Linear Processes on Complex Networks

Ivan Jokić* and Piet Van Mieghem
Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
*Corresponding author: I.Jokic@tudelft.nl

[Received on 27 July 2020]

Abstract

This paper studies the dynamics of complex networks with a time-invariant underlying topology, composed of nodes with linear internal dynamics and linear dynamic interactions between them. While graph theory defines the underlying topology of a network, a linear time-invariant state-space model analytically describes the internal dynamics of each node in the network. By combining linear systems theory and graph theory, we provide an explicit analytical solution for the network dynamics in discrete-time, continuous-time and the Laplace domain. The proposed theoretical framework is scalable and allows hierarchical structuring of complex networks with linear processes while preserving the information about network, which makes the approach reversible and applicable to large scale networks.

Keywords: Complex Networks; Large-Scale Networks; Linear Dynamics; Linear Interactions; Network Dynamics.

1. Introduction

Networks are everywhere. Real-world examples of networks are electric power networks, transportation networks, water networks, economic networks, the Internet, the World Wide Web, social networks and biological networks. Dorfler et al. [1, 2] applied network concepts on electrical networks. Van Mieghem et al. [3] examined resistive networks and provided best spreaders, based on a weighted Laplacian matrix, while Cetinay et al. [4] analysed the vulnerability of power networks under targeted attacks. Guimera et al. [5] found that the world-wide air transportation network is a small-world network, while Dunne et al. [6] discovered that food-web networks are generally not small-world networks. Newman et al. [7] used the theory of random graphs with arbitrary degree distribution to model the behavior of a collaboration network of scientists. Topology of the Internet and the World Wide Web was discovered by Faloutsos et al. [8]. In the past two decades, the network topology has been deeply studied, for which we refer to the books by Newman [9]; Boccaletti et al. [10] and by Van Mieghem [11].

Each network is defined by its underlying topology and the dynamics that take place on the network. The interplay between the network topology and dynamics has been an active field of scientific research in the past two decades [12]. However, Newman [9] observed that the progress in analyzing the structural properties of the network has been faster than the one related to the dynamics taking place on the network. Barzel, Harush et al. [13-15] showed that, while many real networks tend to have similar (universal) structural properties, there exist classes of dynamical processes that exhibit fundamentally different flow patterns. The network dynamics depend on both the network topology and the type of dynamic interactions between the nodes.

During last two decades, dynamical processes on complex networks such as phase transitions [16],
percolation [17], synchronization [18], diffusion [19], epidemic spreading [20-23], collective behavior [7] and traffic [24] have been intensively researched [12]. The dynamics of the real-world networks are non-linear and their underlying topology is time-varying [25]. However, complex networks with linear dynamics have been intensively researched recently [26,27], which can be motivated in several ways. Firstly, non-linear dynamics on the networks can be approximated [28] or bounded [20] by the linear dynamics, in most cases. Secondly, the notion of controlling complex networks has become an important research question [27, 29]. In system theory, non-linear system control is a difficult problem, which has been developed on previously well-established linear system control theory [30]. An analogous order of research development is noticeable in network control theory. Several names for the complex networks with linear dynamics have been used in literature, such as networks of agents (dynamical systems) [31], networked multi-input-multi-output (MIMO) systems [32] and complex networked dynamical systems [26]. Mentioned approaches define models of the network with linear processes from the system/control theory point of view.

Here, a general framework for a complex network with linear processes is proposed, where nodes perform heterogeneous, higher-order linear dynamics, with multi-dimensional input and output vectors. The framework is based upon two assumptions: (1) The internal dynamics of the nodes, as well their interactions, are linear and (2) The underlying topology of the network is time-invariant. The framework allows each dynamic interaction between the nodes to be defined locally and independently and results in the most general description of a network of linear processes available in the literature, to our best knowledge. We provide the analytic solution (both in discrete-time, continuous-time and the Laplace domain) for the network dynamics as a whole, in terms of the internal dynamics of the nodes and the underlying graph that couples these linear processes. Thus, we preserve the network perspective. A major novelty is the hierarchical structuring of linear dynamics, in which the lowest level in the hierarchy describes individual linearly interacting processes. After a certain clustering, subnetting or grouping of linear processes (i.e. nodes on the lowest hierarchical level), these clusters can be aggregated on the next higher level of the hierarchy again as a linear process, though with a different linear dynamics. The key property of such nodal aggregation is that no information by condensation is lost! In other words, the aggregated node precisely shows the same linear dynamics as the lower level group of individual nodes. Thus, the linearity preserves information, but allows to shield the lower level interconnection details and enables very large networks to be condensed into a smaller network of interacting aggregated nodes that preserves exactly the linear dynamics! In fact, a network with linear processes of any size can be iteratively condensed into a set of hierarchical layers, in which each layer still presents a desired, aggregated network structure. An example is traffic flows (steered by a linear process) in a small neighbourhood, condensed into a city, while cities can be condensed to countries etc. Another example are different measurement techniques of a same phenomenon, where each technique has its own granularity. As long as those techniques are linear, finer-detail measurement can be aggregated with coarser ones by choosing the proper hierarchical layer that combines them. Although the spread of Corona has not a linear dynamics (but can be linearized [33]), mobile individual traces can be combined with aggregated flows measured by sensor, telecom base-stations, WIFI hotspot and so on.

The present paper does not directly contribute to the control theory. However, the proposed model preserves the network perspective in developing the governing equations. The generality of the proposed model (i.e. the type of one-node dynamics and the interactions between nodes), the reversible scalability of the hierarchical structuring as well the network perspective based governing equations are novelties of this paper. Another important application of the proposed model for networks with linear processes is identification. Suppose that input and output sequences can be measured at certain places in the network during a long enough time period. Linear system identification then allows to determine
the exact governing equations (see [34]). Our general framework for linear networked processes hierarchically groups the subnetworks between measurement nodes and the aggregated linear dynamics of these subnetworks can be identified.

The paper is structured as follows. Section 2 introduces basic terminology and notations, while the network dynamics and hierarchical structuring are analysed in Section 3. The concept of Extended graph is introduced in Section 4, while the analytical solution for the network dynamics in the discrete-time domain is provided in Section 5. Finally, we conclude in Section 6.

2. Basic notations

Complex networks have two general features: a graph and a service or function, specified by dynamic processes [35].

2.1 Network topology

The underlying structure (topology) of the network is assumed to be time-invariant and is represented by a graph $G(\mathscr{N}, \mathscr{L})$. The graph G is defined by a set \mathscr{N} of $N=|\mathscr{N}|$ nodes, representing N systems ${ }^{1}$, and by a set \mathscr{L} of L links, that interconnect the systems. The link existence of the graph G is specified by the $N \times N$ adjacency matrix W, where $w_{i j}=1$ means that there exists a link between node i and node j, otherwise $w_{i j}=0$. The graph G is assumed to be directed, which implies that the adjacency matrix W is not symmetric in general, i.e. $W \neq W^{T}$.

A node i of the graph G can also be connected to external nodes. We distinguish two types of external nodes: input and output nodes. The input nodes provide links to the nodes of the graph G and have zero in-degree, while the output nodes receive links from the nodes of the graph G and have zero out-degree. In contrast to external nodes, we call the nodes and the links of the graph G internal nodes and internal links, respectively.

There are r input nodes, defined by the set \mathscr{M}. The input nodes connect to the internal nodes via input links, specified by the $r \times N$ matrix Φ :

$$
\Phi=\left[\begin{array}{cccc}
\phi_{11} & \phi_{12} & \ldots & \phi_{1 N} \tag{2.1}\\
\phi_{21} & \phi_{22} & \ldots & \phi_{2 N} \\
\vdots & \vdots & \vdots & \vdots \\
\phi_{r 1} & \phi_{r 2} & \ldots & \phi_{r N}
\end{array}\right]
$$

where $\phi_{i j}=1$ defines the existence of an input link between the i-th input and j-th internal node, otherwise $\phi_{i j}=0$.

There are q output nodes, defined by the set \mathscr{P}. We refer the links connecting the internal and output nodes output links. The existence of the output links is defined by the $N \times q$ matrix Ψ :

$$
\Psi=\left[\begin{array}{cccc}
\psi_{11} & \psi_{12} & \ldots & \psi_{1 q} \tag{2.2}\\
\psi_{21} & \psi_{22} & \ldots & \psi_{2 q} \\
\vdots & \vdots & \vdots & \vdots \\
\psi_{N 1} & \psi_{N 2} & \ldots & \psi_{N q}
\end{array}\right]
$$

[^0]

FIG. 1. Different types of nodes and links, in case of a network of 10 nodes
where element $\psi_{i j}$ indicates whether the i-th internal node provides an output link to the j-th output node $\left(\psi_{i j}=1\right)$, or $\operatorname{not}\left(\psi_{i j}=0\right)$.

Finally, each input node can be directly connected to an output node as well. We refer to such a link as external link and define their existence with the $r \times q$ matrix Z :

$$
Z=\left[\begin{array}{cccc}
z_{11} & z_{12} & \ldots & z_{1 q} \tag{2.3}\\
z_{21} & z_{22} & \ldots & z_{2 q} \\
\vdots & \vdots & \vdots & \vdots \\
z_{r 1} & z_{r 2} & \ldots & z_{r q}
\end{array}\right]
$$

where element $z_{i j}$ defines whether there is an external link between the input node i and the output node $j\left(z_{i j}=1\right)$ or not $\left(z_{i j}=0\right)$.

The in-degree of the i-th output node is $\left(u^{T} \Psi\right)_{i}+\left(u^{T} Z\right)_{i}$, while the j-th input node has the outdegree $(\Phi u)_{j}+(Z u)_{j}$, where u is the all-one vector. All types of nodes and links defined above are presented in Fig. 1 and labelled by a different colour, for a graph G of 10 nodes, with additional 5 input and 4 output nodes.

2.2 Processes on the network

Each node in the network is a linear time-invariant (LTI) system, whose dynamics are defined by a discrete-time linear state space (DLSS) model [36]. The dynamics within the i-th node/system obey the DLSS governing equations:

$$
\begin{cases}x_{i}[k+1] & =A_{i} \cdot x_{i}[k]+B_{i} \cdot u_{i}[k] \tag{2.4}\\ y_{i}[k] & =C_{i} \cdot x_{i}[k]+D_{i} \cdot u_{i}[k]\end{cases}
$$

where the discrete time is modelled by k. The $n_{i} \times n_{i}$ state matrix A_{i} defines how the $n_{i} \times 1$ state vector x_{i} depends on its previous value, while the $n_{i} \times m_{i}$ input matrix B_{i} determines the relation between the
state vector x_{i} and the previous value of the $m_{i} \times 1$ input vector u_{i}. The relation between the $p_{i} \times 1$ output vector y_{i} and the state vector x_{i} is defined by the $p_{i} \times n_{i}$ output matrix C_{i}. Finally, direct relation between the output vector y_{i} and the input vector u_{i} is defined by the $p_{i} \times m_{i}$ feedforward matrix D_{i}.

The interconnected DLSS dynamics are sketched in Fig. 2, in case of a network with three nodes. We define the $N \times 1$ vector n, containing the number of states for each node/system of the network:

FIG. 2. DLSS dynamics of a simple network with $N=3$ nodes/systems

$$
n=\left[\begin{array}{llllll}
n_{1} & n_{2} & \ldots & n_{i} & \ldots & n_{N} \tag{2.5}
\end{array}\right]^{T}
$$

Similarly, we define the $N \times 1$ vector m that contains the dimension of the input vector u_{i} for each system $(i \in \mathscr{N})$:

$$
m=\left[\begin{array}{llllll}
m_{1} & m_{2} & \ldots & m_{i} & \ldots & m_{N} \tag{2.6}
\end{array}\right]^{T}
$$

where m_{i} represents the dimension of the input vector u_{i} of the node/system i. Analogously, the $N \times 1$ vector p defines the dimension of the output vector y_{i} for each system in the network $(i \in \mathscr{N})$:

$$
p=\left[\begin{array}{llllll}
p_{1} & p_{2} & \ldots & p_{i} & \ldots & p_{N} \tag{2.7}
\end{array}\right]^{T}
$$

where p_{i} represents the dimension of the output vector y_{i} of the i-th system.
The input vector u_{i} of the i-th system of the network can be composed of the output vectors from other systems (due to interconnections) and of the external input vectors. In other words, only internal and input links can be connected to an internal node.

The i-th external input vector is denoted by η_{i} and has dimension $\mu_{i} \times 1$. We define the $r \times 1$ vector μ that contains the dimension of each external input vector:

$$
\mu=\left[\begin{array}{llllll}
\mu_{1} & \mu_{2} & \ldots & \mu_{i} & \ldots & \mu_{r} \tag{2.8}
\end{array}\right]^{T}
$$

In addition, we define the $M \times 1$ vector η, by concatenating r external input vectors:

$$
\eta=\left[\begin{array}{llllll}
\eta_{1} & \eta_{2} & \ldots & \eta_{i} & \ldots & \eta_{r} \tag{2.9}
\end{array}\right]^{T}
$$

where $M=\sum_{j=1}^{r} \mu_{j}$.
An external output vector can be composed of the output vectors of the systems from the network, as well as of the external input vectors. The i-th external output vector is denoted by ξ_{i} and has dimension $\rho_{i} \times 1$. We define the $q \times 1$ vector ρ containing the dimension of each external output vector $\xi_{i}(i \in \mathscr{P})$:

$$
\rho=\left[\begin{array}{llllll}
\rho_{1} & \rho_{2} & \ldots & \rho_{i} & \ldots & \rho_{q} \tag{2.10}
\end{array}\right]^{T}
$$

In addition, we define the $P \times 1$ vector ξ, composed by concatenating q external output vectors:

$$
\xi=\left[\begin{array}{llllll}
\xi_{1} & \xi_{2} & \ldots & \xi_{i} & \ldots & \xi_{q} \tag{2.11}
\end{array}\right]^{T}
$$

where $P=\sum_{j=1}^{q} \rho_{j}$. We introduce the $N \times 1$ vectors l_{ϕ} and l_{w}, as well as the $q \times 1$ vectors l_{z} and l_{ψ} as

Fig. 3. Network topology, processes and time realization of a process
follows:

$$
\begin{array}{cr}
l_{\phi}=\Phi^{T} \cdot u_{r \times 1} & l_{w}=W^{T} \cdot u_{N \times 1} \tag{2.12}\\
l_{z}=Z^{T} \cdot u_{r \times 1} & l_{\psi}=\Psi^{T} \cdot u_{N \times 1}
\end{array}
$$

where $\left(l_{w}\right)_{i}$ defines the number of internal links connected to the internal node i, while the number of input links that internal node i receives is defined by $\left(l_{\psi}\right)_{i}$. Additionally, the output node i receives $\left(l_{\psi}\right)_{i}$ links from the internal nodes, as well as $\left(l_{z}\right)_{i}$ external links. Total number of the internal, input, output and external links is defined as follows:

$$
\begin{align*}
L_{w}=\left(l_{w}\right)^{T} \cdot u_{N \times 1} & L_{\phi}=\left(l_{\phi}\right)^{T} \cdot u_{N \times 1} \\
L_{\psi}=\left(l_{\psi}\right)^{T} \cdot u_{q \times 1} & L_{z}=\left(l_{z}\right)^{T} \cdot u_{q \times 1} \tag{2.13}
\end{align*}
$$

respectively.
A graph G of 5 nodes, together with the one input and one output node is presented in Fig. 3(a). The processes within the first and second node of G are sketched in Fig. 3(b). Finally, a realization of the output vector of the first node is presented in Fig. 3(c).

