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Objective: An important problem in systems neuroscience is the relation between complex structural and
functional brain networks. Here we use simulations of a simple dynamic process based upon the susceptible–
infected–susceptible (SIS) model of infection dynamics on an empirical structural brain network to investigate
the extent to which the functional interactions between any two brain areas depend upon (i) the presence of a
direct structural connection; and (ii) the degree product of the two areas in the structural network.
Methods: For the structural brain network,we used a 78× 78matrix representing knownanatomical connections
between brain regions at the level of the AAL atlas (Gong et al., 2009). On this structural network we simulated
brain dynamics using a model derived from the study of epidemic processes on networks. Analogous to the SIS

model, each vertex/brain region could be in one of two states (inactive/active) with two parameters β and δ de-
termining the transition probabilities. First, the phase transition between the fully inactive and partially active
state was investigated as a function of β and δ. Second, the statistical interdependencies between time series
of node states were determined (close to and far away from the critical state) with two measures:
(i) functional connectivity based upon the correlation coefficient of integrated activation time series; and (ii) ef-
fective connectivity based upon conditional co-activation at different time intervals.
Results:Wefind a phase transition between an inactive and a partially active state for a critical ratio τ=β/δ of the
transition rates in agreement with the theory of SISmodels. Slightly above the critical threshold, node activity in-
creases with degree, also in line with epidemic theory. The functional, but not the effective connectivity matrix
closely resembled the underlying structural matrix. Both functional connectivity and, to a lesser extent, effective
connectivity were higher for connected as compared to disconnected (i.e.: not directly connected) nodes. Effec-
tive connectivity scaled with the degree product. For functional connectivity, a weaker scaling relation was only
observed for disconnected node pairs. For random networks with the same degree distribution as the original
structural network, similar patterns were seen, but the scaling exponent was significantly decreased especially
for effective connectivity.
Conclusions: Evenwith a very simple dynamicalmodel it can be shown that functional relations between nodes of
a realistic anatomical network display clear patterns if the system is studied near the critical transition. The de-
tailed nature of these patterns depends on the properties of the functional or effective connectivity measure that
is used. While the strength of functional interactions between any two nodes clearly depends upon the presence
or absence of a direct connection, this studyhas shown that the degree product of the nodes also plays a large role
in explaining interaction strength, especially for disconnected nodes and in combination with an effective con-
nectivity measure. The influence of degree product on node interaction strength probably reflects the presence
of large numbers of indirect connections.
© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

There is a growing consensus that the brain can be understood as a
complex network both at the structural as well as the functional level
(Bassett and Bullmore, 2006; Bullmore and Sporns, 2009; van den
Heuvel and Hulshoff Pol, 2010). The network approach has been
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motivated after recognizing that higher brain functions cannot be un-
derstood as the sum of local activations and that they require a concept
of emergent functions in a network that combines segregation and inte-
gration (Sporns, 2013). The study of complex brain networks has been
stimulated by the advent of network science, a combination of graph
theory, statistical mechanics and dynamical systems theory, and by
the progress in structural and functional imaging techniques such as
MRI, EEG and MEG (Stam and van Straaten, 2012; van Straaten and
Stam, 2013). Brain networks are characterized by a combination of
local connectedness aswell as global integration; features characteristic
of so-called “small-world” networks (Watts and Strogatz, 1998; Sporns,
2013). At a higher level, brain networks consist of sub-networks or
modules (resting state networks in the fMRI literature) that sub-serve
higher level functions and are interconnected in a hierarchical manner
(Kaiser and Hilgetag, 2010; Park and Friston, 2013). Brain networks
also have scale-free properties, with a relatively large number of highly
connected nodes or “hubs”, in particular in the default mode network
and association cortex (Barabasi and Albert, 1999; van den Heuvel
et al., 2008). Hubs have been shown to be crucially important for normal
cognition, but may also constitute vulnerable spots in neurodegenera-
tive disease (van denHeuvel et al., 2009; de Haan et al., 2012). Together
a group of strongly interconnected hub areasmay form a “rich club” that
functions as a core system for information flow in the brain (van den
Heuvel et al., 2012; van den Heuvel and Sporns, 2013).

A complex topology of brain networks has been demonstrated in
structural as well as functional networks. On a relatively short time
scale, where the effects of neuronal growth and learning can be ignored,
structural networks can be understood as fixed anatomical connections
between distributed brain areas. Functional networks reflect a dynami-
cal process taking place on these fixed structural networks and can be
reconstructed by estimating statistical correlations between time series
of neural activity of the brain areas (Pereda et al., 2005). Functional con-
nectivity refers to the existence of statistical correlations, while effective
connectivity aims to identify directed causal influence of one brain area
on another (Gerstein andAertsen, 1985; Friston et al., 2013). How struc-
tural brain networks determine functional brain networks is an open
question in brain network research (Rubinov et al., 2009; Honey et al.,
2010; Ponten et al., 2010). A better understanding of this relationship
could help to predict how changes in brain network structure can give
rise to abnormal dynamics and disease (Honey and Sporns, 2008;
Kaiser, 2013; van Dellen et al., 2013).

