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Abstract 

The throughput optimality ofpriority management strate- 
gies in a single buffer has been studiedfor a general aggre- 
gate arrival law. The tight upper bounds found are useful 
to understand optimality in utilization of specijic priority 
schemes such as push-out buffer (POB) and partial buffer 
sharing (PBS). 

This paper further focuses on the maximum allowable 
load pmaa versus the priority mix a for a PBS and a ran- 
dom push-out buffer (R POB) of size I( for a wide variety 
of arrival processes. The role of priorities in a special type 
of bursty arrivals, the compound Poisson process with con- 
stant burst length and random priority assignment within 
the burst, is found to be less pronounced than that of 'pure' 
Poisson arrivals. On the other hand, the results for ON- 
OFF cell arrivals modeled by a MMPP(2), MMPP(3), and 
higher order Markov Modulated Processes closely follow 
the behaviour of the maximum allowable load in the R POB 
with Poisson arrivals, howevel; scaled to lower loads. The 
results indicate that the priority mix distribution within the 
aggregate arrival flow influences the shape of pmaz(a)- 
curve more than the aggregate arrival distribution itsev 

1. Introduction. 

This work focuses on connection admission control 
(CAC) [2, 71 of a single buffer with a two-type (high and 
low) priority management [5].  The quantity of interest for 
CAC is the maximum allowable load that a system can bear 
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while still offering the requested quality of services (QOS). 
The QOS measure considered here is the cell loss ratio. 
Specifically, subject to the required cell loss ratios for both 
priorities, clrI; and cl&, we determine the maximum al- 
lowable traffic intensity pmao as a function of the priority 
mix Q and the buffer size K ,  where Q denotes the probability 
that an arriving cell has high priority. 

The literature abounds in suggestions to tackle the CAC 
problem in ATM switches. A smaller number of articles 
concentrates on a priority management. Most among those 
discuss a particular priority scheme and then proceed to 
evaluate the performance of the priority algorithm in a single 
buffer [3,5,6] or in a shared buffer for which we further refer 
to our work [lo]. Generally one finds that the introduction 
of priorities enhances the number of customers that can be 
served adequately at the expense of an increased complexity 
of the control algorithm. 

Among buffer management protocols [5, 61, the push- 
out buffer (POB) and the partial buffer sharing (PBS) are 
most well-known. Although these priority schemes have 
been studied in the literature [SI, the optimality of a priority 
scheme for various queue sizes and cell loss ratio require- 
ments has not been discussed in detail. In a POB, the push- 
out mechanism acts only if the buffer is completely filled 
and a high priority cell arrives. If there are low priority cells 
in the buffer, the arriving high priority cell pushes the low 
priority cell nearest' to the server out, all cells behind the 
pushed-out low priority cell ripple through over one posi- 
tion towards the server, and the arriving high priority cell 
takes place at the tail of the queue in order to preserve cell 

'This push-out discipline is FIFO. Other alternatives are LIFO and 
random push-out. 
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sequence integrity. A PBS mechanism is somewhat simpler: 
if the buffer occupancy is below a threshold T, both low and 
high priority cells are allowed to enter, otherwise only high 
priority cells are accepted until complete buffer occupation. 

The outline is as follows. In Section 2, we investigate the 
throughput optimality of a priority system in a single buffer 
and derive two upper bounds. In Section 3, we introduce the 
R POB and compare for Poisson arrivals the performance 
of partial buffer sharing to that of the push-out scheme. The 
main advantage of introducing the R POB is that, first, it 
serves as an excellent approximation for the conventional 
FIFO push-out, and second, it allows us to perform exact 
calculations of the maximum allowable load for very general 
arrival laws. In the last Section 4, we introduce burstiness 
in the arrival pattern for the R POB: we start with a com- 
pound Poisson process and then turn to arrivals generated 
by a Markov Modulated Process with N states (MMP(N)). 
The performance of R POB and PBS are compared for an 
MMP(3). A literature overview and the detailed derivation 
of the state equations for the R POB with MMP(N) cell 
arrivals are presented elsewhere [ 111. 