The dimension m_{i} of the input vector u_{i} of each node in $G(i \in \mathscr{N})$ must obey:

$$
\begin{equation*}
m=W^{T} \cdot p+\Phi^{T} \cdot \mu \tag{2.14}
\end{equation*}
$$

Analogously, the dimension ρ_{i} of each external output vector $\xi_{i}(i \in \mathscr{P})$ must obey:

$$
\begin{equation*}
\rho=\Psi^{T} \cdot p+Z^{T} \cdot \mu \tag{2.15}
\end{equation*}
$$

Relations (2.14) and (2.15) can be written together in a matrix form: ${ }^{2}$

$$
\left[\begin{array}{c}
m_{N \times 1} \tag{2.16}\\
\rho_{q \times 1}
\end{array}\right]=\left[\begin{array}{ll}
W_{N \times N}^{T} & \Phi_{N \times r}^{T} \\
\Psi_{q \times N}^{T} & Z_{q \times r}^{T}
\end{array}\right] \cdot\left[\begin{array}{c}
p_{N \times 1} \\
\mu_{r \times 1}
\end{array}\right]
$$

3. Network dynamics

A complex network is composed of N nodes/systems, with internal DLSS dynamics defined by (2.4). We now would like to find the dynamics between the aggregated external output vector ξ defined in (2.11) and the aggregated external input vector η defined in (2.9), by following DLSS governing equations:

FIG. 4. Underlying topology vs linear processes on the complex network

[^1]\[

$$
\begin{cases}x_{e}[k+1] & =A_{e} \cdot x_{e}[k]+B_{e} \cdot \eta[k] \tag{3.1}\\ \xi[k] & =C_{e} \cdot x_{e}[k]+D_{e} \cdot \eta[k]\end{cases}
$$
\]

where the $\sum_{j=1}^{N} n_{j} \times 1$ vector x_{e} contains states of each system in the network:

$$
x_{e}[k]=\left[\begin{array}{c}
x_{1}[k] \tag{3.2}\\
x_{2}[k] \\
\vdots \\
x_{N}[k]
\end{array}\right]
$$

The matrices A_{e}, B_{e}, C_{e} and D_{e} will be determined in terms of network topology and the dynamics of individual nodes/systems.

3.1 Hierarchical Structuring of Complex Networks

Fig. 5. Hierarchical Structuring of Complex Networks with Linear Processes

The underlying topology of the network, together with the input and output links is sketched in the left lower part of Fig 4, while the processes within each node/system of the network are presented in the right lower part. By determining the DLSS process in (3.1), we determine the network dynamics. Thus, we can abstract the network dynamics with a DLSS process, as provided in the right upper part of Fig 4. This abstraction is analogous to abstracting the network topology by a node, as shown in the left upper part of Fig 4.

An example of hierarchical structuring is provided in Fig 5. We use three layers of abstraction, namely Layer L_{0}, Layer L_{1} and Layer L_{2}. A network G_{1} of N interconnected nodes with internal dynamics is presented in the Layer L_{1}. The dynamics of the network G_{1} are abstracted by the dynamics within the node 2 of the network G_{2}, in a higher abstraction layer L_{2}. There are two additional nodes in G_{2} and they abstract the dynamics of another two networks from the Layer L_{1}. An external impact on the network dynamics from the layer L_{1} represents an interconnection between the nodes/abstracted networks in G_{2}.

In the same time, the internal dynamics of a node from G_{1} abstract the dynamics of a network from a lower abstraction layer L_{0}, as presented in Fig 5. An external impact on the dynamics of a network in abstraction layer L_{0} represents an interconnection in abstraction layer L_{1} and a mode of the dynamics within a node from abstraction layer L_{2}.

Thus, the proposed theoretical framework allows the hierarchical structuring of complex networks with linear processes. By using the same type of governing equations (DLSS governing equations) to describe both the internal dynamics within a node/system from the network and the network dynamics, we enable hierarchical structuring of complex networks.

4. Extended graph

The underlying topology of the network is defined by a graph G. Beside nodes of the graph G, input

FIG. 6. Concept of the extended graph G_{e}
and output nodes are also defined, as source of input and external links and as destination of output and external links, respectively. Therefore, we introduce the extended $\operatorname{graph} G_{e}\left(\mathscr{N}_{e}, \mathscr{L}_{e}\right)$, that is composed of $N_{e}=\left|\mathscr{N}_{e}\right|$ nodes:

$$
\begin{equation*}
N_{e}=r+N+q \quad \mathscr{N}_{e}=\mathscr{M} \cup \mathscr{N} \cup \mathscr{P} \tag{4.1}
\end{equation*}
$$

and of L_{e} links:

$$
\begin{equation*}
L_{e}=L_{\phi}+L_{w}+L_{\psi}+L_{z} \tag{4.2}
\end{equation*}
$$

The relation between the graph G and the extended graph G_{e} is presented in Fig. 6. The input nodes of the extended graph G_{e} are labelled first, before the internal nodes, while the output nodes are labelled as the last q nodes of G_{e}. Extended graph G_{e} from Fig. 6 with labelled nodes is presented in Fig. 7.

Fig. 7. Labelled nodes of the extended graph G_{e} from Fig. 6

The adjacency matrix W_{e} of the extended graph G_{e} has a block structure:

$$
W_{e}=\left[\begin{array}{ccc}
O_{r \times r} & \Phi_{r \times N} & Z_{r \times q} \tag{4.3}\\
O_{N \times r} & W_{N \times N} & \Psi_{N \times q} \\
O_{q \times r} & O_{q \times N} & O_{q \times q}
\end{array}\right]
$$

Since the input nodes have zero in-degree, the first block column of W_{e} is composed of zero block matrices. Similarly, since the output nodes have zero out-degree, the third block row contains zero block matrices as well.

The links whose destination is the first internal node of G_{e} are labelled first, in ascending order, relative to the source node. Next, the links connected to the second internal node are labelled. After labelling all the incoming links to the internal nodes, links whose destination is the first output node are labelled, in ascending order, relative to the source node. Then the incoming links of the second output node are labelled, in ascending order relative to the source node. The incoming links of the q-th output node are labelled last. The links of the extended graph G_{e} from Fig. 6 have been labelled by our convention and presented in Fig. 8.

We introduce the $N_{e} \times L_{e}$ incidence matrix Λ of extended graph G_{e} in block form:

$$
\Lambda=\left[\begin{array}{ll}
\left(\Lambda_{11}\right)_{r \times\left(L_{w}+L_{\phi}\right)} & \left(\Lambda_{12}\right)_{r \times\left(L_{\psi}+L_{z}\right)} \tag{4.4}\\
\left(\Lambda_{21}\right)_{N \times\left(L_{w}+L_{\phi}\right)} & \left(\Lambda_{22}\right)_{N \times\left(L_{\psi}+L_{z}\right)} \\
\left(\Lambda_{31}\right)_{q \times\left(L_{w}+L_{\phi}\right)} & \left(\Lambda_{32}\right)_{q \times\left(L_{\psi}+L_{z}\right)}
\end{array}\right]
$$

The first block column of Λ refers to the links whose destination is an internal node. There are $L_{w}+L_{\phi}$ such links. The second block column of Λ refers to the links whose destination is an output node. There are $L_{\psi}+L_{z}$ such links. The first block row of Λ refers to the r input nodes. Further, the second block row is related to the N internal nodes, while the third block row regards the q output nodes.

We define the $L_{e} \times N_{e}$ matrix Γ as follows:

$$
\begin{equation*}
\Gamma=\frac{\Lambda^{T}+\left|\Lambda^{T}\right|}{2} \tag{4.5}
\end{equation*}
$$

Fig. 8. Labelled links of the extended graph G_{e} from Fig. 6
where $\left|\Lambda^{T}\right|$ denotes the absolute value of each element of Λ^{T}. Matrix Γ has a block structure:

$$
\Gamma=\left[\begin{array}{ccc}
\left(\Gamma_{\phi}\right)_{\left(L_{w}+L_{\phi}\right) \times r} & \left(\Gamma_{w}\right)_{\left(L_{w}+L_{\phi}\right) \times N} & O_{\left(L_{w}+L_{\phi}\right) \times q} \tag{4.6}\\
\left(\Gamma_{z}\right)_{\left(L_{\psi}+L_{z}\right) \times r} & \left(\Gamma_{\psi}\right)_{\left(L_{\psi}+L_{z}\right) \times N} & O_{\left(L_{\psi}+L_{z}\right) \times q}
\end{array}\right]
$$

where each block element of Γ is of same dimensions as the according block element of transposed incidence matrix Λ^{T} of G_{e}. The negative entries of Λ^{T} define the destination node for each link of G_{e} and are not contained in Γ. Therefore, the third block column of Γ that is related to output nodes, contains zero block matrices. We observe that matrix Γ is a zero-one matrix. Each row of Γ regards certain link in G_{e} and contains exact one non-zero component, that refers to the source node of that link.

We further introduce the $\left(L_{w}+L_{\phi}\right) \times 1$ vectors s_{ϕ} and s_{w}, as well as the $\left(L_{\psi}+L_{z}\right) \times 1$ vectors s_{z} and s_{ψ} as follows:

$$
\left[\begin{array}{ll}
\left(s_{\phi}\right)_{\left(L_{w}+L_{\phi}\right) \times 1} & \left(s_{w}\right)_{\left(L_{w}+L_{\phi}\right) \times 1} \tag{4.7}\\
\left(s_{z}\right)_{\left(L_{\psi}+L_{z}\right) \times 1} & \left(s_{\psi}\right)_{\left(L_{\psi}+L_{z}\right) \times 1}
\end{array}\right]=\Gamma \cdot\left[\begin{array}{cc}
\mu_{r \times 1} & O_{r \times 1} \\
O_{N \times 1} & p_{N \times 1} \\
O_{q \times 1} & O_{q \times 1}
\end{array}\right]
$$

where $\left(s_{w}\right)_{i}$ defines the dimension of the i-th internal link, $\left(s_{\phi}\right)_{i}$ defines the dimension of the i-th input link, while $\left(s_{\psi}\right)_{i}$ and $\left(s_{z}\right)_{i}$ define the dimensions of the i-th output and i-th external link, respectively. The total number of links that are connected to the internal nodes is $L_{\phi}+L_{w}$, while $L_{\psi}+L_{z}$ is the total number of links that have the output nodes as destination. Total dimensions $S_{w}, S_{\phi}, S_{\psi}$ and S_{z} of all internal, input, output and external links, respectively, are defined as follows:

$$
\begin{array}{ll}
S_{w}=s_{w}^{T} \cdot u_{\left(L_{w}+L_{\phi}\right) \times 1} & S_{\phi}=s_{\phi}^{T} \cdot u_{\left(L_{w}+L_{\phi}\right) \times 1} \tag{4.8}\\
S_{\psi}=s_{\psi}^{T} \cdot u_{\left(L_{\psi}+L_{z}\right) \times 1} & S_{z}=s_{z}^{T} \cdot u_{\left(L_{\psi}+L_{z}\right) \times 1}
\end{array}
$$

Since the input and internal links are connected to internal nodes, while the output and external links have output nodes as a destination, next identities hold:

$$
\begin{equation*}
S_{w}+S_{\phi}=\sum_{i=1}^{N} m_{i} \quad S_{\psi}+S_{z}=\sum_{i=1}^{q} \rho_{i} \tag{4.9}
\end{equation*}
$$

Additionally, we define the diagonal block matrices containing DLSS matrices of each system of the network, namely $\left(A_{d}\right)_{\sum_{i=1}^{N} n_{i} \times \sum_{i=1}^{N} n_{i}},\left(B_{d}\right)_{\sum_{i=1}^{N} n_{i} \times \sum_{i=1}^{N} m_{i}},\left(C_{d}\right)_{\sum_{i=1}^{N} p_{i} \times \sum_{i=1}^{N} n_{i}}$ and $\left(D_{d}\right)_{\sum_{i=1}^{N} p_{i} \times \sum_{i=1}^{N} m_{i}}:$

$$
\left\{\begin{array}{ll}
A_{d} & =\text { diagonal }\left[\begin{array}{llll}
A_{1} & A_{2} & \ldots & A_{N} \\
B_{d} & =\text { diagonal } \\
C_{d} & =\text { diagonal } & {\left[\begin{array}{llll}
B_{1} & B_{2} & \ldots & B_{N}
\end{array}\right]} \\
D_{1} & C_{2} & \ldots & C_{N}
\end{array}\right]
\end{array}\left[\begin{array}{llll}
D_{1} & D_{2} & \ldots & D_{N} \tag{4.10}
\end{array}\right]\right.
$$

Matrices A_{d}, B_{d}, C_{d} and D_{d} enable us to define the dynamics of each system of the network in a compact block diagonal form:

$$
\begin{cases}x_{e}[k+1] & =A_{d} \cdot x_{e}[k]+B_{d} \cdot u_{d}[k] \tag{4.11}\\ y_{d}[k] & =C_{d} \cdot x_{e}[k]+D_{d} \cdot u_{d}[k]\end{cases}
$$

where the $\sum_{i=1}^{N} m_{i} \times 1$ aggregated input vector u_{d} and the $\sum_{i=1}^{N} p_{i} \times 1$ aggregated output vector y_{d} are defined as follows:

$$
u_{d}=\left[\begin{array}{c}
u_{1} \tag{4.12}\\
u_{2} \\
\vdots \\
u_{N}
\end{array}\right] \quad y_{d}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right]
$$