Evidence from empirical studies suggests that the presence of a di-
rect anatomical connection between two brain areas is associated
with stronger functional interactions between these two areas (Honey
et al., 2007, 2009; Rubinov et al., 2009; Hermundstad et al., 2013). How-
ever, functional interactions have also been detected between brain
areas without direct anatomical connections (Honey et al., 2007,
2009). Several studies have attempted to address this problem by sim-
ulating brain dynamics on structural networks based upon anatomical
data from animals or humans (Honey et al., 2007, 2009; Rubinov et al.,
2009; Ponten et al., 2010; Deco et al., 2011, 2012, 2013). Using a struc-
tural network of themacaque and a nonlinearmodel of brain dynamics,
Honey et al. (2007) showed that functional networks strongly resemble
structural networks at long time scales (minutes), but not at short time
scales (seconds). These results were confirmed in a study using human
structural brain network data (Honey et al., 2009), where it was shown
that part of the functional connectivity could be due to indirect (length
two) connections between brain areas. Another important result is the
observation that functional networks resemble structural networks
more strongly if the dynamical system is close to a phase transition
(Rubinov et al., 2011; Haimovici et al., 2013). This is of interest since
critical brain dynamicsmay be an optimal state for information process-
ing (Shew and Plenz, 2013). Finally, there is growing evidence that the
details of the dynamical system may be relatively unimportant for un-
derstanding the structure function relations if the system is near a crit-
ical point (Deco et al., 2012; Haimovici et al., 2013). This suggests that
very simple dynamical systems could be used to investigate the func-
tional and effective connectivity between brain areas as a function of
their topological relation.

In the present study, a simple dynamical model, derived from the
theory of epidemics, is applied to simulate brain dynamics on a structur-
al network of 78 interconnected brain regions based uponDTI data of 80
healthy subjects (Gong et al., 2009). The dynamical model was
analogous to the SIS (susceptible–infected–susceptible) model of
infection dynamics, where each node (brain area) can be in two states
(excitable and activated) with the transitions determined by two tran-
sition probabilities β and δ. The SIS model on networks is well-studied
and we can benefit from its mathematical knowledge concerning this
type of dynamics, for instance with respect to the epidemic threshold
(Van Mieghem et al., 2009; Castellano and Pastor-Satorras, 2010;
Boguñá et al., 2013; O'Dea et al., 2013;Wang et al., 2013).We addressed
the following questions: (i)What is the relation between structural and
functional networks close to and further away from the epidemic
threshold and do the results for the SIS model on networks resemble
those for more sophisticated models such as various types of neural
mass models? (ii) Which aspects of structure function relations are de-
tected bydifferent connectivitymeasures? For this purposewe compare
simplified functional and effective connectivity measures. (iii) Does
structural degree of brain areas influence the strength of functional
interactions in the absence of a direct connection?

2. Methods

2.1. Structural connection matrix

We used a binary symmetric structural matrix (where connections
are either absent or present) based upon the work of Gong et al.
(Gong et al., 2009). In this study in 80 healthy subjects, connections
(edges) between 78 cortical regions (the vertices or nodes), defined ac-
cording the automatic anatomical labeling atlas (Tzourio-Mazoyer et al.,
2002), were determined with probabilistic tractography. The binary
group level matrix consisted only of edges that were significant in the
whole group of 80 subjects. The resulting binary matrix is shown in
Fig. 1B. The same matrix was used in previous studies (de Haan et al.,
2012; van Dellen et al., 2013; Tewarie et al., 2014).

2.2. Model dynamics

To model the dynamics of the brain areas, we used a simple scheme
derived from epidemics on complex networks. In the infection model
each node can be in one of three states: “susceptible”, “infected” and
“recovered”. Transitions between these states are described by rates
(in continuous-time Markov chains) or transition probabilities
(in discrete-time Markov chains). In the present study, we restrict our-
selves to a discrete-time analysis of the SIS model in which we replace
“susceptible” with “excitable” and “infected” with “activated”. We
define two the transition probabilities as β (probability of transition be-
tween state E [excitable] and state A [activated]) and δ (probability of
transition between state A and E). Two nodes can only interact if they
are connected by an edge. Time is discrete, and updating all node states
is synchronous. If a node is activated at time n, it can activate at time
n+1 any direct neighborwith a probability β. Its own statewill change
to excitable at time n + 1 with a probability δ. If a node is excitable at
time n, it will be activated at time n + 1 if it is activated by at least
one of the active nodes to which it is connected. At the beginning of
each run (time n = 1) of 4096 time steps all nodes are excitable with
the exception of 20% of thenodes chosen at randomwhich are activated.
The overall dynamics of the model is determined by the effective infec-
tion probability τ = β/δ. We choose to fix δ at 0.5, which means that
each node activated at time n will be excitable at time n + 1 with a
probability of 0.5. We define the overall activation of the system as the
average fraction of activated nodes. The critical value β is defined as
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Fig. 1. Schema of the model. (A) General schema of the dynamics of the model. Each node can be in one of three states: excitable, activated or refractory (these states are similar to the
susceptible, infected and recovered states in the SIRS model). Transitions between different states are determined by probabilities indicated by arrows. In the present study we restrict
ourselves to the excitable and activated state and the two corresponding probabilities (equivalent to a SIS model). (B) Binary matrix of structural connections between 78 nodes. Each
node corresponds to a brain area of the AAL atlas (Tzourio-Mazoyer et al., 2002). Red indicates a connection between two areas, blue no connection. The structural matrix is based
upon Gong et al. (2009). (C) Example of the dynamics of the system. The horizontal axis corresponds to time (4096 discrete time points). The vertical axis corresponds to the 78 AAL
regions. Green indicates the excitable state of a node, red the activated state. (D) A functional network can be reconstructed by computing the correlations between time series of
node activation, for all possible pairs of nodes. In (D) all correlations exceeding a certain threshold are indicated by a line between the corresponding brain regions.
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the value of β for which the overall activation is on average 1% of the
average maximal activation of 1 for any value of β.