2. General relations. 

2.1. Definitions. 

By virtue of the slotted nature of ATM, we concentrate 
on discrete-time systems where the servers work determin- 
istically. The time unit, further called a time slot, equals the 
time needed to serve precisely one cell. If pi denotes the 
fraction of served i priorities per time slot, we have 

where the subscripts refer to the aggregate (A), the low (L) 
and the high priority cells (H) respectively. 

If a denotes the probability that an arriving cell has high 
probability, the mean number of arrivals per time slot equals 

where XH = ~ X A  and XL = (1 - & ) A A .  Defining the 
traffic intensity as usual by p = ;, we observe that for a 
deterministic server holds that A A  = P A .  

Since the system has a finite capacity of I< queueing 
positions with an additional one for the server, in general 
cell loss will occur. We denote the cell loss ratio clr as 
the mean number of cells lost per time slot over the mean 
number of arrived cells of that type. Again the total number 
of lost cells consists of both priorities. From this fact we 

deduce a useful relation2, 

X A  clrA = X L  clrL + AH clrH 
clrA(o) = (1 - a )  clrL(a) + a clrH(a) (4) 

The last relation explicitly expresses the dependence on a = 
h). In addition, since we can write the aggregate cell loss 
AA 

ratio as a weighted mean, clrA = 'lr xLL++x; n p  we 
immediately find that C ~ T H ( Q )  5 clrA(a) 5 clrL(cr) if we 
assume that clrjy (a )  5 clrL (a) .  

The cell loss ratio of the aggregate cell stream, clrA, in 
the corresponding system without the priority management 
is exactly described by the loss probability of that corre- 
sponding G/D/l/K system. Formally, fixing all other traffic 
descriptors independent of the load P A ,  we have 

h 

( 5 )  

where fK (z) is an increasing, continuous and positive func- 
tion of z bounded by 0 5 f ~ ( z )  5 1 and non-increasing 
in I<. A priority mechanism can never lower the aggregate 
cell loss, hence, we have 

and alternatively, for a. same aggregate cell loss ratio re- 
quirement clrA = clrA(a) = c l r i  

h 

z L P ( a )  (7) 

2.2. Formal solution. 

We are now in a position to treat the problem in more 
detail: Given a priority management protocol, determine 
the maximal trdfic intensity P A  subjected to the user's cell 
loss ratio requirements ( c h i ,  clr;) such that clrL(a) 5 
clri  and clrH(a) 5 clrk < clr:. The latter inequality 
means that clr; should be sufficiently smaller than clri  
in order for the priority scheme to have impact. Indeed, 
when clr& -+ c l r i ,  and hence, clrk -+ c h i ,  the priority 
mechanism is abused since it is forced to be independent of 

Since f~ (z) is monotonously increasing, the inverse 
function exists justifying to rewrite ( 5 )  as = fi' (cIrA). 
Further, the inverse function g-'(z) of an increasing func- 
tion g(z) is increasing. Using (7), we have p ( a )  5 
fE'(clr;I). Hence, the maximum allowable load pmaz (a )  
is found where clrA(a) is maximal. Specifically, from (4) 
and the requirements on the cell loss ratios, we have 

a. 
h 

clrA(a) 5 (1 - a) c lr i  + a clr; (8 )  

*An alternative relation of the same nature is 

X A ( 1  - c l r A )  = (1 - P[ol)PA (3) 

where q[O] is the probability that the buffer is empty. 
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offering an upper bound for the maximal allowable load 

prr las(a) I ((1 - a )  clri  + a clrh) (9) 

Since the right hand side of (8) is decreasing in a due to the 
fact that clrL < c l r i ,  so is (9). The upper bound (9) does 
not depend on the management protocol and indicates that 
for every value of a E [0, 11 both requirements, clrL(a) = 
clr; and c l r H ( a )  = clr; < car; are met. We will now 
show that the equality sign in (9) does not hold for all a 
emphasizing that (9) forms an unattainable upper bound. 
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Figure 1. The effect of the threshold T on the performance of 
PBS in a relatively small buffer of size IC = 15 for the cell loss 
ratio couple lo-''). For comparison purposes, also the 
performance of the POB is shown in dotted line. 