DEFINITION 4.1 The aggregated input vector u_{d}, aggregated output vector y_{d}, aggregated external input vector η and the aggregated external output vector ξ are related as follows:

$$
\begin{cases}u_{d}[k] & =F_{w} \cdot y_{d}[k]+F_{\phi} \cdot \eta[k] \tag{4.13}\\ \xi[k] & =F_{\psi} \cdot y_{d}[k]+F_{z} \cdot \eta[k]\end{cases}
$$

where the $\left(S_{w}+S_{\phi}\right) \times \sum_{i=1}^{N} p_{i}$ matrix F_{w}, the $\left(S_{w}+S_{\phi}\right) \times M$ matrix F_{ϕ}, the $\left(S_{\psi}+S_{z}\right) \times \sum_{i=1}^{N} p_{i}$ matrix F_{ψ} and the $\left(S_{\psi}+S_{z}\right) \times M$ matrix F_{z}, are composed of $\left(L_{w}+L_{\phi}\right) \times N,\left(L_{w}+L_{\phi}\right) \times r,\left(L_{\psi}+L_{z}\right) \times N$ and $\left(L_{\psi}+L_{z}\right) \times r$ block elements, respectively, that are defined as follows:

$$
\begin{align*}
& \left(F_{w}\right)_{i j}=\left\{\begin{array}{ll}
I_{\left(s_{w}+s_{\phi}\right)_{i}} & \text { if }\left(\Gamma_{w}\right)_{i j}=1 \\
O_{\left(s_{w}+s_{\phi}\right)_{i} \times p_{j}} & \text { otherwise }
\end{array}\left(F_{\phi}\right)_{i j}= \begin{cases}I_{\left(s_{w}+s_{\phi}\right)_{i}} & \text { if }\left(\Gamma_{\phi}\right)_{i j}=1 \\
O_{\left(s_{w}+s_{\phi}\right)_{i} \times \mu_{j}} & \text { otherwise }\end{cases} \right. \tag{4.14}\\
& \left(F_{\psi}\right)_{i j}=\left\{\begin{array}{ll}
I_{\left(s_{\psi}+s_{z}\right)_{i}} & \text { if }\left(\Gamma_{\psi}\right)_{i j}=1 \\
O_{\left(s_{\psi}+s_{z}\right)_{i} \times p_{j}} & \text { otherwise }
\end{array}\left(F_{z}\right)_{i j}= \begin{cases}I_{\left(s_{\psi}+s_{z}\right)_{i}} & \text { if }\left(\Gamma_{z}\right)_{i j}=1 \\
O_{\left(s_{\psi}+s_{z}\right)_{i} \times \mu_{j}} & \text { otherwise }\end{cases} \right.
\end{align*}
$$

The definition is elaborated in Appendix B. Matrices $F_{w}, F_{\phi}, F_{\psi}$ and F_{z} are defined similarly as the Kronecker products. However, each block element of these matrices is of different dimensions, which is not the case in the Kronecker product. Dimensions of the block elements vary because each vector in the network is in general of a different dimension, which is thoroughly explained in Appendix F. Furthermore, in Appendix D, we analyse homogeneous networks with identical dynamic interactions, which is a special case of the network, that allows applying the Kronecker product. Therefore, governing equations for the time dynamics of the entire network are based on the Kronecker product.

5. Main results

THEOREM 5.1 The matrices A_{e}, B_{e}, C_{e} and D_{e} from the DLSS governing equations in (3.1):

$$
\begin{cases}x_{e}[k+1] & =A_{e} \cdot x_{e}[k]+B_{e} \cdot \eta[k] \\ \xi[k] & =C_{e} \cdot x_{e}[k]+D_{e} \cdot \eta[k]\end{cases}
$$

provided the matrix $\left(I-D_{d} \cdot F_{w}\right)$ is non-singular or $\left(D_{d} \cdot F_{w}\right)$ has not an eigenvalue 1 , are explicitly determined as follows:

$$
\left\{\begin{array}{l}
A_{e}=\left(B_{d} \cdot F_{w}\right) \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot C_{d}+A_{d} \tag{5.1}\\
B_{e}=\left(B_{d} \cdot F_{w}\right) \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot\left(D_{d} \cdot F_{\phi}\right)+B_{d} \cdot F_{\phi} \\
C_{e}=F_{\psi} \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot C_{d} \\
D_{e}=F_{\psi} \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot\left(D_{d} \cdot F_{\phi}\right)+F_{z}
\end{array}\right.
$$

Proof. Appendix C

COROLLARY 5.1 When there is no direct interaction between the input vector u_{i} and the output vector y_{i} of each system in the network (i.e. $D_{i}=O_{p_{i} \times m_{i}}, i \in \mathscr{N}$), the matrices A_{e}, B_{e}, C_{e} and D_{e} are explicitly determined as follows:

$$
\left\{\begin{array}{l}
A_{e}=B_{d} \cdot F_{w} \cdot C_{d}+A_{d} \tag{5.2}\\
B_{e}=B_{d} \cdot F_{\phi} \\
C_{e}=F_{\psi} \cdot C_{d} \\
D_{e}=F_{z}
\end{array}\right.
$$

When the feedforward matrix D_{i} of each node/system of G is a non zero matrix (i.e. $D_{i} \neq O_{p_{i} \times m_{i}}, i \in$ \mathscr{N}), the state vector x_{i} impacts the state vector x_{j} (i.e. $\left(A_{e}\right)_{j i} \neq O_{n_{j} \times n_{i}}$) if and only if there is a path from the node i to the node j in G (i.e. iff $\left.\left(\sum_{k=1}^{N} W^{k}\right)_{i j}>0\right)$.

On the other side, when there is no direct relation between the input vector u_{i} and the output vector y_{i} for each node/system of the network (i.e. $D_{i}=O_{p_{i} \times m_{i}}, i \in \mathscr{N}$), the state vector x_{i} influences the state vector x_{j} (i.e. $\left(A_{e}\right)_{j i} \neq O_{n_{j} \times n_{i}}$) if and only if the node/system i and node/system j are direct neighbours (i.e. $w_{i j}=1$). Thus, the relation (5.2) is significantly simpler than the solution of general case (5.1). The further explanation of the matrices A_{e}, B_{e}, C_{e} and D_{e} in terms of paths in G_{e} is provided in Appendix F.

The analysis of the continuous-time process on complex networks is provided Appendix E. The solution for the network dynamics is provided both in time domain and in complex Laplace domain.

5.1 A numerical example

We provide a numerical example of a network model with linear processes, on which we apply the results of the paper. Therefore, we provide a network of $N=5$ nodes/systems, with $r=2$ input nodes and $q=2$ output nodes. Further, the $N \times N$ adjacency matrix W, the $r \times N$ matrix Φ, the $N \times q$ matrix Ψ and the $r \times q$ matrix Z are defined as follows:

FIG. 9. Network topology and the block diagram of the network dynamics, where $N=5, r=2, q=2$

$$
\begin{array}{ll}
W & =\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] \quad \Psi=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \tag{5.3}\\
\Phi=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right] \quad Z=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{array}
$$

Further, the $N \times 1$ vector p containing output dimensions of each system, the $N \times 1$ vector n with number of states for each system and the $r \times 1$ vector μ that contains the dimension of external inputs are defined as follows:

$$
p=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1
\end{array}\right] \quad n=\left[\begin{array}{lllll}
2 & 2 & 2 & 2 & 2
\end{array}\right] \quad \mu=\left[\begin{array}{ll}
1 & 1 \tag{5.4}
\end{array}\right]
$$

while the $N \times 1$ vector m with dimensions of inputs per each node/system and the $q \times 1$ vector ρ containing dimensions of external outputs are computed using (2.16):

$$
m=\left[\begin{array}{lllll}
2 & 2 & 2 & 3 & 2
\end{array}\right] \quad \rho=\left[\begin{array}{ll}
2 & 1 \tag{5.5}
\end{array}\right]
$$

Parameters of the DLSS model of each node of the graph are defined below:

$$
\begin{align*}
& \begin{array}{lll}
A_{1}=\left[\begin{array}{cc}
0.1227 & -0.0733 \\
0.0733 & 0.1227
\end{array}\right] & B_{1} & =\left[\begin{array}{ll}
0.0232 & 0.1070 \\
0.1019 & 0.1026
\end{array}\right] \\
C_{1}=\left[\begin{array}{ll}
0.6547 & 0.1913
\end{array}\right] & D_{1} & =\left[\begin{array}{ll}
0 & 0.5000
\end{array}\right]
\end{array} \\
& \begin{array}{lll}
A_{2}=\left[\begin{array}{cc}
0.3796 & -0.3920 \\
0.3920 & 0.3796
\end{array}\right] & B_{2} & =\left[\begin{array}{ll}
0.2371 & 0.1215 \\
0.4789 & 0.3491
\end{array}\right] \\
C_{2}=\left[\begin{array}{ll}
0.0089 & 0.1603
\end{array}\right] & D_{2} & =\left[\begin{array}{ll}
0.5000 & 0
\end{array}\right]
\end{array} \\
& \begin{array}{l}
A_{3}=\left[\begin{array}{ll}
-0.3438 & -0.2597 \\
-0.2597 & -0.7647
\end{array}\right]
\end{array} \begin{array}{ll}
B_{3} & =\left[\begin{array}{ll}
0.0597 & 0.3568 \\
0.4729 & 0.7413
\end{array}\right] \\
C_{3}=\left[\begin{array}{ll}
0.0664 & 0.2628
\end{array}\right] & D_{3}
\end{array}=\left[\begin{array}{ll}
0.5000 & 0.3394
\end{array}\right] \tag{5.6}\\
& \begin{array}{l}
A_{4}=\left[\begin{array}{ll}
-0.3773 & -0.0779 \\
-0.0779 & -0.9613
\end{array}\right] \quad B_{4}=\left[\begin{array}{lll}
0.7038 & 0.6134 & 0.4158 \\
0.2989 & 0.1345 & 0.5020
\end{array}\right] \\
C_{4}=\left[\begin{array}{ll}
0.4997 & 0.2145
\end{array}\right] \quad D_{4} \quad=\left[\begin{array}{lll}
0 & 0.5000 & 0
\end{array}\right]
\end{array} \\
& \begin{array}{l}
A_{5}=\left[\begin{array}{cc}
0.5796 & -0.0619 \\
-0.0619 & 0.7033
\end{array}\right]
\end{array} \begin{array}{ll}
B_{5} & =\left[\begin{array}{ll}
0.1072 & 0.6859 \\
0.4328 & 0.1584
\end{array}\right] \\
C_{5}=\left[\begin{array}{ll}
0.1089 & 0.0430
\end{array}\right] & D_{5}
\end{array} \quad=\left[\begin{array}{lll}
0.5000 & 0
\end{array}\right]
\end{align*}
$$

Network topology, with input and output nodes, is presented in the lower-left part of Fig. 9, while the network dynamics in from of the interconnected block diagrams are presented in the upper-left part of the Figure. By applying Theorem 5.1 we provide the dynamics of the entire network in the form of a DLSS system, as presented in the upper-right part of the Figure. Finally, the Theorem 5.1 allows representing entire network topology as a node, on a higher hierarchy level.

6. Conclusion

In this paper, we propose a general theoretical framework for modeling complex networks with timeinvariant topology, composed of nodes with linear internal dynamics and with linear interactions between them.

Nodes perform heterogeneous higher-order internal dynamics, with multi-dimensional input and output vectors. The proposed framework allows to independently define each dynamic interaction between the nodes. Proper notations have been introduced for network topology and the internal dynamics of nodes. The external processes that influence the network dynamics are included in the proposed framework. The analytic solution for the network dynamics is provided in the discrete-time domain, continuous-time domain and the Laplace domain.

The assumption about linear processes on networks allows scalability of the proposed model to large-scale networks and preserves network information. Finally, the reversible hierarchical structuring of complex networks with linear processes is introduced.

Acknowledgment

The authors are grateful to B. Prasse for useful comments.
The work is part of NExTWORKx, a collaboration between TU Delft and KPN on future telecommunication networks.

A. List of Notations

Table A.1. Notations for the graph G and DLSS models

Notation	Explanation
G	Graph
\mathscr{N}	Set of N nodes of graph G
\mathscr{L}	Set of L links of graph G
N	Number of nodes in graph G
L	Number of links in graph G
W	Adjacency matrix of graph G
A_{i}	State matrix of a DLSS model of node/system i
B_{i}	Input matrix of a DLSS model of node/system i
C_{i}	Output matrix of a DLSS model of node/system i
D_{i}	Feedforward matrix of a DLSS model of node/system i
A_{d}	Diagonal block matrix composed of A_{i} matrices, $i \in \mathscr{N}$
B_{d}	Diagonal block matrix composed of B_{i} matrices, $i \in \mathscr{N}$
C_{d}	Diagonal block matrix composed of C_{i} matrices, $i \in \mathscr{N}$
D_{d}	Diagonal block matrix composed of D_{i} matrices, $i \in \mathscr{N}$
A_{e}	State matrix of a DLSS model of the network
B_{e}	Input matrix of a DLSS model of the network
C_{e}	Output matrix of a DLSS model of the network
D_{e}	Feedforward matrix of a DLSS model of the network

Table A.2. Notations for the links in G_{e}

Notation	Explanation
l_{w}	Vector with number of internal links connected to each internal node in G_{e}
l_{ϕ}	Vector with number of input links connected to each internal node in G_{e}
l_{ψ}	Vector with number of output links connected to each output node in G_{e}
l_{z}	Vector with number of external links connected to each output node in G_{e}
L_{w}	Total number of internal links in G_{e}
L_{ϕ}	Total number of input links in G_{e}
L_{ψ}	Total number of output links in G_{e}
L_{z}	Total number of external links in G_{e}
s_{w}	Vector with number of components of each internal link in G_{e}
s_{ϕ}	Vector with number of components of each input link in G_{e}
s_{ψ}	Vector with number of components of each output link in G_{e}
s_{z}	Vector with number of components of each external link in G_{e}
S_{w}	Total number of components of all internal links in G_{e}
S_{ϕ}	Total number of components of all input links in G_{e}
S_{ψ}	Total number of components of all output links in G_{e}
S_{z}	Total number of components of all external links in G_{e}