2.3. Functional and structural connectivity

Time series of node activation states were used to determine the
strength of functional interactions between each node pair. Two ap-
proaches were used, each based upon a different way to characterize
the functional interaction between nodes. In the first case, referred to
as “functional connectivity”, we computed the Pearson correlation coef-
ficient of integrated node activation time series of pairs of nodes. Node
states were coded as excitable = 0, and activated = 1. The original
time series of consecutive one's and zero's was replaced by an integrat-
ed time series (defined below) where the value of Xn at time n was
equal to the sum of values Rn in the original time series over an integra-
tion interval w:

Xn ¼ 1
w

Xw
i¼1

Rnþi: ð1Þ

In the present studywe used an integrationwindoww=10, but re-
sults were quite similar for a range of values w between 1 and 50. The
Pearson correlation coefficient was computed from the time series X
and Y as follows:

Cfunc ¼
X

X‐ bX Nð Þ Y b Y Nð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X‐ bX Nð Þ2 Y‐ b Y Nð Þ2

q : ð2Þ

Here bN is the average value.
The second measure, referred to as “effective connectivity” was de-
signed to capture more directly the causal flow between pairs of
nodes. The effective connectivity from node X to node Y was defined
as the probability that Yn + d = 1 if Xn = 1. The effective connectivity
from Y to X was defined as the probability that Xn + d = 1 if Yn = 1.
Sincewe used an undirected structural network to simulate the dynam-
icswe decided to use the sum of effective connectivity fromX to Y and Y
to X as our final, now symmetrical, effective connectivity measure:

Ceff ¼ p Ynþd ¼ 1jXn ¼ 1
� �þ p Xnþd ¼ 1jYn ¼ 1

� �
: ð3Þ

Here, Ceff is the effective connectivity betweenX and Y depending on
the chosen time lag d, Pr[.] denotes the probability operator (on random
variables or events), n is discrete time and d is the length of an interval.
In the simulations we used d = 1.

2.4. Graph theoretical analysis

For each simulation run, we computed the average functional and
effective connectivity for all pairs of nodes, resulting in a symmetric
78 × 78 matrix of connectivity values between 0 and 1 (although Ceff
can take on values N1, in our simulations values were always between
0 and 1). The length of the time series used for computation of the con-
nectivity was taken from n=1 to n= final, such that none of the nodes
was active for any time after n= final, where final ≤ 4096. This was im-
portant since close to criticality the length (in number of discrete time
steps) of the activations fluctuated strongly, and thus final could be
shorter than 4096. Next, connectivity matrices for 100 different runs
were averaged to obtain one average matrix of functional or effective
connectivity.



β

Fig. 2. Phase transition in the SISmodel. The fraction of activated nodes is shown as a func-
tion of increasing values of the probability β, from 0 to 1 in steps of 0.01, for a constant
value of δ = 0.5. The black line is the average value for 10 runs, each consisting of 4096
time steps. Red and blue lines indicated the standard deviation. A phase transition can
be seen close to rate β = 0.08.
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These averaged connectivity matrices were analyzed in two ways.
First, the complete weighted matrices were converted into unweighted
binary matrices with the exact same number of edges as the structural
matrix. For the structural matrix and the binarized average functional
and effective connectivity matrix the modular structure was deter-
mined using Newman's statistic Qm for modularity (Newman and
Girvan, 2004) and a simulated annealing approach as described in
Stam et al. (2010). The modularity of the connection matrix was
Fig. 3. Spatial temporal dynamics close to and away from transition. Illustration of the model d
sponds to discrete time from1 to 4096. The vertical axis corresponds to the 78brain regions. Gre
rate β = 0.1 and rate δ = 0.5. In panel B the dynamics is shown for β = 0.5 and δ = 0.5. The o
possible to discern nodes with relatively high and relatively low activity.
determined using the approach of Guimerà and Nunes Amaral (2005).
The modularity index Qm is defined as:

Qm ¼
Xm
s¼1

ls
L
‐

ds

2L

� �2� �
: ð3Þ

Here,m is the number ofmodules, ls is thenumber of links inmodule
s, L is the total sum of all links in the network, and ds is the sum of the
degrees of all vertices in module s. A simulated annealing algorithm
was used to find the optimal way to divide the network into modules.
Initially, each of the N nodes was randomly assigned to one of the m
possible modules, where m was taken as the square root of N. At each
step, one of the nodes was chosen at random, and assigned a different
random module number from the interval {1,..,N}. Modularity Qm was
calculated before and after this node re-assignment. The cost C for the
simulated annealing algorithm was defined as −Qm. The new
partitioning was preserved with probability p

p ¼
1 if C f ≤ Ci

e‐
C f ‐Ci

T if C f N Ci

(
ð4Þ

where Cf is the final cost and Ci is the initial cost. The temperature T was
1 initially, and was lowered once every 100 steps as follows: Tnew =
0.995∙Told. In total, the simulated annealing algorithm was run for 106

steps.
Second, the data of the original complete weighted matrices were

analyzed. For the average connectivity matrix, obtained by averaging
over 100 runs, we determined the average strength of the functional
ynamics close to and further away from the critical ratio of β/δ. The horizontal axis corre-
en indicates the excitable state, red the activated state. In panel A thedynamics is shown for
verall activity increases with a higher value of β. Only for the lower value of β = 0.1 is it
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or effective connectivity of the whole matrix W(mean), as well as sub-
averages for all node pairs with [W(connect)] or without [W(disc)] an
edge in the structural matrix, disregarding self-loops. Next, the func-
tional and effective connectivity values for each node pair of the
wholematrixwere plotted against the product of the corresponding de-
grees in the structural matrix. A linear regression was fitted to the data,
and the intercept and slope were determined (Barrat et al., 2004). The
same procedure was applied to degree preserving random networks
(Maslov and Sneppen, 2004). Statistical comparison of functional and
effective connectivity obtained for the original and random structural
networks was done by repeating the whole procedure 20 times and
using a t-test for independent samples, assuming unequal variance, to
determine significant differences between results for original and ran-
dom networks.

3. Results

3.1. Unweighted network analysis

Since our goalwas to study the nature of the dynamic process, and in
particular the statistical relations between time series of node activa-
tion, close to a phase transition, we first determined the critical point
of the dynamics where a sudden increase in average activity is observed
Fig. 4. Activity of individual ROIs and as function of degree. (A) Activity of each of the 78 brain
activity can be clearly seen. (B) Mean node activity for the same settings plotted as a function o
for β=0.5. Almost all nodes show the same high level of activity, with a few exceptions (nodes
activity increases rapidly as function of degree, and subsequently flattens out.
for a small change of the ratio τ=β/δ. In the SIS epidemics on networks,
it is known that this transition (the “epidemic threshold τc”) is
determined by the ratio of the transition probabilities between the
“susceptible” and “infected” states. In our model this translates to the
ratio τ = β/δ. The SIS theory (see e.g. Van Mieghem and van de
Bovenkamp, 2013) shows that τc N 1/λ1, where λ1 is the largest eigen-
value of the adjacency matrix (for the present Gong network: λ1 =
10.470). To confirm this theoretical result, we first determined the crit-
ical ratio by simulations. The SISmodelwas simulated for values ofβ be-
tween 0 and 1, increasing in steps of 0.01, and a fixed probability of δ=
0.5. The average and standard deviation of themean activationwere ob-
tained for 10 runs for different values of β. The results are shown in
Fig. 2. A clear transition can be seen between a state with no activity
and a state with increasing average activity levels near β = 0.07. For
the rest of this study we used a slightly higher value of probability
β = 0.08, where the average activity was 1% of the maximal activity
for any value of β. For comparison we also studied a state further
away from the critical point with β = 0.2.

An example of the dynamical patterns that can be observed in the
model is shown in Fig. 3. The figure shows the activation state of the
nodes (green = excitable, red = activated) as a function of time
(4096 time steps). For β = 0.1 and δ = 0.5 a clear pattern can be
seen, with nodes alternating between the two states, and some nodes
areas averaged over a run of 4096 time steps for β= 0.1 and δ= 0.5. Differences in mean
f the node degree. Node activity increases with node degree. (C) The same as in A, but now
29 left Heschl gyrus and 68 right Heschl gyrus). (D) Same plot as C, now for β=0.5. Mean
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displaying higher levels of activity than others. In the lower panel the
activity time pattern is shown for β = 0.5 and δ = 0.5. Clearly, there
is a general increase in the level of activity. At the same time, the differ-
ences in activity levels between the 78 brain regions become less
distinct.