From the definition of the priority mix a and the fact that 
P A  = AA, the following inequality arises 

because A,(a) is increasing in a. Notice that a similar 
condition for low priority cells p A ( a )  < e is always 
fulfilled by (9) since the left hand side is decreasing in CY 
while the right hand side increases in a. The inequality 
(10) poses a lower upper bound than (9) for an a-region 
near a = 1 which can be achieved by one priority manage- 
ment protocol as shown below. Invoking the characteristic 
property of a deterministic server (l), we can write 

The priority management algorithm that maximizes (1 1) for 
a close to 1, will minimize the number of served low priority 
cells. The extreme, of course, is a zero service for the low 
priority cells p~ = 0 as almost realized in a head of the line 
preemptive push-out discipline and precisely met by a PBS 
scheme with threshold T = 0. 

In conclusion, the maximum allowable load pmax is 
bounded for low a by (9) and for high a by (10). The 
upper bounds (10) and (9) coincide at a = 1, but have op- 
posite curvatures for a 5 1. In addition around a 5 1 the 
bound (10) is smaller than (9). Hence, there must exist a 
certain value of a, cyc, where both upper bounds intersect. 
A system that closely attains these upper bounds as a HOL 
POB possesses a maximum allowable load pmax ( a )  that is 
not differentiable with respect to CY at ae. 
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Figure 2. The normalized optimal threshold in PBS 
for various buffer sizes A' but fixed cell loss ratio couple 
(10 -4 ,10 -~0) .  

Since the cell loss decreases with increasing buffer size K 
both extremes pmax (0) and pmax (1) will tend to each other 
for sufficiently large I<. As a consequence, the critical point 
ac will tend to unity for large I<. This demonstrates that 
a priority management is almost useless when large buffers 
can be utilized (e.g. when time delay constraints are unim- 
portant). Hence, when two cell loss ratio requirements are 
specified, the role of loss priorities in ATM is questionable 
for large buffers since the complexity of the control mech- 
anism with priorities is hardly compensated by the gain in 
performance. 

3. Poisson arrivals. 

This Section compares two standard priority schemes, 
the push-out buffer (POB) and partial buffer sharing (PBS) 
for Poisson arrivals. The emphasis lies on a new introduced 
model, the RPOB, that is further studied under bursty arrival 
processes in the next Section. 

3.1. Partial Buffer Sharing (PBS). 

The maximum allowable load for PBS is strongly de- 
pendent on the threshold T < I<. We have computed the 
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threshold Topt that maximizes the aggregrate load using the 
discrete-time version of the model of Kroner et al. [SI. The 
effect of the threshold T on the performance is illustrated 
in Fig. 1. For small values of T the low priority cell loss 
ratio requirement clr; is dominating and the opposite is 
seen for high values of T.  The intermediate values clearly 
introduce two a regions similar to that of the POB. The 
desired maximum allowable load is the maximum envelope 
of all these curves and is a concatentation of regions alter- 
natingly dominated by the high and low priority cell loss 
requirement. 
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Figure 3. The maximum allowable load in PBS with optimized 
threshold versus 01 and the minimum of the upper bounds (10) and 
(9) for various large buffer sizes K but fixed cell loss ratio couple 

io-1o). 

The normalized optimal theshold % versus a is shown 
in Fig. 2 for various K values. Together with Fig. 1, 
the plot illustrates that, due to the integer character of T ,  
analytic optimization is hardly feasible for small IC. The 
longer the buffer size IC, the more integer values of T there 
are available resulting in a smoother maximum allowable 
curve. Fig. 3 plots the maximum allowable load pmar ( a )  
versus a for large values of IC and the minimum of the 
upperbounds (10) and (9). This graph clearly demonstrates 
how closely PBS (with optimized threshold) approaches the 
best possible performance for large a but also that it fails to 
treat the low priorities in an optimal way. 