Table A.3. Notations for the processes in G_{e}

Notation	Explanation
k	Discrete time variable
t	Continuous time variable
s	Complex variable
n_{i}	Number of states of i-th node/system in G
n	Vector with number of states of each node/system in G
m_{i}	Dimension of the input vector u_{i} of the i-th node/system in G
m	Vector with dimension of the input vector u_{i} of each node/system in $G(i \in \mathscr{N})$
p_{i}	Dimension of the output vector y_{i} of the i-th node/system in G
p	Vector with dimension of the output vector y_{i} of each node/system in $G(i \in \mathscr{N})$
x_{i}	State vector of the i-th node/system in G
x_{e}	State vector of entire network
$X_{e}(s)$	Laplace transform of the state vector $x_{e}(t)$
u_{i}	Input vector of the i-th node/system in G
u_{d}	Aggregated input vectors u_{i} of each node/system in $G(i \in \mathscr{N})$
$U_{d}(s)$	Laplace transform of the aggregated input vector $u_{d}(t)$
y_{i}	Output vector of the i-th node/system in G
y_{d}	Aggregated output vectors y_{i} of each node/system in $G(i \in \mathscr{N})$
$Y_{d}(s)$	Laplace transform of the aggregated output vector $y_{d}(t)$
\mathscr{M}	Set of input nodes in G_{e}
r	Number of input nodes in G_{e}
μ_{i}	Dimension of the i-th external input vector η_{i}
μ	Vector with dimension of the external input vector η_{i} of each input node in $G_{e}(i \in \mathscr{M})$
M	Sum of elements of the vector μ
η_{i}	The i-th external input vector in G_{e}
$H_{i}(s)$	Laplace transform of the i-th external input vector $\eta_{i}(t)$
η	Aggregated external input vector
$H(s)$	Laplace transform of the aggregated external input vector $\eta(t)$
\mathscr{P}	Set of output nodes in G_{e}
q	Number of output nodes in G_{e}
ρ_{i}	Dimension of the i-th external output vector ξ_{i} in G_{e}
ρ	Vector with dimension of the external output vector ξ_{i} of each input node in $G_{e}(i \in \mathscr{P})$
P	Sum of elements of the vector ρ
ξ_{i}	The i-th external output vector in G_{e}
$\Xi_{i}(s)$	Laplace transform of the i-th external output vector $\xi_{i}(t)$
ξ	Aggregated external output vector
$\Xi(s)$	Laplace transform of the aggregated external output vector $\xi(t)$
$H_{i}(s)$	Matrix of transfer functions of the i-th node/system in G
$G_{d}(s)$	Diagonal matrix composed of matrices $H_{i}(s)$ of each node/system in $G(i \in \mathscr{N})$
$G_{e}(s)$	Matrix of transfer functions of the entire network

Table A.4. Notations for the extended graph G_{e}

Notation	Explanation
G_{e}	Extended graph
\mathcal{N}_{e}	Set of N_{e} nodes of extended graph G_{e}
\mathscr{L}_{e}	Set of L_{e} links of extended graph G_{e}
N_{e}	Number of nodes in extended graph G_{e}
L_{e}	Number of links in extended graph G_{e}
W_{e}	Adjacency matrix of extended graph G_{e}
Λ	Incidence matrix of extended graph G_{e}
Γ	Transposed incidence matrix Λ with all negative entries set to 0
Γ_{ω}	Internal sub-matrix of Γ
Γ_{ϕ}	Input sub-matrix of Γ
Γ_{ψ}	Output sub-matrix of Γ
$\Gamma_{\bar{z}}$	External sub-matrix of Γ
Φ	Matrix that defines the input links existence
Ψ	Matrix that defines the output links existence
Z	Matrix that defines the external links existence
F	Extension of the matrix Γ for higher-dimensional vectors in G_{e}
F_{w}	Internal topology matrix, defined upon Γ_{w}
F_{ϕ}	Input topology matrix, defined upon Γ_{ϕ}
F_{ψ}	Output topology matrix, defined upon Γ_{ψ}
F_{z}	External topology matrix, defined upon Γ_{z}

B. Elaboration of Definition 1

We recall the definition of the matrix Γ :

$$
\Gamma=\left[\begin{array}{ccc}
\left(\Gamma_{\phi}\right)_{\left(L_{w}+L_{\phi}\right) \times r} & \left(\Gamma_{w}\right)_{\left(L_{w}+L_{\phi}\right) \times N} & O_{\left(L_{w}+L_{\phi}\right) \times q} \\
\left(\Gamma_{z}\right)_{\left(L_{\psi}+L_{z}\right) \times r} & \left(\Gamma_{\psi}\right)_{\left(L_{\psi}+L_{z}\right) \times N} & O_{\left(L_{\psi}+L_{z}\right) \times q}
\end{array}\right]
$$

Matrix Γ preserves information of the source node of each link in G_{e}. Each row of the matrix Γ contains exactly one non-zero element and this element is equal to 1.

When $\left(\Gamma_{w}\right)_{i j}=1$, it means that j-th internal node provides the i-th link of G_{e}. In case $\left(\Gamma_{\phi}\right)_{i j}=1$, we conclude that the i-th link of G_{e} originates from the j-th input node. The links connected to the internal nodes are defined with the matrices Γ_{w} and Γ_{ϕ}. There are $L_{w}+L_{\phi}$ such links (i.e. internal and input links).

Remaining $L_{\psi}+L_{z}$ links of G_{e} are connected to the output nodes and they are defined by the matrices Γ_{ψ} and Γ_{z} (i.e. output and external links). For $\left(\Gamma_{\psi}\right)_{i j}=1$, we conclude that the $\left(L_{w}+L_{\phi}+i\right)$-th link of G_{e} originates from the j-th internal node. Analogously, $\left(\Gamma_{z}\right)_{i j}=1$ indicates that the j-th input node provides the $\left(L_{w}+L_{\phi}+i\right)$-th link of G_{e}.

In case all the links in G_{e} are one-dimensional, i.e. $p_{i}=1$ and $\mu_{j}=1$, where $i \in \mathscr{N}, j \in \mathscr{M}$, the following relations hold:

$$
\begin{cases}u_{d}[k] & =\Gamma_{w} \cdot y_{d}[k]+\Gamma_{\phi} \cdot \eta[k] \\ \xi[k] & =\Gamma_{\psi} \cdot y_{d}[k]+\Gamma_{z} \cdot \eta[k]\end{cases}
$$

The definitions of the matrices $F_{w}, F_{\phi}, F_{\psi}$ and F_{z} represent the generalization of the matrices $\Gamma_{w}, \Gamma_{\phi}, \Gamma_{\psi}$ and Γ_{z}, respectively, in case when not all the links in G_{e} are one-dimensional.

C. Proof of Theorem 1

After substituting the first relation from (4.13) into the second relation from (4.11) we obtain:

$$
y_{d}[k]=C_{d} \cdot x_{e}[k]+D_{d} \cdot F_{w} \cdot y_{d}[k]+D_{d} \cdot F_{\phi} \cdot \eta[k]
$$

Under the assumption $\operatorname{det}\left(I-D_{d} \cdot F_{w}\right)^{-1} \neq 0$, we further obtain:

$$
\begin{equation*}
y_{d}[k]=\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot C_{d} \cdot x_{e}[k]+\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot\left(D_{d} \cdot F_{\phi}\right) \cdot \eta[k] \tag{A.1}
\end{equation*}
$$

After substituting relation (A.1) into first relation from (4.13), we obtain the expression for the aggregated input vector u_{d} :

$$
\begin{equation*}
u_{d}[k]=F_{w} \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot C_{d} \cdot x_{e}[k]+\left(F_{w} \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot\left(D_{d} \cdot F_{\phi}\right)+F_{\phi}\right) \cdot \eta[k] \tag{A.2}
\end{equation*}
$$

Further, after substituting relation (A.2) into first relation from (4.11), we obtain:

$$
x_{e}[k+1]=\left(A_{d}+B_{d} \cdot F_{w} \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot C_{d}\right) \cdot x_{e}[k]+\left(B_{d} \cdot F_{w} \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot D_{d} \cdot F_{\phi}+B_{d} \cdot F_{\phi}\right) \cdot \eta[k]
$$

from where we recognize the matrices A_{e} and B_{e} :

$$
\left\{\begin{array}{l}
A_{e}=A_{d}+\left(B_{d} \cdot F_{w}\right) \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot C_{d} \\
B_{e}=\left(B_{d} \cdot F_{w}\right) \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot\left(D_{d} \cdot F_{\phi}\right)+B_{d} \cdot F_{\phi}
\end{array}\right.
$$

Finally, after substituting expression for the aggregated output vector y_{d} from (A.1) into second relation from (4.13), we obtain:

$$
\xi[k]=F_{\psi} \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot C_{d} \cdot x_{e}[k]+F_{\psi} \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot D_{d} \cdot F_{\phi} \cdot \eta[k]+F_{z} \cdot \eta[k]
$$

Hence, we find:

$$
\left\{\begin{array}{l}
C_{e}=F_{\psi} \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot C_{d} \\
D_{e}=F_{\psi} \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot\left(D_{d} \cdot F_{\phi}\right)+F_{z}
\end{array}\right.
$$

which completes the proof.

D. Homogeneous network with identical interactions between the nodes/systems

In the following subsection, we examine the simplest network with linear processes, i.e. a homogeneous network (a network with nodes that perform identical internal dynamics) with identical dynamic interactions between the nodes/systems. Consequently, dimensions of the external input (2.8) and external output (2.10) vectors, as well of the input (2.6) and output vectors (2.7) are the same:

$$
\begin{equation*}
m_{i}=p_{j}=\mu_{l}=\rho_{v}=p_{1} \quad i, j \in \mathscr{N} \quad l \in \mathscr{M} \quad v \in \mathscr{P} \tag{A.1}
\end{equation*}
$$

Node/system i performs internal dynamics defined by (2.4), where the $n_{i} \times n_{i}$ state matrix A, the $n_{i} \times m_{i}$ input matrix B, the $p_{i} \times n_{i}$ output matrix C and the $p_{i} \times m_{i}$ feed-forward matrix D are identical for each node/system in the network. For identical interactions, instead of stacking incoming vectors of a certain node into an input/external output vector as in (2.16), they are summed:

$$
\begin{align*}
u_{i}[k] & =\sum_{j \in \mathscr{N}, w_{j i}=1} y_{j}[k]+\sum_{l \in \mathscr{M}, \phi_{l i}=1} \eta_{l}[k] \\
\xi_{i}[k] & =\sum_{j \in \mathscr{N}, \psi_{j i}=1} y_{j}[k]+\sum_{l \in \mathscr{M}, z_{l i}=1} \eta_{l}[k] \tag{A.2}
\end{align*}
$$

Therefore, Definition 4.1 for a homogeneous network with identical interactions reduces to:

$$
\left\{\begin{array}{l}
u_{d}[k]=\left(W^{T} \otimes I_{p_{1} \times p_{1}}\right) \cdot y_{d}[k]+\left(\Phi^{T} \otimes I_{p_{1} \times p_{1}}\right) \cdot \eta[k] \tag{A.3}\\
\xi[k]=\left(\Psi^{T} \otimes I_{p_{1} \times p_{1}}\right) \cdot y_{d}[k]+\left(Z^{T} \otimes I_{p_{1} \times p_{1}}\right) \cdot \eta[k]
\end{array}\right.
$$

Analogously to the Theorem 5.1, we provide the parameters of the DLSS model for the time dynamics of the entire network:

$$
\left\{\begin{array}{l}
A_{e}=\left(W^{T} \otimes B\right) \cdot\left(I_{N p_{1} \times N p_{1}}-W^{T} \otimes D\right)^{-1} \cdot\left(I_{N} \otimes C\right)+\left(I_{N \times N} \otimes A\right) \tag{A.4}\\
B_{e}=\left(W^{T} \otimes B\right) \cdot\left(I_{N p_{1} \times N p_{1}}-W^{T} \otimes D\right)^{-1} \cdot\left(\Phi^{T} \otimes D\right)+\left(\Phi^{T} \otimes B\right) \\
C_{e}=\left(\Psi^{T} \otimes I_{p_{1} \times p_{1}}\right) \cdot\left(I_{N p_{1} \times N p_{1}}-W^{T} \otimes D\right)^{-1} \cdot\left(I_{N \times N} \otimes C\right) \\
D_{e}=\left(\Psi^{T} \otimes I_{p_{1} \times p_{1}}\right) \cdot\left(I_{N p_{1} \times N p_{1}}-W^{T} \otimes D\right)^{-1} \cdot\left(\Phi^{T} \otimes D\right)+\left(Z^{T} \otimes I_{p_{1} \times p_{1}}\right)
\end{array}\right.
$$

while, in the case, the $p_{1} \times p_{1}$ feed-forward matrix $D=O_{p_{1} \times p_{1}}$, the solution for parameters of the governing model (5.2) becomes considerably simpler:

$$
\left\{\begin{array}{l}
A_{e}=\left(W^{T} \otimes B \cdot C\right)+\left(I_{N \times N} \otimes A\right) \tag{A.5}\\
B_{e}=\left(\Phi^{T} \otimes B\right) \\
C_{e}=\left(\Psi^{T} \otimes C\right) \\
D_{e}=\left(Z^{T} \otimes I_{p_{1} \times p_{1}}\right)
\end{array}\right.
$$

E. Continuous-time linear processes on complex networks

E. 1 Time-domain analysis

The continuous-time linear dynamics of the i-th node/system of the network obey a similar governing equation as (2.4):

$$
\left\{\begin{align*}
\frac{d x_{i}(t)}{d t} & =A_{i} \cdot x_{i}(t)+B_{i} \cdot u_{i}(t) \tag{A.1}\\
y_{i}(t) & =C_{i} \cdot x_{i}(t)+D_{i} \cdot u_{i}(t)
\end{align*}\right.
$$

where t denotes continuous time. We revise the definition of the $\sum_{i=1}^{N} m_{i} \times 1$ aggregated input vector u_{d} from (4.12), the $\sum_{i=1}^{N} p_{i} \times 1$ aggregated output vector y_{d} from (4.12), the $M \times 1$ aggregated external
input vector η from (2.9) and the $P \times 1$ aggregated external output vector ξ from (2.11) as follows:

$$
\begin{gather*}
u_{d}(t)=\left[\begin{array}{c}
u_{1}(t) \\
u_{2}(t) \\
\vdots \\
u_{N}(t)
\end{array}\right] \quad y_{d}(t)=\left[\begin{array}{c}
y_{1}(t) \\
y_{2}(t) \\
\vdots \\
y_{N}(t)
\end{array}\right] \tag{A.2}\\
\eta(t)=\left[\begin{array}{c}
\eta_{1}(t) \\
\eta_{2}(t) \\
\vdots \\
\eta_{r}(t)
\end{array}\right] \quad \xi(t)=\left[\begin{array}{c}
\xi_{1}(t) \\
\xi_{2}(t) \\
\vdots \\
\xi_{q}(t)
\end{array}\right]
\end{gather*}
$$