To explore the differences in activation between the 78 nodes inmore
detail, average activation of all nodes is shown in Fig. 4. For a relatively
low level of activation (β=0.1; δ=0.5) clear differences in node activa-
tion can be seen (panel A). Panel B illustrates that these differences can be
explained to a large extent by the structural degree of the nodes (see e.g.
Van Mieghem, 2012). Average node activation increases as a function of
node degree, and only levels off for high degrees. Panel C shows that for
a high activation state far from the critical point (β=0.5, δ=0.5) aver-
age activation is at the same high level for all nodes, with the exception of
Structura

Func conn

A

B

Fig. 5. Binarymatrices for structural network, functional and effective connectivity. (A) Structur
connection is indicated in blue. (B) Binary matrix based upon average functional connectiv
thresholded such that the number of supra-threshold connections was the same as in the struct
connectivity and the structural connectivity matrix. (C) Thresholded effective connectivity matr
nection as in A. Note that this matrix shows a clearly different pattern than the ones in A and B
AAL region 29 (left Heschl gyrus) and AAL region 68 (right Heschl gyrus).
Of interest, these regions are the most poorly connected of the whole
structural network. Panel D shows that activation as a function of struc-
tural node degree increases very steeply, and then levels off. This prelim-
inary analysis confirms, in line with epidemic theory (see e.g. Van
Mieghem, 2012), that the most interesting patterns are more likely to
be observed close to the critical point. In fact, the probability that a
node j is activated is proportional to the j-th component of the principal
eigenvector of the adjacency matrix belonging to eigenvalue λ1. In addi-
tion, the principal eigenvector is, for some networks, close to the degree
vector (Van Mieghem, 2013).

In the next step, we compare average matrices of functional and
effective connectivity with the underlying structural matrix. Matrices
were averaged over 100 separate runs of the model using β = 0.08
l

Eff conn

C

al connectivitymatrix for all 78 brain regions. Connections are indicated in red, absence of a
ity matrix obtained from 100 runs of each 4096 time steps. The weighted matrix was
ural matrix in A. Note the almost perfect resemblance between the thresholded functional
ix based upon 100 runs of 4096 time steps with the same number of supra-threshold con-
.
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and δ = 0.5. The complete weighted matrices were then converted to
binarymatrices with the same number of edges as the original structur-
al matrix. In Fig. 5 the original structural matrix is shown in panel A, the
binarized averaged functional connectivity matrix in panel B and the
binarized averaged effective connectivity matrix in panel D. On visual
inspection there is a striking resemblance between the structuralmatrix
and the binarized version of the functional connectivity matrix. In con-
trast, the binarized version of the effective connectivity matrix looks
quite different compared to both the structural as well as the functional
connectivity matrix. In the case of the effective connectivity matrix the
pattern is dominated by four large “blobs”, two on the diagonal, and
two off the diagonal. Many of the edges close to the diagonal, present
in panel A and B, are now missing.

One important characteristic of resting-state networks is the pres-
ence of a number of sub-networks, referred to as resting state networks
(RSN) in the fMRI literature. We determined the modular structure of
the original structural matrix and the two functional networks using
Newman's modularity statistic Q and a simulated annealing algorithm
(Guimerà and Nunes Amaral, 2005; Stam et al., 2010). The results are
shown in Fig. 6. In the case of the structural network a number of mod-
ules can be distinguished. In the midline a frontal and a posterior mod-
ule can be seen, that together resemble the default mode network. In
both hemispheres a superior frontal parietal network can be seen, as
well as a more basal temporal network. The modular organization of
the functional connectivity network is quite similar to the structural
network. The small differences can be explained by the stochastic na-
ture of the simulated annealing procedure. The effective connectivity
network also displays two well-developed midline modules and two
slightly less pronounced lateral frontal parietal modules. In contrast to
the structural and the functional connectivity network the basal tempo-
ral modules are not very clear.
Structural Func co

A

B

C

D

Fig. 6.Modularity for structural network, functional and effective connectivity. Modularity ana
larity was determined with a simulated annealing algorithm using Newman's modularity mea
(A)Modules of the structural connectivitymatrix. Sixmoduleswere found, two in the left hemis
sphere, one medial frontal module, and one medial parietooccipital module. The last two modu
network. (B) Coronal viewof the samemodules. (C) and (D):modules derived from the function
upon the effective connectivitymatrix. The pattern ismore or less similar as the one of the struc
less clearly.
3.2. Weighted network analysis

So far we considered binary versions of the average functional and
effective connectivity matrices, and compared these with the binary
structural matrix. This approach discards a lot of the information avail-
able in the connectivity matrices since these are complete weighted
graphs. As a next step we analyzed these fully weighted matrices, and
related the weight of all possible pairs of nodes to the product of their
respective structural degrees.

The results for functional connectivity are shown in Fig. 7. The fully
weighted functional connectivity matrix for β=0.08 and δ=0.5 aver-
aged over 100 runs is shown in Fig. 7A. As expected, this matrix shows a
resemblance with the underlying structural matrix as shown in Fig. 5A.
However the functional connectivity matrix in Fig. 7A shows additional
information, since there is a considerable variation in weights that can-
not be simply explained by the presence or absence of a direct link. In
Fig. 7B the weights are plotted as a function of their structural degree
product on a double logarithmic scale. This plot shows that weights of
directly connected nodes (red) are clearly higher than those of nodes
without a direct connection (blue). However, theweights for all connec-
tions, irrespective of being a directly or indirectly connection, are influ-
enced by the degree products, shown by the slope of the regression line
based upon all weights. Functional connectivity between nodeswithout
a direct connection increases as a function of the structural degree
product. Further away from the critical point, with β = 0.2 and δ =
0.5, a different pattern is seen. The average functional connectivity ma-
trix shown in Fig. 7C still resembles the underlying structural matrix,
but average connectivity values are lower. The plot of weights as a func-
tion of the degree product in Fig. 7D again shows higher weights for di-
rectly connected nodes. However, the slope of the regression line based
upon all weights is now close to zero. Surprisingly, for the weights of
nn Eff conn