3.2. The Push-Out Buffer (POB). 

For small a,  the aggregate cell loss ratio will be mainly 
determined by clrL (a )  since there are hardly any high pri- 
ority cells. Moreover, since generally clr& << c h i ,  we 
have from (4) approximately that ~ l r ~ ( a )  M clrL( 1 - a). 
Invoking (9) we conclude that the maximal allowable load 
is dominated by the clr: requirement. In this region, the 

cell loss ratio requirement for the low priority cell is pre- 
cisely met ( c l r ~ ( a )  = c h i ) ,  while for the high priority 
cells clra (a) < Increasing a or the average num- 
ber of high priority cells causes c l r ~ ( a )  to increase until 
c l r ~ ( a )  = clr&. At this point denoted as Qk, both cell 
loss ratio requirements are precisely met (and this point is 
unique as follows by a continuity argument). 
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Figure 4. The maximum allowable load v e m s  the priority mix 
01 for a FIFO FQB [5] and a R POB of size K = 40 for the cell 
loss requirements c l r i  = and clr; = IO-’. we have ak.0 
drawn the both upper bounds (9) and (IO). 

The situation is more complex for high values of a. For 
sufficienly high a, pmat(a) follows from (11). The prob- 
lem is how to determine the service rate p ~ ( a )  for the low 
priority cells. For Values of a just exceeding ak, the load 
will be limited by the high priority requirement such that 
c l r ~ ( a )  = clr& while c l r ~ ( a )  < cl$,. However, since 
clr$ << clr i ,  we find that c l r ~ ( a )  still dominates the 
aggregate cell loss ratio ~ l r ~ ( a ) .  When a > a k ,  the loss 
in low priority cells will be substantial due to the push-out 
mechanism leading to c l r ~ ( a )  NN c lr~ , ,~(a) .  The calcula- 
tion of the push-out probability is exceedingly complicated 
and we believe it is only possible through solving the tran- 
sition probability matrix. 

We have investigated two types of POB: a conventional 
FIFO POB (as studied by Kroner et al. in continuous time 
[ 5 ] )  and a R POB. The delimiter refers to the service dis- 
cipline. Thus, R (random) means that all cells available 
have equal probability to be served as opposed to FIFO 
where always the cell in the position nearest to the server (or 
with the longest waiting time) is removed from the queue. 
Clearly, the R POB does not obey the sequence integrity. 
However, as the cell loss ratio only weakly depends on the 
sequence order, the maximum allowable load of the R POB 
is expected to closely approach that of the FIFO POB, pro- 
vided the cell loss ratio requirements are sufficiently strin- 
gent (clr* < 0.1). Indeed, for both POB types and for 
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Poisson arrivals3 the comparison in the maximum allow- 
able load pmaz(a)  versus 01 shows as illustrated in Fig. 4 
that both priority management systems exhibit very similar 
performances for pmar.  
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Figure 6. Calculation of the maximum allowable load pmas 
for various buffer sizes K versus the priority mix cy for the cell loss 
requirements c lr i  = and clr; = lo-''. The curves are 
obtained for the R POB 

a 
Figure 5. Calculation of the maximum allowable load pmaI 
for various buffer sizes IT versus the priority mix cy for the cell loss 
requirements clr; = and clr; = lo-'. The curves are 
obtained for the R POB 

3.3, POB versus PBS. 

In Fig. 5 and 6, we present pmaz(a) for the R POB 
and PBS with optimized threshold T.  We show two sets of 
cell loss ratios (clr;, dr;): as 
suitable representative priority classes in ATM. For small 
buffer sizes I<, POB is superior over the whole priority mix 
region. However, in case K is large, PBS can be controlled 
closer to the upper bounds (9) and (10) than a POB and we 
observe that PBS can guarantee a slightly higher load for the 
high priorities in an a-region close to unity. This fact was 
also observed by Chang and Tan[l]. But, once the priority 
mix a 5 a k ,  the POB approaches the upper bound (9) and 
is undoubtedly the better strategy. 

As an overall conclusion, the POB offers a better treat- 
ment of low priorities, while PBS can be engineered (by 
properly adjusting the threshold 7') to obtain a higher load 
for high priorities when a > a k .  