The aim is to determine the dynamics between the aggregated external output vector $\xi(t)$ and the aggregated external input vector $\eta(t)$, by following governing equations:

$$
\begin{align*}
\frac{d x_{e}(t)}{d t} & =A_{e} \cdot x_{e}(t)+B_{e} \cdot \eta(t) \tag{A.3}\\
\xi(t) & =C_{e} \cdot x_{e}(t)+D_{e} \cdot \eta(t)
\end{align*}
$$

where the $\sum_{i=1}^{N} n_{i}$ state vector $x_{e}(t)$ is defined as follows:

$$
x_{e}(t)=\left[\begin{array}{c}
x_{1}(t) \tag{A.4}\\
x_{2}(t) \\
\vdots \\
x_{N}(t)
\end{array}\right]
$$

The direct continuous-time analogy of Theorem 1 in discrete-time domain is as follows:
THEOREM A. 1 The matrices A_{e}, B_{e}, C_{e} and D_{e} from the DLSS equations in (A.3),

$$
\begin{aligned}
\frac{d x_{e}(t)}{d t} & =A_{e} \cdot x_{e}(t)+B_{e} \cdot \eta(t) \\
\xi(t) & =C_{e} \cdot x_{e}(t)+D_{e} \cdot \eta(t)
\end{aligned}
$$

provided the matrix $\left(I-D_{d} \cdot F_{w}\right)$ is non-singular or $\left(D_{d} \cdot F_{w}\right)$ has not an eigenvalue 1 , are explicitly determined as follows:

$$
\left\{\begin{array}{l}
A_{e}=\left(B_{d} \cdot F_{w}\right) \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot C_{d}+A_{d} \tag{A.5}\\
B_{e}=\left(B_{d} \cdot F_{w}\right) \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot\left(D_{d} \cdot F_{\phi}\right)+B_{d} \cdot F_{\phi} \\
C_{e}=F_{\psi} \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot C_{d} \\
D_{e}=F_{\psi} \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot\left(D_{d} \cdot F_{\phi}\right)+F_{z}
\end{array}\right.
$$

while Corollary 1 remains the same.

E. 2 Laplace-domain analysis

The unilateral (one-sided) Laplace transform, denoted as $\mathscr{L}\{f(t)\}$, of a continuous-time function $f(t)$ that is defined for all real numbers $t \geqslant 0$ is the complex function $F(s)$ defined as follows:

$$
\begin{equation*}
F(s)=\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t \tag{A.6}
\end{equation*}
$$

where s is a complex variable. In case the function $f(t)$ is defined also for negative real numbers, the bilateral (two-sided) Laplace transform is defined as en extension of (A.6), where the limits of the integral become entire real axis:

$$
\begin{equation*}
F(s)=\mathscr{L}\{f(t)\}=\int_{-\infty}^{\infty} e^{-s t} f(t) d t \tag{A.7}
\end{equation*}
$$

The inverse Laplace transform, denoted as $\mathscr{L}^{-1}\{F(s)\}$ is defined by:

$$
\begin{equation*}
f(t)=\mathscr{L}^{-1}\{F(s)\}=\frac{1}{2 \pi i} \lim _{T \rightarrow \infty} \oint_{\gamma-i T}^{\gamma+i T} e^{s t} F(s) d s \tag{A.8}
\end{equation*}
$$

where the real number γ defines the contour path of integration, that belongs to the region of convergence of $F(s)$.

The governing equations of the i-th node/system in continuous-time domain from (A.1) can be transformed into transfer functions using Laplace transform:

$$
\begin{equation*}
Y_{i}(s)=G_{i}(s) \cdot U_{i}(s)=\left(C_{i} \cdot\left(s I-A_{i}\right)^{-1} \cdot B_{i}+D_{i}\right) \cdot U_{i}(s) \tag{A.9}
\end{equation*}
$$

where the $p_{i} \times 1$ complex output vector $Y_{i}(s)$ and the $m_{i} \times 1$ complex input vector $U_{i}(s)$ are the Laplace transforms of the output vector $y_{i}(t)$ and the input vector $u_{i}(t)$, respectively. The $p_{i} \times m_{i}$ complex matrix $G_{i}(s)$ is a matrix of transfer functions between the complex vectors $Y_{d}(s)$ and $U_{d}(s)$, where the $\left(G_{i}(s)\right)_{j k}$ transfer function defines the dynamics between the j-th component of the complex output vector $\left(Y_{i}(s)\right){ }_{j}$ and the k-th component of the complex input vector $\left(U_{i}(s)\right)_{k}$.

The Laplace transforms of the aggregated input vector $u_{d}(t)$, aggregated output vector $y_{d}(t)$, aggregated external input vector $\eta(t)$ and aggregated external output vector $\xi(t)$ from (A.2) are defined as follows, respectively:

$$
\begin{array}{cc}
U_{d}(s)=\left[\begin{array}{c}
U_{1}(s) \\
U_{2}(s) \\
\vdots \\
U_{N}(s)
\end{array}\right] & Y_{d}(s)=\left[\begin{array}{c}
Y_{1}(s) \\
Y_{2}(s) \\
\vdots \\
Y_{N}(s)
\end{array}\right] \tag{A.10}\\
H(s)=\left[\begin{array}{c}
H_{1}(s) \\
H_{2}(s) \\
\vdots \\
H_{r}(s)
\end{array}\right] & \Xi(s)=\left[\begin{array}{c}
\Xi_{1}(s) \\
\Xi_{2}(s) \\
\vdots \\
\Xi_{q}(s)
\end{array}\right]
\end{array}
$$

By defining the $\sum_{i=1}^{N} p_{i} \times \sum_{i=1}^{N} m_{i}$ complex matrix $G_{d}(s)$ as a block diagonal matrix, composed of the transfer functions $G_{i}(s)$ of each individual node/system (i.e. $i \in \mathscr{N}$):

$$
G_{d}(s)=\operatorname{diagonal}\left[\begin{array}{llll}
G_{1}(s) & G_{2}(s) & \ldots & G_{N}(s) \tag{A.11}
\end{array}\right]=C_{d} \cdot\left(s I-A_{d}\right)^{-1} \cdot B_{d}+D_{d}
$$

we are able to define the dynamics between the complex aggregated output vector $Y_{d}(s)$ and complex aggregated input vector $U_{d}(s)$ in a compact form:

$$
\begin{equation*}
Y_{d}(s)=G_{d}(s) \cdot U_{d}(s) \tag{A.12}
\end{equation*}
$$

The aim of this subsection is to determine the $P \times M$ complex matrix $G_{e}(s)$ of transfer functions between the complex aggregated external output vector $\Xi(s)$ and the complex aggregated external input vector $H(s)$:

$$
\begin{equation*}
\Xi(s)=G_{e}(s) \cdot H(s) \tag{A.13}
\end{equation*}
$$

where the $P \times 1$ complex aggregated external output vector $\Xi(s)$ and the $M \times 1$ complex aggregated external input vector $H(s)$ are Laplace transforms of the aggregated external input vector $\xi(t)$ and the aggregated external input vector $\eta(t)$, respectively.

The Laplace transform of the direct continuous-time analogy of Definition 1 in discrete-time domain is as follows:

$$
\left\{\begin{array}{l}
U_{d}(s)=F_{w} \cdot Y_{d}(s)+F_{\phi} \cdot H(s) \tag{A.14}\\
\Xi(s)=F_{\psi} \cdot Y_{d}(s)+F_{z} \cdot H(s)
\end{array}\right.
$$

THEOREM A. 2 The complex matrix $G_{e}(s)$ of transfer functions from (A.13) is explicitly determined as follows:

$$
\begin{equation*}
G_{e}(s)=F_{\psi} \cdot\left(I-G_{d}(s) \cdot F_{w}\right)^{-1} \cdot G_{d}(s) \cdot F_{\phi}+F_{z} \tag{A.15}
\end{equation*}
$$

Proof. We provide two different proofs of the Theorem A.2. The first proof is based upon (A.14).

1) After substituting first relation from (A.14) into (A.12), we obtain:

$$
Y_{d}(s)=G_{d}(s) \cdot F_{w} \cdot Y_{d}(s)+G_{d}(s) \cdot F_{\phi} \cdot H(s)
$$

from where, under the assumption $\operatorname{det}\left(I-F_{w} \cdot G_{d}(s)\right) \neq 0$ we express the complex aggregated output vector $Y_{d}(s)$:

$$
\begin{equation*}
Y_{d}(s)=\left(I-G_{d}(s) \cdot F_{w}\right)^{-1} \cdot G_{d}(s) \cdot F_{\phi} \cdot H(s) \tag{A.16}
\end{equation*}
$$

Next, we substitute (A.16) into second relation from (A.14) and obtain:

$$
\Xi(s)=\left(F_{\psi} \cdot\left(I-G_{d}(s) \cdot F_{w}\right)^{-1} \cdot G_{d}(s) \cdot F_{\phi}+F_{z}\right) \cdot H(s)
$$

which completes the proof.
2) In Theorem 2, the dynamics between the aggregated external output vector $\xi(t)$ and the aggregated external input vector $\eta(t)$ are determined by the governing equations in (A.3). Hence, the Laplace transform of the governing equations from (A.3) is actually the complex matrix $G_{e}(s)$ of transfer functions between the complex aggregated external output vector $\Xi(s)$ and the complex aggregated external input vector $H(s)$:

$$
\begin{equation*}
G_{e}(s)=C_{e} \cdot\left(s I-A_{e}\right)^{-1} \cdot B_{e}+D_{e} \tag{A.17}
\end{equation*}
$$

After substituting (A.5) into (A.17), we obtain:

$$
\begin{align*}
G_{e}(s)= & F_{\psi} \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot C_{d} \cdot\left(s I-\left(B_{d} \cdot F_{w}\right) \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot C_{d}-A_{d}\right)^{-1} \\
& \cdot\left(\left(B_{d} \cdot F_{w}\right) \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot\left(D_{d} \cdot F_{\phi}\right)+B_{d} \cdot F_{\phi}\right) \tag{A.18}\\
& +F_{\psi} \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot\left(D_{d} \cdot F_{\phi}\right)+F_{z}
\end{align*}
$$

We right multiply the inverse term $\left(s I-A_{e}\right)^{-1}$ from (A.18) with $\left(s I-A_{d}\right) \cdot\left(s I-A_{d}\right)^{-1}$ (i.e. with identity matrix) and regroup the terms inside the same term:

$$
\begin{align*}
G_{e}(s)= & F_{\psi} \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot C_{d} \cdot\left(\left(s I-A_{d}\right)-\left(B_{d} \cdot F_{w}\right) \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot C_{d}\right)^{-1} \\
& \cdot\left(s I-A_{d}\right) \cdot\left(s I-A_{d}\right)^{-1} \cdot\left(\left(B_{d} \cdot F_{w}\right) \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot\left(D_{d} \cdot F_{\phi}\right)+B_{d} \cdot F_{\phi}\right) \tag{A.19}\\
& +F_{\psi} \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot\left(D_{d} \cdot F_{\phi}\right)+F_{z}
\end{align*}
$$

After applying the property of a matrix inverse onto the product $\left(s I-A_{e}\right)^{-1} \cdot\left(\left(s I-A_{d}\right)^{-1}\right)^{-1}$ from (A.19) we obtain:

$$
\begin{align*}
G_{e}(s)= & F_{\psi} \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot C_{d} \cdot\left(I-\left(s I-A_{d}\right)^{-1} \cdot\left(B_{d} \cdot F_{w}\right) \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot C_{d}\right)^{-1} \\
& \cdot\left(\left(s I-A_{d}\right)^{-1} \cdot\left(B_{d} \cdot F_{w}\right) \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot\left(D_{d} \cdot F_{\phi}\right)+\left(s I-A_{d}\right)^{-1} \cdot\left(B_{d} \cdot F_{\phi}\right)\right) \tag{A.20}\\
& +F_{\psi} \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot\left(D_{d} \cdot F_{\phi}\right)+F_{z}
\end{align*}
$$

We define the $\sum_{i=1}^{N} n_{i} \times \sum_{i=1}^{N} p_{i}$ complex matrix $K(s)$ as follows:

$$
\begin{equation*}
K(s)=\left(s I-A_{d}\right)^{-1} \cdot\left(B_{d} \cdot F_{w}\right) \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \tag{A.21}
\end{equation*}
$$

and observe the following matrix product from (A.20):

$$
\begin{equation*}
C_{d} \cdot\left(I-K(s) \cdot C_{d}\right)^{-1} \tag{A.22}
\end{equation*}
$$

We claim the next identity holds:

$$
\begin{equation*}
C_{d} \cdot\left(I-K(s) \cdot C_{d}\right)^{-1}=\left(I-C_{d} \cdot K(s)\right)^{-1} \cdot C_{d} \tag{A.23}
\end{equation*}
$$

where the identity matrix I from the left-hand side is of dimensions $\sum_{i=1}^{N} n_{i} \times \sum_{i=1}^{N} n_{i}$ and the identity matrix from the right-hand side of (A.23) has dimensions $\sum_{i=1}^{N} p_{i} \times \sum_{i=1}^{N} p_{i}$. We prove (A.23) by contradiction.