E

F

lysis of structural, functional and effective connectivity matrices as shown in Fig. 6. Modu-
sure. Only within module connections are shown, with a different color for each module.
phere (basal temporal, and superior frontoparietal); two similarmodules in the right hemi-
les correspond to a large extent with the anterior and posterior parts of the default mode
al connectivitymatrix. Note the strong resemblance toA and B. (E) and (F):modules based
tural and functional connectivitymatrices, but the lateral hemisphericalmodules stand out
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connected nodes only, a negative relation between weight and degree
product can be seen.

Results for the effective connectivity are illustrated in Fig. 8. In
Fig. 8A, for β = 0.08 and δ = 0.5 a very regular “striping” pattern can
be seen, that is rather different from the underlying structural matrix
(Fig. 5A). Again connectivity weights are higher for directly connected
nodes (red) compared to indirectly connected nodes (blue) (Fig. 8B).
Now both types of weights show a scaling with the degree product.
The slope of the linear regression line is 0.4671. Thus the strength of
the effective connectivity between both directly connected and indi-
rectly connected nodes increases with the degree product. Further
away from the critical point forβ=0.2 and δ=0.5 the pattern becomes
more smooth and the averageweight decreases (Fig. 8C). The difference
between the average weight of connected compared to indirectly con-
nected nodes becomes smaller, and the slope of the regression line de-
creases (Fig. 8D).

To investigate the influence of the specific topology of the original
structural matrix the experiments were repeated for random networks
with the same degree distribution of the original structural matrix
(Fig. 9). Only the critical state with β = 0.08 and δ = 0.5 was studied.
Fig. 7. Functional connectivity plot and FC vs degree product. (A) Matrix of functional connect
regions. Probability β= 0.08 and δ= 0.5. Note the resemblance of the functional connectivity
functional connectivity of all pairs of areas as a function of the product of their node degrees, u
connection, blue dots to node pairs without a direct connection. The line is a linear regressi
W(mean) is the average functional connectivity of all node pairs;W(conn) the average of all co
of red and blue points. (C)Matrix of average functional connectivity as in A, now forβ=0.2. (D)
of the product of their node degrees, using the same settings as in C. Red dots are clearly abov
The functional connectivitymatrix, averagedover 100 runs on a random
network, showed a blurred pattern (Fig. 9A). Although the structure of
Fig. 7A was lost, a tendency for higher weights closer to the diagonal
can still be seen as a result of the preserved degree distribution.Weights
for nodeswith a direct linkwere higher than for thosewith only indirect
links, andweight increased as a function of the degree product (Fig. 9B).
For effective connectivity (Fig. 9C) the averagematrix showed a striping
pattern with few other distinctive features. As shown in Fig. 9C weights
of directly connected nodes were higher than those of indirectly con-
nected nodes, and all weights increased with degree product, although
the slope of the regression line was smaller (0.35) compared to panel B.

To determine the statistical differences between the dynamics simu-
lated on the original structural and the random networks, the experi-
ments were all repeated 20 times for the critical state with β = 0.08
and δ=0.5. The results are shown in Table 1. For functional connectiv-
ity, the scaling of theweight as a function of the degree productwas not
statistically different for the original network compared to random net-
works. Average mean weight and weight for directly connected nodes
were significantly higher for original compared to random networks.
For effective connectivity, the slope of weight as function of degree
ivity, averaged over 100 runs of each 4096 time steps. Numbers correspond to AAL brain
matrix to the structural matrix as shown in Fig. 2B. (B) Double logarithmic plot of average
sing the same settings as in A. Red dots correspond to node pairs with a direct structural
on based upon all the data (intercept and slope shown in upper left corner). The value
nnected node pairs, andW(disc) the average of all disconnected pairs. Note the separation
Double logarithmic plot of average functional connectivity of all pairs of areas as a function
e the blue dots, and show a remarkable negative relation with degree product.



Fig. 8. Effective connectivity plot and EC/degree product. (A) Matrix of effective connectivity, averaged over 100 runs of each 4096 time steps. Numbers correspond to AAL brain regions.
Probabilityβ=0.08 and δ=0.5. Note the different pattern of the effective connectivitymatrix compared to the functional connectivitymatrix as shown in Fig. 7A. (B) Double logarithmic
plot of the average effective connectivity of all pairs of areas as a function of the product of their node degrees, using the same settings as in A. Red dots correspond to node pairs with a
direct structural connection, blue dots to node pairs without a direct connection. The line is a linear regression based upon all the data (intercept and slope shown in left upper corner).
W(mean) is the average functional connectivity of all node pairs; W(conn) the average of all connected node pairs, andW(disc) the average of all disconnected pairs. Note the scaling of
connectionweights as a function of degree product. (C)Matrix of average effective connectivity as in A, now for β=0.2. (D) Double logarithmic plot of effective functional connectivity of
all pairs of areas as a function of the product of their node degrees, using the same settings as in C. A similar type of scaling as shown in B but with a smaller slope can be seen.
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product was higher for the original network (0.448) compared to the
random networks (0.378). Average weight for all nodes and for the in-
directly connected nodes were significantly lower for the original
networks.