This analysis shows that a priority strategy combining 
the benefits of both POB and PBS such as the threshold 
push-out proposed by Suri et al. [SI can result in a higher 
performance for all a. However, the implementation of the 
latter, more refined priority schemes is undoubtedly more 
complex than that of the conventional POB. 

~ 

3Also for MMP(N) arrivals, we found viasimulations that the agreement 
is very good. 

3.4. R POB fit for Pmas(a). 

Since pmaz(a) of a R POB in the [ O , a k ]  interval is 
sufficiently close approximated by (9) as illustrated in Fig. 
4, our objective is to find an estimate in [ak, 11 accurate to 
within 1%. 

Suppose for the moment that the value of a k  is known. 
We found that the data of the maximum allowable load 
determined via a matrix solution of the R POB is well fitted 
by 

the equation (12) can be specified as 

where P = oz 1 - h. An elegant approximation 
f f k t P  

for &'(z) in a discrete-time M/D/l/K is found in [ l l ,  91. 
The proposed fit (13) is a kind of weighted mean between 

a = a k  and a = 1 with weight function (a  + P ) - ~ .  Apart 
from (Yk, the only unknown is p for which we found 0.5 5 
p 5 1. The result is not very sensitive to variations in p 
(in contrast to ak) when aiming at an accuracy of 1%. The 
remainder is therefore devoted to the study of a k .  
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a 

Figure 7. Comparison of the maximum allowable load pmaZ 
versus the priority mix a computed via different methods: the FIFO 
POB by Kroner et al. [5],  the R POB and our proposed fit ( 13). 

For a fixed ratio ,f? = 3 but variable I<, we observed 
thatlogak = A/Ii'+B. Ontheotherhand,forafixedbuffer 
size K ,  we found that logag is linear in logp for both the 
high as low asymptotic values. In practical applications, ,f? 
is often smaller than low3 and the low asymptotic regime 
is adequate to use. After rather extensive fitting this regime 
can be properly modelled as 

(yk M lo-& (&;)& p+ (14) 

Figure 7 compares the quality of the fit procedure described 
above with the FIFO POB [5] and the R POB. This plot 
exhibits that about a 1% accuracy is achieved. 

4. Introducing burstiness in the arrival process. 

So far, a Poisson arrival law was considered. Since ATM 
traffic is very likely to be bursty, inclusion of this charac- 
teristic is in order. First, we will confine ourselves to a 
compound Poisson arrival process, described on a slot-per- 
slot basis by the generating function e-A(l-B(z)), where the 
generating function B(z )  specifies the distribution of the 
number of cells within a (Poissonean) burst. Then the per- 
formance of the R POB and PBS is investigated for arrivals 
generated by a Markov Modulated Process with N states 
(MMPOV)). 

4.1. Compound Poisson Process. 

As an example, we take B(z )  = oB, meaning that each 
burst precisely consists of B cells and the bursts arrive ac- 
cording to a Poisson law with parameter A, hence the load 
(traffic intensity) equals AB. We have compared, only for 

0.0 0.2 0.4 0.6 0.8 I .o 
a 

Figure 8. The maximum allowable X (the load per burst B) in 
the R POB versus the priority mix a for various burst lenghts B but 
fixed buffer size K = 40 and fixed cell loss ratios C ~ T ;  = and 
clr& = lo-''. Curves with random priority assignment within a 
burst are drawn in full line, while the dotted line represents the case 
where all cells in a burst have the same priority. 

the R POB, two extreme cases of priority distribution within 
a burst. In the first case, all cells in a burst have precisely 
the same priority and the probability to have a high priority 
burst is a. In the second case, the cells within a burst have 
high priority with probability a and each cell is assigned a 
priority independent of the others. Fig. 8 plots the maximum 
allowable X for both cases. 

In the case of random priority assignment, the result 
shown in Fig. 8 demonstrates that introducing 'uncorre- 
lated burstiness' makes pmaz = BA less dependent on a 
for burst lengths B small compared to the buffer size Ii', 
a conclusion previously drawn by Garcia and Casals [4]. 
When the burst length B approaches K ,  the dependence of 
pmaz on a increases slightly. 