We denote the difference between the left-hand and the right-hand side of (A.23) as a complex matrix $E(s)$ of dimensions $\sum_{i=1}^{N} p_{i} \times \sum_{i=1}^{N} n_{i}$:

$$
\begin{equation*}
E(s)=C_{d} \cdot\left(I-K(s) \cdot C_{d}\right)^{-1}-\left(I-C_{d} \cdot K(s)\right)^{-1} \cdot C_{d} \tag{A.24}
\end{equation*}
$$

After left multiplying with $\left(I-C_{d} \cdot K(s)\right)$ and right multiplying with $\left(I-K(s) \cdot C_{d}\right)$ both sides of (A.24) we obtain:

$$
\left(I-C_{d} \cdot K(s)\right) \cdot E(s) \cdot\left(I-K(s) \cdot C_{d}\right)=O
$$

Left side of last equation is always zero, thus we conclude $E(s)=O$. We import the proven identity (A.23) into (A.20) and obtain:

$$
\begin{align*}
G_{e}(s)= & F_{\psi} \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot\left(I-C_{d} \cdot\left(s I-A_{d}\right)^{-1} \cdot\left(B_{d} \cdot F_{w}\right) \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1}\right)^{-1} \\
& \cdot\left(C_{d} \cdot\left(s I-A_{d}\right)^{-1} \cdot\left(B_{d} \cdot F_{w}\right) \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot\left(D_{d} \cdot F_{\phi}\right)\right. \tag{A.25}\\
& \left.+C_{d} \cdot\left(s I-A_{d}\right)^{-1} \cdot\left(B_{d} \cdot F_{\phi}\right)\right)+F_{\psi} \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot\left(D_{d} \cdot F_{\phi}\right)+F_{z}
\end{align*}
$$

We regroup the terms inside the fourth product term of (A.25) in such a way to build a matrix, whose inverse appears as the third product term in (A.25):

$$
\begin{align*}
G_{e}(s)= & F_{\psi} \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot\left(I-C_{d} \cdot\left(s I-A_{d}\right)^{-1} \cdot\left(B_{d} \cdot F_{w}\right) \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1}\right)^{-1} \\
& \cdot\left(-\left(I-C_{d} \cdot\left(s I-A_{d}\right)^{-1} \cdot\left(B_{d} \cdot F_{w}\right) \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1}\right) \cdot\left(D_{d} \cdot F_{\phi}\right)\right. \tag{A.26}\\
& \left.+\left(D_{d} \cdot F_{\phi}\right)+C_{d} \cdot\left(s I-A_{d}\right)^{-1} \cdot\left(B_{d} \cdot F_{\phi}\right)\right) \\
& +F_{\psi} \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot\left(D_{d} \cdot F_{\phi}\right)+F_{z}
\end{align*}
$$

After multiplying the third and the fourth product terms from (A.26), we obtain:

$$
\begin{align*}
G_{e}(s)= & -F_{\psi} \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot\left(D_{d} \cdot F_{\phi}\right)+F_{\psi} \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \\
& \left(I-C_{d} \cdot\left(s I-A_{d}\right)^{-1} \cdot\left(B_{d} \cdot F_{w}\right) \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1}\right)^{-1} \tag{A.27}\\
& \cdot\left(C_{d} \cdot\left(s I-A_{d}\right)^{-1} \cdot\left(B_{d} \cdot F_{\phi}\right)+\left(D_{d} \cdot F_{\phi}\right)\right) \\
& +F_{\psi} \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot\left(D_{d} \cdot F_{\phi}\right)+F_{z}
\end{align*}
$$

The first and the third sum terms from (A.27) are the same, but with opposite signs. Hence, we obtain:

$$
\begin{align*}
G_{e}(s)= & F_{\psi} \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1} \cdot\left(I-C_{d} \cdot\left(s I-A_{d}\right)^{-1} \cdot\left(B_{d} \cdot F_{w}\right) \cdot\left(I-D_{d} \cdot F_{w}\right)^{-1}\right)^{-1} \tag{A.28}\\
& \cdot\left(C_{d} \cdot\left(s I-A_{d}\right)^{-1} \cdot\left(B_{d} \cdot F_{\phi}\right)+\left(D_{d} \cdot F_{\phi}\right)\right)+F_{z}
\end{align*}
$$

Finally, after applying the property of a matrix inverse onto the product of the second and third product terms in (A.28), we obtain the final form for $G_{e}(s)$:

$$
\begin{align*}
G_{e}(s)= & F_{\psi} \cdot\left(I-\left(C_{d} \cdot\left(s I-A_{d}\right)^{-1} \cdot\left(B_{d} \cdot F_{w}\right)+D_{d} \cdot F_{w}\right)\right)^{-1} \tag{A.29}\\
& \cdot\left(C_{d} \cdot\left(s I-A_{d}\right)^{-1} \cdot\left(B_{d} \cdot F_{\phi}\right)+D_{d} \cdot F_{\phi}\right)+F_{z}
\end{align*}
$$

which equals (A.15) and completes the proof.

F. Intuitive explanation of Theorem 1

In order to provide an intuitive explanation of Theorem 1, we propose a graph representation of the network dynamics. Throughout the explanation, we use simple networks to support our observations. Upon these examples and provided observations, we induce the solution for the network dynamics, provided in Theorem 1.

F. 1 Graph representation of the DLSS process

A DLSS process can be represented as a graph, whose nodes model values of the process variables in discrete-time k, while these variables are scaled and transmitted over links of the graph.

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1}[k+1] \\
x_{2}[k+1] \\
x_{3}[k+1]
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1}[k] \\
x_{2}[k] \\
x_{3}[k]
\end{array}\right]+\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right] \cdot\left[\begin{array}{l}
u_{1}[k] \\
u_{2}[k]
\end{array}\right]} \\
& {\left[\begin{array}{l}
y_{1}[k] \\
y_{2}[k]
\end{array}\right]=\left[\begin{array}{lll}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1}[k] \\
x_{2}[k] \\
x_{3}[k]
\end{array}\right]+\left[\begin{array}{ll}
d_{11} & d_{12} \\
d_{21} & d_{22}
\end{array}\right] \cdot\left[\begin{array}{l}
u_{1}[k] \\
u_{2}[k]
\end{array}\right]} \\
& A_{i}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] C_{i}=\left[\begin{array}{lll}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23}
\end{array}\right] \\
& x_{i}[k]=\left[\begin{array}{l}
x_{1}[k] \\
x_{2}[k] \\
x_{3}[k]
\end{array}\right] \\
& B_{i}=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right]
\end{aligned} D_{i}=\left[\begin{array}{ll}
d_{11} & d_{12} \\
d_{21} & d_{22}
\end{array}\right] \quad u_{i}[k]=\left[\begin{array}{l}
u_{1}[k] \\
u_{2}[k]
\end{array}\right] .
$$

FIG. A.10. A graph representation of the DLSS process inside the i-th system of a network, where $n_{i}=3, m_{i}=2, p_{i}=2$

Consider the node/system i of the network. The state vector x_{i} is of dimension $n_{i} \times 1$. We define n_{i} nodes that model the value of the state vector x_{i}, where the j-th node contains the value of the j-th state $\left(x_{i}\right)_{j}$ at discrete time k. We refer to these nodes as state nodes (blue nodes in Fig A.10). The state nodes are strongly connected via state links (blue links in Fig A.10), whose weights are defined by the $n_{i} \times n_{i}$ state matrix $\left(A_{i}\right)^{T}$.

The input vector u_{i} of the system i has dimension $m_{i} \times 1$. We define m_{i} additional nodes and refer to them as input nodes (red nodes in Fig A.10). The input nodes represent the value of the input vector u_{i} at discrete time k, where the j-th input node represents the value of the j-th component of the input vector $\left(u_{i}\right)_{j}$. An input node is connected to each state node by input links (red links in Fig A.10), i.e. input links connect the input nodes to the state nodes. The weights of the input links are defined by the $m_{i} \times n_{i}$ input matrix $\left(B_{i}\right)^{T}$.

The $p_{i} \times 1$ output vector y_{i} is modelled by p_{i} output nodes (green nodes in Fig A.10), containing the value of the vector y_{i} at discrete time k. A state node is connected to each output node by the output links (green links in Fig A.10). The weights of the output links are defined by the $n_{i} \times p_{i}$ output matrix $\left(C_{i}\right)^{T}$.

Finally, an input node is connected to each output node via feedforward links (yellow links in Fig A.10), whose weights are defined by the $m_{i} \times p_{i}$ feedforward matrix $\left(D_{i}\right)^{T}$. We sketch the graph representation of the DLSS process inside the system i in Fig A. 10, where $n_{i}=3, m_{i}=2$ and $p_{i}=2$.

The process variables are transmitted over defined four types of links. The weight of a link defines how the signal is scaled while being transmitted over that link. While transmitting the signal, state and input links impose fixed time delay equal to the one discrete-time instant. On the other side, output and feedforward links do not impose time delay, i.e. they instantaneously transmit the signal.

From the graph representation of the DLSS process, we provide relation between the state vector x_{i}
and the input vector u_{i} of the i-th system from the network:

$$
x_{i}[k]=A_{i} \cdot x_{i}[k-1]+B_{i} \cdot u_{i}[k-1]
$$

where the previous values of the state vector x_{i} and of the input vector u_{i} appear because both the state links, whose weights are defined by the state matrix $\left(A_{i}\right)^{T}$ and the input links, whose weights are defined by the input matrix $\left(B_{i}\right)^{T}$ impose time delay. After substituting $k \rightarrow k+1$ in previous equation, we obtain:

$$
x_{i}[k+1]=A_{i} \cdot x_{i}[k]+B_{i} \cdot u_{i}[k]
$$

Analogously, we provide relation between the output vector y_{i}, the state vector x_{i} and the input vector u_{i}, using graph representation of the DLSS process:

$$
y_{i}[k]=C_{i} \cdot x_{i}[k]+D_{i} \cdot u_{i}[k]
$$

where there is no time delay, because both the output links, whose weights are defined by the output matrix $\left(C_{i}\right)^{T}$ and the feedforward links, whose weights are defined by the feedforward matrix $\left(D_{i}\right)^{T}$ do not impose time delay, i.e. they transmit the signal instantaneously. By merging last two equations, we obtain the governing equations for the DLSS process of the system i from the network:

$$
\begin{aligned}
x_{i}[k+1] & =A_{i} \cdot x_{i}[k]+B_{i} \cdot u_{i}[k] \\
y_{i}[k] & =C_{i} \cdot x_{i}[k]+D_{i} \cdot u_{i}[k]
\end{aligned}
$$

We condense the graph representation of the DLSS process as follows:

- n_{i} state nodes are condensed into one state node, which contains the value of the state vector x_{i} at discrete-time k
- m_{i} input nodes are condensed into one input node, that contains the value of the input vector u_{i} at discrete-time k
- p_{i} output nodes are condensed into one output node, containing the value of the output vector y_{i} at discrete-time k
- The state links are condensed into one state link that represents a self-loop for the condensed state node. This condensed link is defined by the state matrix $\left(A_{i}\right)^{T}$
- The input links are condensed into one input link, that connects the condensed input node to the condensed state node and is defined by the input matrix $\left(B_{i}\right)^{T}$
- The output links are condensed into one output link, connecting the condensed state node to the condensed output node and is defined by the output matrix $\left(C_{i}\right)^{T}$
- The feedforward links are condensed into one feedforward link that connects the condensed input node to the condensed output node and is defined by the feedforward matrix $\left(D_{i}\right)^{T}$.

FIG. A.11. A condensed graph representation of the DLSS process from Fig A. 10

A condensed graph representation of the DLSS process from Fig A. 10 is sketched in Fig A.11.
Following previously defined properties of the links from the graph representation of the DLSS process, we stress that the condensed state and the condensed input link impose the fixed time delay while transmitting the signal, whereas the condensed output and condensed feedforward link instantaneously transmit the signal.

The network dynamics are defined by the DLSS governing equations from (3.1). Thus, the network dynamics can be also presented by a graph, analogously to the graph representation of the DLSS process of individual system from the network. In the graph represetnation of the entire network dynamics, there are $\sum_{i=1}^{N} n_{i}$ state nodes, M input and P output nodes. Furthermore, there are $\left(\sum_{i=1}^{N} n_{i}\right)^{2}$ state links, M. $\sum_{i=1}^{N} n_{i}$ input, $\sum_{i=1}^{N} n_{i} \cdot P$ output and $M \cdot P$ feedforward links. The weights of the state links are defined by the $\sum_{i=1}^{N} n_{i} \times \sum_{i=1}^{N} n_{i}$ state matrix $\left(A_{e}\right)^{T}$, whereas the $\sum_{i=1}^{N} m_{i} \times \sum_{i=1}^{N} n_{i}$ input matrix $\left(B_{e}\right)^{T}$ determines the weights of the input links. Finally, the $\sum_{i=1}^{N} n_{i} \times \sum_{i=1}^{N} p_{i}$ output matrix $\left(C_{e}\right)^{T}$ and the $\sum_{i=1}^{N} m_{i} \times \sum_{i=1}^{N} p_{i}$ feedforward $\left(D_{e}\right)^{T}$ contain the weights of the output and feedforward links, respectively.

Network topology defines the interconnection pattern of the nodes/systems. On the other side, a graph representation of the DLSS process within a node/system defines the dynamics inside that node, i.e. it defines the dynamics locally, without any knoledge of how the dynamics interact with the dynamics within other nodes/systems of the network. Therefore, network dynamics are determined by both the underlying topology and the dynamics of individual nodes/systems.

By combining condensed graph representation of the DLSS process of the individual systems and the underlying topology, we provide a condensed graph representation of the netork dynamics in Fig A.12, for a network of 3 nodes, composing a triangle. Network topology link (black links in Fig A.12) defines the relation between the output vector of the source node/system and input vector of the destination
node/system. As an example, a network topology link between the nodes/systems 2 and 1 implies $y_{2}[k]=u_{1}[k]$.

FIG. A.12. A condensed graph representation of the network dynamics, with $N=3$

F. 2 State matrix A_{e}

The $\sum_{i=1}^{N} n_{i} \times \sum_{i=1}^{N} n_{i}$ state matrix A_{e} of the network dynamics is composed of $N \times N$ block elements, where the $n_{i} \times n_{j}$ block element $\left(A_{e}\right)_{i j}$ defines the impact of the state vector x_{j} onto the state vector x_{i}. The transposed state matrix A_{e}^{T} defines the weights of the state links from the graph representation of the network dynamics. Thus, each state link from the graph representation of the network dynamics imposes fixed time delay while transmitting the signal, equal to the one discrete-time instant.

We first consider the $\left(A_{e}\right)_{13}$ block element of the network presented in Fig A.12. Determining the $\left(A_{e}\right)_{13}$ block element is equivalent to determining the sum of all the paths from the node x_{3} to the node x_{1}, using the condensed graph representation of the network dynamics (Fig A.12), under the constraint that each path imposes fixed time delay, equal to the one discrete-time instant.