4. Discussion

This study showed that patterns of functional interactions between
brain regions can be studied with a simple model derived from the SIS
epidemics on networks. Close to a critical point functional interactions
were stronger between directly connected areas. A simple functional
connectivity measure produced functional networks that were almost
identical to the underlying structural network, with the same modular
structure. Functional networks derived from effective connectivity did
not resemble the structural network, but showed a striking relation be-
tween connectivityweight and structural degree product, for connected
as well as disconnected points. Together these findings suggest that
close to a critical point (i) functional interactions are stronger between
directly connected nodes; (ii) connectivity weights of disconnected
nodes are not random but depend upon the structural degree product;
(iii) the nature of the connectivity measure (functional or effective)
has a strong influence upon the observed functional network.

The first question we addressed in this study concerned the relation
between structural and functional networks close to and further away
from the critical state. One advantage of the use of the SIS epidemic
model on networks is thatwe can build upon the extensive understand-
ing of this model, including the existence of a critical transition
(“epidemic threshold”). Theoretically this transition is determined by
the ratio of two transition rates, in our case τ = β/δ. Simulations of
our model agree with SIS theory: as described in the results section,
the phase transition at τc occurs at a slightly higher value than 1/λ1. Ma-
nipulation of the ratio of the two rates allowed us to explore the dynam-
ics of the system close to and further away from the critical state. The
most interesting results were obtained close to the critical state where
the functional connectivity network closely resembled the structural
brain network and the effective connectivity network showed a remark-
able dependence of the connectivity weight upon the degree product.

There is increasing evidence from empirical studies that resting-
state functional brain networksmay reflect a state close to a phase tran-
sition (Haimovici et al., 2013; Yu et al., 2013). Computational studies



Fig. 9. Functional and effective connectivity for degree preserved random network. Results for degree preserving randomized versions of the original structural matrix. (A) Average
functional connectivitymatrix based upon 100 runs of 4096 time stepswithβ=0.08 and δ=0.5. (B)Double logarithmic plot of average functional connectivity as a function of thedegree
product. The pattern is comparable to the one in Fig. 5B. (C) Average effective connectivity matrix for β = 0.08 and δ = 0.5. (D) Double logarithmic plot of effective connectivity as a
function of degree product. The pattern is similar to the one in Fig. 8B, but with a smaller slope.
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that simulate brain dynamics on empirically determined structural net-
works also suggest that the most meaningful structure function rela-
tions are found when the system is near a critical state (Rubinov et al.,
2011; Deco et al., 2013). The macroscopic critical state could be related
to the existence of so-called neuronal avalanches, bursts of neural activ-
ity characterized by power laws, that have been observed in cultured
Table 1
Average results with standard deviation (S.D.) of 20 simulations, each consisting of 100
runs for the original structural network and random networks with preserved degree dis-
tribution. Intercept: intercept of linear regression of weight as function of degree product.
Slope: slope for the linear regression of the weight against the degree product. W(mean):
average weight of both directly and indirectly connected nodes. W(conn): same as
W(mean) but only for directly connected nodes. W(disc) same but only for indirectly
connected nodes. Significant differences compared to random networks with p b 0.05
are indicated in bold.

Intercept Slope W(mean) W(conn) W(disc)

Fun conn −0.627 0.328 0.137 0.304 0.116
S.D. 0.044 0.026 0.007 0.011 0.007
Random −0.646 0.327 0.129 0.251 0.114
S.D. 0.038 0.025 0.008 0.010 0.008
Eff conn −0.406 0.448 0.174 0.258 0.164
S.D. 0.016 0.007 0.006 0.009 0.006
Random −0.412 0.378 0.193 0.262 0.184
S.D. 0.015 0.015 0.005 0.005 0.004
neural networks, local field potentials in monkeys and MEG recordings
in humans (Beggs and Plenz, 2003; Yu et al., 2013). Critical dynamics
could be the result of a critical branching process or a process of self-
organization whereby structural networks constrain dynamical pro-
cesses, which in their turn may shape the underlying structure
(Rubinov et al., 2011; Shew and Plenz, 2013). Critical dynamics may
be important from a functional point of view since this critical state
has been associatedwith an optimal sensitivity to input, amaximization
of the number of different functional states available (Deco et al., 2013;
Shew and Plenz, 2013). Also, it is known from statistical physics that
near a critical phase transition thedetails of the systembecome relative-
ly unimportant. Thismight explainwhy structure function relationships
previously observed with very complex realistic models (Honey et al.,
2007, 2009) can be replicated with simple dynamic models (Deco
et al., 2012; Haimovici et al., 2013).