In the case of same priority assignment in a burst, the 
performance is, as expected, always lower than in the ran- 
dom priority assignment case. Actually, we found that the 
performance (pmaz) in the R POB of size I< with a com- 
pound Poisson arrival with parameter X and burst size B 
(same priority assignment in a burst), is precisely the same 
as the performance in a R POB of size 8,  when this fraction 
is an integer. 

4.2. Markov Modulated Poisson Process (MMPP). 

We refer to [ll] for the detailed derivation of the R POB 
with MMP(N) arrivals in discrete-time. The MMPP(N)- 
PBS has been computed by extending the results of Kroner 

A possible way to relate the characteristics of the actual 
arrival process to the set of parameters describing an N-state 

eral. [SI. 
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1-a 
n 

a P 

1-P 

Figure 9. The Markov chain for N = 2. 

MMP, is to consider the arrival process as a succession of ON 
and OFF slots. During an OFF slot, no cells are generated, 
while during an ON slot, the number of cell arrivals in each 
ON-state is assumed to be Poisson distributed, with mean A. 
Let a denote the probability that an arbitrary slot is an ON 
slot. 

In the case N = 1, the cell arrival process is i.i.d. and 
can be described on a slot-per-slot basis by the probability 
generating function (PGF) 

A ( t )  = 1 - a + (T e'('-') (15) 

Defining an ON (OFF) period as a consecutive number 
of ON slots, then each ON period is followed by an OFF 
period (and vice versa), and the length of the respective 
ON and OFF periods expressed in units of time slots is 
geometrically distributed with parameter a and mean i, 
respectively parameter 1 - a and mean A. For fixed 
values of the overall load aX, low values of U means that all 
cell arrivals are grouped into a relatively small number of 
slots, while values of (T close to 1 imply that the cell arrivals 
are spread over virtually all slots. Numerical examples (Fig.. 
10, 12) illustrate the strong impact of a on the admissible 
aggregate load. In a two-state model (Fig. 9) with modulator 

and Poisson arrival rates h(2 )  = diag{A,O} (defined in 
[ 1 l]), the length of the ON periods is geometrically dis- 
tributed with parameter a and mean 1/(1 - a),  while 
the length of the OW periods is geometrically distributed 
with parameter ,f3 and mean 1/(1 - p). Hence, when 
(Y = 1 - ,B = CT,  the two-state model reduces to the pre- 
vious case (N = 1) of i.i.d. arrivals. The probability that 
an arbitrary slot is an ON slot is given by 

1 - P  
2 - a - p  

a =  

Notice that the steady state vector 7r of the modulator P(2)  
equals 7r1 = a and 7r2 = 1 - a. We further define K as the 

ratio of the mean length of an ON (OFF) period to the mean 
length of an ON (OFF) period in the case of i.i.d. arrivals, 

A I - ( T  U 
K = - = -  

1 - a  1 - p  

0.25 I-.-\ 

o . a t .  1 '  1 '  ' " " " " " " ' d 
0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 

(I 

Figure 10. The maximum allowable load pmalF in the R POB 
versus the priority mix cy. The arrival process is generated by a 
MMPP(2) for three values of D (16). In each plot, n (17) increases 
from K = 1.2.4 to 8. The buffer size K = 10 as well as the cell 
loss ratios c f r ;  = are the same for all 
curves. 

and cf l .2  = 

The parameter set (a, K, A) can now be used instead of 
(a, p, A) to characterize the two-state MMPP. Large values 
of K indicate that on average successive ON and OFF periods 
are long compared to the i.i.d. case (N = 1). Therefore, K 

can be regarded as a measure for the burstiness in the arrival 
pattern. 

In the three-state MMPP (Fig. 11) with modulator 

0 
P(3)  = a 2  

4(1 - P )  (1 - d ( 1  - P I  P 
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andPoissonarrivalsratesh(3) = diag{X, X,O}, weconfine 
ourselves to a model with two types of ON periods, repre- 
sented by ON1 and ON2, both geometrically distributed, 
with parameter a1 and a2 respectively. 