Since each path from node x_{3} to node x_{1} ends with the condensed input link of the system 1 (input links impose time delay), the remaining part of each path cannot introduce time delay. In this particular case, there is such a path, over the condensed output link of the system 3 and the condensed feedforward link of the system 2, i.e. $\left(B_{1} \cdot D_{2} \cdot C_{3}\right)$. Moreover, since the condensed feedforward links impose no time delay and the nodes of the network from Fig A. 12 compose a ring, there are infinitely many paths that satisfy previous constraint: $\left(B_{1} \cdot D_{2} \cdot\left(D_{3} \cdot D_{1} \cdot D_{2}\right)^{k} \cdot C_{3}\right), k>0$. Thus, we conclude:

$$
\left(A_{e}\right)_{13}=B_{1} \cdot D_{2} \cdot \sum_{k=0}^{\infty}\left(D_{3} \cdot D_{1} \cdot D_{2}\right)^{k} \cdot C_{3}
$$

We next consider the block element $\left(A_{e}\right)_{11}$. It is determined as a sum of all the paths that start from
and end in the node x_{1}, where each such a path introduces unity time delay. The condensed state link of the system 1 introduces time delay and creates the self-loop for the node x_{1}. Hence, it is a valid path. Also, there are infinitely many paths that start with the condensed output link of the system 1 , continues with the condensed feedforward link of the systems and finish with the condensed input link of the first system: $\left(\left(B_{1} \cdot D_{2} \cdot D_{3} \cdot\left(D_{1} \cdot D_{2} \cdot D_{3}\right)^{k} \cdot C_{1}\right), k>0\right)$. Thus, we conclude:

$$
\left(A_{e}\right)_{11}=A_{1}+B_{1} \cdot D_{2} \cdot D_{3} \cdot \sum_{k=0}^{\infty}\left(D_{1} \cdot D_{2} \cdot D_{3}\right)^{k} \cdot C_{1}
$$

Remaining block elements of A_{e} can be determined analogously.
Each node from the network presented in Fig A. 12 has the unity in-degree. In such a case, the input vector of a system is the same as the output vector of its neighbour, i.e. if the system j receives the link only from the system i, we have $u_{j}[k]=y_{i}[k]$.

FIG. A.13. A condensed graph representation of the network dynamics, where $N=3$, with non unity in-degree distribution

We analyse next a case when a node/system has more than one neighbour, which is the case for the system 2 from the network presented in Fig A.13. Nodes 1 and 3 both provide link to the node 2. Hence, the input vector u_{2} is composed of the output vectors y_{1} and the output vector y_{3} :

$$
\left(u_{2}[k]\right)_{m_{2} \times 1}=\left[\begin{array}{l}
\left(y_{1}[k]\right)_{p_{1} \times 1} \\
\left(y_{3}[k]\right)_{p_{3} \times 1}
\end{array}\right]
$$

where the first p_{1} components of the input vector u_{2} are equal to the output vector y_{1}, while the remaining p_{3} components of the input vector u_{2} are equal to the output vector y_{3}. Furthermore, first p_{1} columns of the input matrix B_{2} and of the feedforward matrix D_{2} regard the output vector y_{1}, while the remaining p_{3} columns of these matrices are related to the output vector y_{3}.

We consider the block element $\left(A_{e}\right)_{21}$ for the network presented in Fig A.13, i.e. how the state vector x_{1} influences the state vector x_{2}. From Fig A.13, we conclude that there is only one path that
satisfies previously defined properties and this path consists of the condensed output link of the system 1 and the condensed input link of the system 2. Additionally, we need only first p_{1} columns of the input matrix B_{2}, because the output vector y_{1} constitutes first p_{1} components of the input vector u_{2}.

Therefore, we introduce the $\left(S_{w}+S_{\phi}\right) \times P$ matrix F_{w}, composed of $\left(L_{w}+L_{\phi}\right) \times N$ block elements, defined as follows:

$$
\left(F_{w}\right)_{i j}= \begin{cases}I_{\left(s_{w}+s_{\phi}\right)_{i}} & \text { if }\left(\Gamma_{w}\right)_{i j}=1 \tag{A.1}\\ O_{\left(s_{w}+s_{\phi}\right)_{i} \times p_{j}} & \text { otherwise }\end{cases}
$$

Each block row of F_{w} is related to the output vector of a certain system from the network. First $\left(l_{w}+l_{\phi}\right)_{1}$ block rows of F_{w} (in total $\sum_{k=1}^{\left(l_{w}+l_{\phi}\right)_{1}}\left(s_{w}+s_{\phi}\right)_{k}=m_{1}$ rows) regard the output vectors of the systems that are connected to the system 1. Next $\left(l_{w}+l_{\phi}\right)_{2}$ block rows of F_{w} are related to the output vectors of the systems connected to the system 2 and so on. Last $\left(l_{w}+l_{\phi}\right)_{N}$ block rows of F_{w} are related to the output vectors of the systems that are connected to the N-th system of the network. Therefore, we can further combine block rows into new N block rows, where the i-th block row regards the output vectors of the systems connected to the system i and is composed of m_{i} rows. Therefore, we conclude that matrix F_{w} is composed of $N \times N$ block elements, where the block element $\left(F_{w}\right)_{i j}$ has dimensions $m_{i} \times p_{j}$.

We next analyse the matrix product $\left(B_{d} \cdot F_{w}\right)$, by considering the block element $\left(B_{d} \cdot F_{w}\right)_{i j}=B_{i}$. $\left(F_{w}\right)_{i j}$. In case the system j is directly connected to the system i, (i.e. $w_{i j}=1$), the $m_{i} \times p_{j}$ block element $\left(B_{d} \cdot F_{w}\right)_{i j}$ contains the p_{j} columns of the input matrix B_{i}, that are related to the output vector y_{j}. Otherwise, when there is no link between the nodes/systems i and j (i.e. when $w_{i j}=0$) the block element $\left(B_{d} \cdot F_{w}\right)_{i j}$ is a zero matrix. The analogous explanation holds for the block element $\left(D_{d} \cdot F_{w}\right)_{i j}=$ $D_{i} \cdot\left(F_{w}\right)_{i j}$ of a product $\left(D_{d} \cdot F_{w}\right)$.

FIG. A.14. Explanation of the products $\left(B_{d} \cdot F_{w}\right)$ and $\left(D_{d} \cdot F_{w}\right)$, for a network from Fig A. 13

We apply these products to the network from Fig A. 13 and sketch it in Fig A.14. Block elements
$\left(B_{d} \cdot F_{w}\right)_{21}$ and $\left(B_{d} \cdot F_{w}\right)_{23}$ contain the first p_{1} and the last p_{3} columns of the input matrix B_{2}, respectively. Analogously, block elements $\left(D_{d} \cdot F_{w}\right)_{21}$ and $\left(D_{d} \cdot F_{w}\right)_{23}$ split the feedforward matrix D_{2} into two sub-matrices. The first sub-matrix $\left(D_{d} \cdot F_{w}\right)_{21}$ is composed of the first p_{1} columns of the feedforward matrix D_{2}, that are related to the output vector y_{1}, while the second sub-matrix $\left(D_{d} \cdot F_{w}\right)_{23}$ contains the remaining p_{2} columns, related to the output vector y_{3}. Therefore, state matrix A_{e} for the network from Fig A. 14 is determined as follows:

$$
A_{e}=\left[\begin{array}{ccc}
A_{1} & O_{n_{1} \times n_{2}} & O_{n_{1} \times n_{3}} \\
\left(B_{d} \cdot F_{w}\right)_{21} \cdot C_{1} & A_{2} & \left(B_{d} \cdot F_{w}\right)_{23} \cdot C_{3} \\
O_{n_{3} \times n_{1}} & O_{n_{3} \times n_{2}} & A_{3}
\end{array}\right]
$$

FIG. A.15. A condensed graph representation of the network dynamics, with $N=4$ nodes and $L=5$ links

The $\sum_{i=1}^{N} p_{i} \times \sum_{i=1}^{N} p_{i}$ matrix $\left(D_{d} \cdot F_{w}\right)$ is composed of the $N \times N$ block elements. If there is a direct link from node i to node j (i.e. $w_{i j}=1$), the $p_{i} \times p_{j}$ block element $\left(D_{d} \cdot F_{w}\right)_{i j}=D_{i} \cdot\left(F_{w}\right)_{i j}$ contains the p_{j} columns of the feedforward matrix D_{i} that are related to the output vector y_{j}, otherwise (i.e $w_{i j}=0$) it is a zero matrix.

The product $\left(D_{d} \cdot F_{w}\right)$ can be used to compute relation between the output vectors y_{i} and y_{j} over only feddforward links of all the systems in the network. A merged graph representation of the network dynamics is sketched in Fig A.15, for a network of $N=4$ nodes.

Since we analyse the relation between the output vectors y_{i} and y_{j} over the feedforward links, other three types of links have been neglected in Fig A.16. Furthermore, in Fig A. 17 we apply the multiplication of the block diagonal feedforward matrix D_{d} with the matrix F_{w}. This multiplication enables us to further simplify condensed graph representation of network dynamics, using only feedforward links, as presented in Fig A. 17.

FIG. A.16. Neglected condensed state, input and output links from the graph representation of network dynamics of the network from Fig A. 15

FIG. A.17. Applying the multiplication with F_{w} to the network from the Fig A. 16

The block element $\left(D_{d} \cdot F_{w}\right)_{i j}^{2}$ defines the total impact of the output vector y_{j} onto the output vector y_{i} over the feedforward links of the system j and another system k that form a path between the internal nodes j and i (i.e. $\left\{k \in \mathscr{N} \mid w_{j k}=w_{k i}=1\right\}$).

Finally, total impact of the output vector y_{j} onto the output vector y_{i}, over the feedforward links of the systems from the network (which is equivalent to the sum of all paths from the condensed output
node y_{j} to the condensed output node y_{i}, over only the feedforward links, using the condensed graph representation of the network dynamics) is determined as follows:

$$
\left(\sum_{l=1}^{\infty}\left(D_{d} \cdot F_{w}\right)^{l}\right)_{i j}
$$

Under the assumption that all eigenvalues of the matrix $\left(D_{d} \cdot F_{w}\right)$ have absolute value smaller than 1 , the total impact of the vector y_{j} onto the vector y_{i}, over the feedforward links of the systems from the network is defined by:

$$
\left(I-D_{d} \cdot F_{w}\right)_{i j}^{-1}
$$

In case there are no closed paths in G, the relation can be further simplified:

$$
\left(\sum_{l=1}^{h}\left(D_{d} \cdot F_{w}\right)^{l}\right)_{i j}
$$

where h is the hop-count of the longest walk in G. Finally, we conclude that the state matrix A_{e} of the network dynamics is explicitly determined as follows:

$$
A_{e}=\left(B_{d} \cdot F_{w}\right) \cdot \sum_{i=0}^{\infty}\left(D_{d} \cdot F_{w}\right)^{i} \cdot C_{d}+A_{d}
$$

where $i=0$ regards the case when the two nodes/systems are direct neighbours. In case there is no direct relation between the input vector u_{i} and the output vector y_{i} of each system in the network ($i \in \mathscr{N}$), i.e. $D_{d}=O$, the state matrix A_{e} is defined as follows:

$$
A_{e}=\left(B_{d} \cdot F_{w}\right) \cdot C_{d}+A_{d}
$$

F. 3 Matrix B_{e}

The input matrix B_{e} of the network dynamics has dimensions $\sum_{i=1}^{N} n_{i} \times M$ and is composed of $N \times r$ block elements. The $n_{i} \times \mu_{j}$ block element $\left(B_{e}\right)_{i j}$ determines the relation between the state vector x_{i} and the external input vector η_{j}. Following the condensed graph representation of the network dynamics, we conclude that the matrix $\left(B_{e}\right)^{T}$ defines the weights of the input links, which impose time delay while transmitting the signal.

The block element $\left(B_{e}\right)_{i j}$ is determined as a sum of all the paths from the condensed input node j to the condensed state node x_{i} of the system i in G_{e}, under the constraint that each path imposes fixed time delay equal to the one discrete-time instant. Furthermore, each such a path ends with the condensed input links of the system i (input links impose time delay), thus the remaining part of each path transmits the signal instantaneously. We recognize here two scenarios.

The first scenario is when the internal node i receives a direct link from the j-th input node of the extended network (i.e. $\phi_{j i}=1$). As an example, the internal node 1 of the network presented in Fig A. 18 receives a direct link from the input node 1 of the network. Thus, the block-element $\left(B_{e}\right)_{11}$ contains the μ_{1} columns of the input matrix B_{1}, that are related to the external input vector η_{1}.

Therefore, we introduce the $\left(S_{w}+S_{\phi}\right) \times M$ matrix F_{ϕ}, consisting of $\left(L_{w}+L_{\phi}\right) \times r$ block elements, that are defined as follows:

$$
\left(F_{\phi}\right)_{i j}= \begin{cases}I_{\left(s_{w}+s_{\phi}\right)_{i}} & \text { if }\left(\Gamma_{\phi}\right)_{i j}=1 \tag{A.2}\\ O_{\left(s_{w}+s_{\phi}\right)_{i} \times \mu_{j}} & \text { otherwise }\end{cases}
$$

where each block row of the matrix F_{ϕ} is related to a certain link of the network, while each block column is related to a certain input node of the network. Analogously as for the matrix F_{w}, we combine the block rows into N new block rows, where the new i-th block row regards the links that are connected to the system i and is composed of m_{i} rows. In case the input node j is directly connected to the state

FIG. A.18. A condensed graph representation of the network dynamics, with $N=2$ and $r=1$
node i in G_{e} (i.e. $\phi_{j i}=1$), the block element $\left(B_{d} \cdot F_{\phi}\right)_{i j}=B_{i} \cdot\left(F_{\phi}\right)_{i j}$ contains the μ_{j} columns of the matrix B_{i} that are related to the vector η_{j}, otherwise (i.e. $\phi_{j i}=0$) it is a zero matrix. The analogous explanation holds for the block element $\left(D_{d} \cdot F_{\phi}\right)_{i j}=D_{i} \cdot\left(F_{\phi}\right)_{i j}$.

For the network from Fig A.18, we conclude:

$$
B_{e}=\left[\begin{array}{c}
\left(B_{1} \cdot\left(F_{\phi}\right)_{11}\right)_{n_{1} \times \mu_{1}} \\
O_{n_{2} \times \mu_{1}}
\end{array}\right]
$$

The second scenario is when there is a path from the j-th input node to the i-th internal node, over other internal nodes in G_{e}. Each such a path consists only of the condensed feedforward links of the nodes/systems that form a path from the input node j to the internal node i.