We used two different measures to characterize the statistical de-
pendencies between time series of node activation: a functional connec-
tivitymeasure, based upon the correlation coefficient of integrated node
activation time series, and an effective connectivity measure, based
upon the probability of time-delayed conditional activation. Thesemea-
sures were intended as simplified versions of the functional and effec-
tive connectivity measures used for fMRI BOLD, EEG and MEG studies
(Pereda et al., 2005; Friston et al., 2013). Results for the functional con-
nectivity measure resembled those obtained for functional connectivity
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analysis of BOLD time series, both in empirical as well as model studies
(Honey et al., 2007, 2009; Rubinov et al., 2009; Deco et al., 2012, 2013).
Of interest, this result was obtained without using a sophisticated
balloon windkessel model (Friston et al., 1995). Again this might be an
example of universality near a critical point.

Results for the effective connectivity measure were rather different
from those obtained with functional connectivity. The effective connec-
tivity networks did not closely resemble the underlying structural net-
works, but seemed to be shaped especially by strong connections
between high degree hubs, in particular in the posterior part of the de-
fault mode network. Of interest, a somewhat similar pattern is observed
in source space MEG networks based upon the phase lag index, a mea-
sure of time-delayed phase synchronization (Tewarie et al., 2013). In
contrast to the functional connectivity, the effective connectivity
showed a significant difference in the comparison between the original
and the random networks. This suggests that the effective connectivity
networkmay contain information beyond the degree distribution of the
underlying structural network. Apparently functional and effective con-
nectivity measures detect different aspects of communication between
brain areas, and both are useful to obtain a full understanding of the
structure function relations, even in a simple model.

The present study confirmed that functional interactions are stron-
ger between structurally directly connected nodes, in agreement with
many previous empirical and model studies (Honey et al., 2007, 2009;
Rubinov et al., 2009; Deco et al., 2012, 2013). The great challenge how-
ever is to understandwhat happenswhen two brain areas do not have a
direct connection (Park and Friston, 2013). Functional interactions be-
tween indirectly connected brain areas constitute the “dark matter” of
brain network studies. We will discuss several possible explanations
and relate them to the findings of the present study. The first possibility
is that such interactions are caused by volume conduction. This is espe-
cially a problem with EEG and MEG, but can be addressed by studying
networks in source space and using couplingmeasures that are insensi-
tive to volume conduction (Hillebrand et al., 2012). Second, it has been
suggested that a larger distance between brain areasmight determine a
lower strength of the functional interactions. A problem here is that the
presence and strength of true anatomical connections might also
decrease with distance (Markov et al., 2013). A third possibility is
that a common driver that influences both areas may determine con-
nectivity. There is evidence that some of the observed functional
connectivity could be explained by paths of length two (Honey
et al., 2009). In fact the third mechanism is a specific example of a
more general mechanism, whereby functional interactions between
two areas are determined by indirect connections between them of
any length. In a connected graph many such connections of different
lengths can be expected to exist, but it is not trivial to understand
their influence.

Our results may shed some light on the problem of functional inter-
actions between nodes without direct structural connections. First, vol-
ume conduction was not an issue in our model, and all structural
connections had unit strength, independent of any distance. Still, we ob-
served a clear relation between structural degree product and connec-
tivity for indirectly connected areas, especially with the effective
connectivity measure. This suggests that the structural degree product of
two areas is strongly predictive of the intensity of the traffic between
them, even if no direct connection exists. This result shows a striking resem-
blance to the findings of Barrat et al. (2004). In that study the number of
passengers traveling between any two airports could be predicted by the
degree product of these airports with a scaling exponent of 0.5, close to
our observed value of 0.448 (Table 1). The structural degree of a brain
area can be understood as an indicator of the probability that this area
will “send” activation to the rest of the network as well as the probabil-
ity that it will “pick up” activity from thenetwork. Thismay explainwhy
the strength of functional interactions between brain areas, even when
they are not directly connected, is related to their degree product. Such
interactions between indirectly connected areas will not be picked up
by all connectivity measures equally well, and will be obscured by
reducing the weighted matrix to a binary graph.

This study has some limitations. First, we used one relatively small
structural connectivity matrix as the basis of the model studies. This
empirical matrix was based upon DTI tractography that may miss
many, especiallyweak, long distance and crossing connections. Further-
more, recent anatomical work suggests that true brain networksmay be
less sparse than previously assumed (Markov et al., 2013). Second,
while the simplified dynamical model performed quite well in relating
structure to function near the critical state, some of the new findings,
in particularwith respect to the influence of thedegree product on func-
tional interactions, need to be confirmed in more realistic models and
empirical studies.

5. Conclusion

This study showed that near a critical state a highly simplified dy-
namicalmodel could provide insight into the relation between structur-
al and functional brain networks. Depending on the connectivity
measure used, a close resemblance to the structural network or a clear
dependence on the degree product could be demonstrated. This result
points the way toward the development of new connectivity measures
that may extract the full information available in the functional
networks. Also, this type of model might be a fruitful base to study the
nature of structure function relations in neurological disorders includ-
ing epilepsy and neurodegenerative disease.
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