011 "2 

Figure 11. The Markov chain for N = 3. 

As before, the length of the OFF periods is geometrically 
distributed with parameter p. Each OFF period is followed 
either by an ON1 period, with probability q,  or by an ON2 
period, with probability 1 - q. The overall distributionof the 
length of an ON period is a weighted sum of two geometric 
distributions which allows us to investigate the impact of the 
variance in the distribution of the length of an ON period on 
the admissible load. To that extent, we define R as the ratio 
of the variance of the length of an ON period in this model 
to the variance of the length of an ON period in the previous 
case N = 2, 

where 

I-a, ' 1-a2 

I-p 1 - 0  I-a2 

U =  1-+9-;+b 

Alternatively, the parameter set (ai, a2, p, A) can be ex- 
pressed in terms of (U, IC,R,A) as 

p = 1 -  
U 

IC 
- 

whereS = (R- l ) n ( ~ + a -  1). For fixedvalues of a, IC and 
q, the variance of the ON periods and, hence R, is bounded 

(24) 

By choosing q is sufficiently small, (24) indicates that any 
value of R can be realized. 

1 - q  K S a - 1  
by 

R - 1 < 2 -  
4 K 
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Figure 12. The maximum allowable load pmos in the R POB 
and PBS versus the priority mix a. The arrival process is generated 
by a MMPP(3) for three values of a (19). In each plot, K = 2 and 
q = 0.2 are constant, while R increases as R = 1,2,3 and 5. The 
buffer size A' = 10 as well as the cell loss ratio's c l rz  = IOv4 
and clrfi = lo-'' are the same for all curves. 

Figures 10 and 12 show the behaviour of pmuI for R 
POB versus a for various combinations of the parameters 
U ,  K and R for a relatively small buffer IC = 10. As the 
shape is similar to that with pure Poisson arrivals, the re- 
sults may hint that a MMPP(N) with Bernouilli distribution 
with parameter Q: for the priorities can be replaced by a 
corresponding Poisson process, however, with an adjusted 
parameter A.  In addition, the scaling rules in I< proposed in 
Section 3.4 seem applicable. For the three-state model, the 
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performance of PBS is also shown (Fig.12) clearly demon- 
strating a still higher superiority of R POB as burstiness is 
involved. 

4.3. Conclusions on priorities and burstiness in the 
R POB. 

Our study shows that the shape of the performance curve 
of the R POB is less sensitive to the bursty character of 
the aggregate arrival process than to the priority distribution 
process. The compound Poisson arrival process with each 
arrival consisting of a packet of B cells with random prior- 
ity assignment in a burst has a definitely different behaviour 
than that of a Poisson or MMP(N) process. For Markov 
chains with a larger number of states N > 3 or with a cell 
emission process different from Poisson (e.g. state i emits 
always exactly ai cells), we found an analogous behaviour 
as in the MMPP(2) or MMPP(3). The results seem to in- 
dicate that for increasing burstiness or correlation in the 
priority distribution (as in the compound Poisson process), 
the optimal performance is less influenced by priority in- 
formation (a flatter behaviour of pmax versus a). On the 
other hand, as expected, the value of pmax for a given value 
of a is very sensitive to the details (e.g. burstiness) of the 
aggregate arrival process and a Poisson arrival law leads to 
the best performance. 

5. Summary. 

The optimality of priority management strategies for a 
single buffer under a general arrival law has been studied. 
The tight upper bounds found are useful to understand opti- 
mality in utilization of specific priority schemes as illustrated 
for Poisson arrivals in case of the push-out buffer and partial 
buffer sharing. 

Further, this paper has focused on the maximum allow- 
able load pmax for R POB and PBS versus the priority mix 
a for a wide variety of arrival processes. The priority distri- 
bution within bursts and the details of the aggregate arrival 
process are decisive quantities for the performance. The 
latter strongly influences (lowers) the value of pmux for a 
certain a,  but hardly the shape of pmux versus a. The pri- 
ority assignment distribution within the aggregate cell flow 
is found to change the form of the pmax vs. a-curve. 
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