraph in (a), which is a
simple graph. The nodes here denote the individuals while the communities
consist of links of the same color and the nodes which are incident to them.
Note that this graph is also the line graph of the hypergraph.
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Figure 4 The probability density distribution of group size s, group degree u, group
overlapping depth β (the first row from left to right), individual membership
number m, individual degree d, individual interest-sharing number α (the
second row from left to right) of ArXiv coauthorship networks of ”General
Relativity and Quantum Cosmology” category.
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Figure 5 The probability density distribution of group size s, group degree u, group
overlapping depth β (the first row from left to right), individual membership
number m, individual degree d, individual interest-sharing number α (the
second row from left to right) of ArXiv coauthorship networks of ”High
Energy Physics - Theory” category.
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Figure 6 The probability density distribution of group size s, group degree u, group
overlapping depth β (the first row from left to right), individual membership
number m, individual degree d, individual interest-sharing number α (the
second row from left to right) of IMDB movie actors collaboration networks.
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Figure 7 The probability density distribution of group size s, group degree u, group
overlapping depth β (the first row from left to right), individual membership
number m, individual degree d, individual interest-sharing number α (the
second row from left to right) of the SourceForge software collaboration
network.
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Figure 8 The probability density distribution of group size s for H2, H3, H5, H7,
H10, H15, HU [2,121], and Hpow. They all have 5020 groups (nodes) and 5020
hyperedges (individuals).
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Figure 9 The probability density distribution of group degree u for H2, H3, H5, H7,
H10, H15, HU [2,121], and Hpow.
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Figure 10 The probability density distribution of group degree u for H3, H5, H7,
H10, H15, and HU [2,121] with bin size of 1, showing oscilation.
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Figure 11 The probability density distribution of group overlapping depth β for H3,
H5, H7, H10, H15, HU [2,121], and Hpow. They all have 5020 groups (nodes)
and 5020 hyperedges (individuals).
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Figure 12 The probability density distribution of individual degree d for H2, H3, H5,
H7, H10, H15, HU [2,121], and Hpow. They all have 5020 groups (nodes) and
5020 hyperedges (individuals).
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Figure 13 The probability density distribution of individual degree d for H2, H3, H5,
H7, H10, H15, HU [2,121], and Hpow in linear-linear scale. They all have 5020
groups (nodes) and 5020 hyperedges (individuals).
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Figure 14 The probability density distribution of individual interest-sharing number
α for H2, H3, H5, H7, H10, H15, HU [2,121], and Hpow. They all have 5020
groups (nodes) and 5020 hyperedges (individuals).
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