Finally, we conclude that the input matrix B_{e} of the network dynamics is explicitly determined as follows:

$$
B_{e}=\left(B_{d} \cdot F_{w}\right) \cdot \sum_{i=0}^{\infty}\left(D_{d} \cdot F_{w}\right)^{i} \cdot\left(D_{d} \cdot F_{\phi}\right)+B_{d} \cdot F_{\phi}
$$

where the first and the second term regards the second and the first scenario, respectively. In case the feedforward matrix of each system in the network is a zero matrix (i.e. $D_{d}=O$), the previous relation is significantly simplified:

$$
B_{e}=B_{d} \cdot F_{\phi}
$$

F. 4 Matrix C_{e}

The output matrix C_{e} of the network dynamics has dimensions $P \times \sum_{i=1}^{N} n_{i}$ and is composed of $q \times N$ block elements. The $\rho_{i} \times n_{j}$ block element $\left(C_{e}\right)_{i j}$ defines the impact of the state vector x_{j} onto the external output vector ξ_{i}. The transposed output matrix $\left(C_{e}\right)^{T}$ defines the weights of the output links in the graph representation of the network dynamics.

Following the condensed graph representation of the network dynamics, we conclude that the $\rho_{i} \times$ n_{j} block element $\left(C_{e}\right)_{i j}$ is determined as a sum of all the paths from the condensed state node x_{j} to the condensed external output node ξ_{i}, under the constraint that each path introduces no time delay. Furthermore, each path starts with the condensed output links of the system j, while the remaining part of each path is composed of the condensed feedforward links of the systems that form a path from the internal node j to the output node i in G_{e}. We recognize here two scenarios.

The first scenario is when the internal node j is directly connected to the output node i of G_{e} (i.e. $\psi_{j i}=1$). In this case, the impact of the state vector x_{j} onto the external output vector ξ_{i} is defined by C_{j}. As an example, there is a direct link from the internal node 1 to the output node 1 in the network presented in Fig A. 19.

Fig. A.19. A condensed graph representation of the network dynamics, where $N=2$ and $q=1$

The second scenario is when there is a path from the internal node j to the output node i, over other internal nodes in G_{e}. These paths start with the condensed output links of the system j and continue with the condensed feedforward links of the systems that form a path in G_{e} between the internal node j and the output node i.

We introduce the $\left(S_{\psi}+S_{z}\right) \times P$ matrix F_{ψ}, composed of the $\left(L_{\psi}+L_{z}\right) \times N$ block elements, that are
defined as follows:

$$
\left(F_{\psi}\right)_{i j}= \begin{cases}I_{\left(s_{\psi}+s_{z}\right)_{i}} & \text { if }\left(\Gamma_{\psi}\right)_{i j}=1 \tag{A.3}\\ O_{\left(s_{\psi}+s_{z}\right)_{i} \times p_{j}} & \text { otherwise }\end{cases}
$$

Each block row of the F_{ψ} is related to a certain output or external link of the network. First $\left(l_{\psi}\right)_{1}+\left(l_{z}\right)_{1}$ block rows are related to the links that are connected to the output node 1 , next $\left(l_{\psi}\right)_{2}+\left(l_{z}\right)_{2}$ block rows are related to the links that are connected to the output node 2 and so on. The last $\left(l_{\psi}\right)_{q}+\left(l_{z}\right)_{q}$ block rows are related to the links that finish in output node q. By combining those block rows related to the links connected to a certain output node, we can say that the matrix F_{ψ} is composed of the $q \times N$ block elements, where the i-th block row regards the links connected to the i-th output node of the network and contains ρ_{i} rows.

The output node i of G_{e} receives $\left(l_{\psi}\right)_{i}$ output links, as well as $\left(l_{z}\right)_{i}$ external links. Thus, the vector ξ_{i} is composed of all the external input vectors and the output vectors of the systems that are directly connected to the output node i. In case there is a direct link from the internal node j to the i-th output node (i.e. $\psi_{j i}=1$), we have $\left(F_{\psi} \cdot C_{d}\right)_{i j}=\left(F_{\psi}\right)_{i j} \cdot C_{j}=C_{j}$, otherwise (i.e. $\psi_{j i}=1$) we the block element $\left(F_{\psi} \cdot C_{d}\right)_{i j}$ is a zero matrix. The analogous explanation holds for the block element $\left(F_{\psi} \cdot D_{d}\right)_{i j}=$ $\left(F_{\psi}\right)_{i j} \cdot D_{j}$.

For the network from the Fig A. 19 we conclude:

$$
\left(C_{e}\right)_{11}=\left[\begin{array}{c}
\left(C_{1}\right)_{p_{1} \times n_{1}} \\
O_{p_{2} \times n_{1}}
\end{array}\right],\left(C_{e}\right)_{12}=\left[\begin{array}{c}
\left(D_{1} \cdot C_{2}\right)_{p_{1} \times n_{2}} \\
\left(C_{2}\right)_{p_{2} \times n_{2}}
\end{array}\right]
$$

Finally, we conclude that the output matrix C_{e} of the network dynamics is explicitly determined as follows:

$$
C_{e}=F_{\psi} \cdot \sum_{i=0}^{\infty}\left(D_{d} \cdot F_{w}\right)^{i} \cdot C_{d}
$$

where $i=0$ regards the first scenario. In case there is no direct relation between the input vector u_{i} and the output vector y_{i} of each system in the network $(i \in \mathscr{N})$, i.e. $D_{d}=O$, the output matrix C_{e} is defined as follows:

$$
C_{e}=F_{\psi} \cdot C_{d}
$$

F. 5 Matrix D_{e}

The feedforward matrix D_{e} of the network dynamics has dimensions $P \times M$ and is composed of the $q \times r$ block elements. The $\rho_{i} \times \mu_{j}$ block element $\left(D_{e}\right)_{i j}$ defines direct relation between the j-th external input vector η_{j} and the i-th external output vector ξ_{i}. The transposed feedforward matrix $\left(D_{e}\right)^{T}$ defines the weights of the feedforward links (feedforward links impose no time delay) in the graph representation of the network dynamics.

Using the condensed graph representation of the network dynamics, we determine the block element $\left(D_{e}\right)_{i j}$ as a sum of all the paths from the j-th condensed external input node η_{j} to the i-th condensed external output node ξ_{i}, under the constraint that each path imposes no time delay while transmitting the signal. We recognize here two scenarios.

FIG. A.20. A condensed graph representation of the network dynamics, with $N=2, r=1$ and $q=2$

The first scenario is when there is a direct link from the j-th input node to the i-th output node in G_{e} (i.e. $z_{j i}=1$). An example is the external link from the input node 1 to the output node 1 of the network presented in Fig A.20. Therefore, we introduce the $\left(S_{\psi}+S_{z}\right) \times M$ matrix F_{z}, composed of the $\left(L_{\psi}+L_{z}\right) \times r$ block elements, defined as follows:

$$
\left(F_{z}\right)_{i j}= \begin{cases}I_{\left(s_{\psi}+s_{z}\right)_{i}} & \text { if }\left(\Gamma_{z}\right)_{i j}=1 \tag{A.4}\\ O_{\left(s_{\psi}+s_{z}\right)_{i} \times \mu_{j}} & \text { otherwise }\end{cases}
$$

Analogously as for the matrix F_{ψ}, we combine block rows of the matrix F_{z} into new q block rows, where the i-th new block row regards the links connected to the i-th output node of G_{e} and contains ρ_{i} rows. The $\rho_{i} \times \mu_{j}$ block element $\left(F_{z}\right)_{i j}$ is identity matrix iff there is a direct link from the j-th input node to the i-th output node of G_{e} (i.e. $z_{j i}=1$), otherwise (i.e. when $z_{j i}=0$) the block element $\left(F_{z}\right)_{i j}$ is a zero matrix.

The second scenario is when there is a path from the j-th input node to the i-th output node of, over the internal nodes of the extended network G_{e}. These paths consist of the condensed feedforward links of the systems that form a path from the j-th input node to the i-th output node.

For the network from Fig A.20, we conclude:

$$
\left(D_{e}\right)_{11}=\left[\begin{array}{c}
I_{\mu_{1} \times \mu_{1}} \\
\left(D_{1}\right)_{p_{1} \times \mu_{1}}
\end{array}\right],\left(D_{e}\right)_{21}=\left[\left(D_{2} \cdot D_{1}\right)_{p_{2} \times \mu_{1}}\right]
$$

Finally, we conclude that the feedforward matrix D_{e} of the network dynamics is determined explicitly as follows:

$$
D_{e}=F_{\psi} \cdot \sum_{i=0}^{\infty}\left(D_{d} \cdot F_{w}\right)^{i} \cdot\left(D_{d} \cdot F_{\phi}\right)+F_{z}
$$

where the first and the second term regard the second and the first scenario, respectively. In case there is no direct relation between the input vector u_{i} and the output vector y_{i} for each system of the network
(i.e. $D_{d}=O$), the previous relation is significantly simplified:

$$
D_{e}=F_{z}
$$

which completes the intuitive explanation of the Theorem 1.

REFERENCES

1. Florian Dorfler and Francesco Bullo. Kron reduction of graphs with applications to electrical networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(1):150-163, 2012.
2. Florian Dörfler, John W Simpson-Porco, and Francesco Bullo. Electrical networks and algebraic graph theory: Models, properties, and applications. Proceedings of the IEEE, 106(5):977-1005, 2018.
3. Piet Van Mieghem, Karel Devriendt, and H Cetinay. Pseudoinverse of the laplacian and best spreader node in a network. Physical Review E, 96(3):032311, 2017.
4. Hale Cetinay, Karel Devriendt, and Piet Van Mieghem. Nodal vulnerability to targeted attacks in power grids. Applied network science, 3(1):34, 2018.
5. Roger Guimera, Stefano Mossa, Adrian Turtschi, and LA Nunes Amaral. The worldwide air transportation network: Anomalous centrality, community structure, and cities' global roles. Proceedings of the National Academy of Sciences, 102(22):7794-7799, 2005.
6. Jennifer A Dunne, Richard J Williams, and Neo D Martinez. Food-web structure and network theory: the role of connectance and size. Proceedings of the National Academy of Sciences, 99(20):12917-12922, 2002.
7. Mark EJ Newman, Steven H Strogatz, and Duncan J Watts. Random graphs with arbitrary degree distributions and their applications. Physical review E, 64(2):026118, 2001.
8. Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law relationships of the internet topology. In ACM SIGCOMM computer communication review, volume 29, pages 251-262. ACM, 1999.
9. Mark EJ Newman. The structure and function of complex networks. SIAM review, 45(2):167-256, 2003.
10. Stefano Boccaletti, Vito Latora, Yamir Moreno, Martin Chavez, and D-U Hwang. Complex networks: Structure and dynamics. Physics reports, 424(4-5):175-308, 2006.
11. Piet Van Mieghem. Graph spectra for complex networks. Cambridge University Press, 2010.
12. Alain Barrat, Marc Barthelemy, and Alessandro Vespignani. Dynamical processes on complex networks. Cambridge university press, 2008.
13. Baruch Barzel and Albert-László Barabási. Universality in network dynamics. Nature physics, 9(10):673, 2013.
14. Uzi Harush and Baruch Barzel. Dynamic patterns of information flow in complex networks. Nature communications, 8(1):2181, 2017.
15. Baruch Barzel, Yang-Yu Liu, and Albert-László Barabási. Constructing minimal models for complex system dynamics. Nature communications, 6:7186, 2015.
16. Alejandro D Sánchez, Juan M López, and Miguel A Rodriguez. Nonequilibrium phase transitions in directed small-world networks. Physical review letters, 88(4):048701, 2002.
17. Remco Van Der Hofstad, Gerard Hooghiemstra, and Piet Van Mieghem. First-passage percolation on the random graph. Probability in the Engineering and Informational Sciences, 15(2):225-237, 2001.
18. Steven H Strogatz. From kuramoto to crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D: Nonlinear Phenomena, 143(1-4):1-20, 2000.
19. Naoki Masuda, Mason A Porter, and Renaud Lambiotte. Random walks and diffusion on networks. Physics reports, 716:1-58, 2017.
20. Bastian Prasse and Piet Van Mieghem. The viral state dynamics of the discrete-time NIMFA epidemic model. arXiv preprint arXiv:1903.08027, 2019.
21. Zhidong He and Piet Van Mieghem. Optimal induced spreading of SIS epidemics in networks. IEEE Transactions on Control of Network Systems, 2018.
22. Cheng yi Xia, Zhen Wang, Joaquin Sanz, Sandro Meloni, and Yamir Moreno. Effects of delayed recovery and nonuniform transmission on the spreading of diseases in complex networks. Physica A: Statistical Mechanics
and its Applications, 392(7):1577-1585, 2013.
23. Chengyi Xia, Zhishuang Wang, Chunyuan Zheng, Quantong Guo, Yongtang Shi, Matthias Dehmer, and Zengqiang Chen. A new coupled disease-awareness spreading model with mass media on multiplex networks. Information Sciences, 471:185-200, 2019.
24. M Van den Berg, A Hegyi, Bart De Schutter, and J Hellendoorn. A macroscopic traffic flow model for integrated control of freeway and urban traffic networks. In 42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475), volume 3, pages 2774-2779. IEEE, 2003.
25. Steven H Strogatz. Exploring complex networks. nature, 410(6825):268, 2001.
26. Linying Xiang, Fei Chen, Wei Ren, and Guanrong Chen. Advances in network controllability. IEEE Circuits and Systems Magazine, 19:8-32, 2019.
27. Yang-Yu Liu and Albert-László Barabási. Control principles of complex systems. Reviews of Modern Physics, 88(3):035006, 2016.
28. Gang Yan, Petra E Vértes, Emma K Towlson, Yee Lian Chew, Denise S Walker, William R Schafer, and Albert-László Barabási. Network control principles predict neuron function in the caenorhabditis elegans connectome. Nature, 550(7677):519, 2017.
29. Kwang-Kyo Oh, Myoung-Chul Park, and Hyo-Sung Ahn. A survey of multi-agent formation control. Automatica, 53:424-440, 2015.
30. Johan Schoukens and Lennart Ljung. Nonlinear system identification: A user-oriented roadmap. arXiv preprint arXiv:1902.00683, 2019.
31. R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 95(1):215-233, Jan 2007.
32. Linying Xiang, Peiru Wang, Fei Chen, and Guanrong Chen. Controllability of directed heterogeneous networked mimo systems. arXiv preprint arXiv:1812.03302, 2018.
33. B. Prasse and P. Van Mieghem. Time-Dependent Solution of the NIMFA Equations around the Epidemic Threshold. Journal of Mathematical Biology, to appear.
34. Bart De Moor, Joos Vandewalle, Marc Moonen, L Vandenberghe, and P Van Mieghem. A geometrical strategy for the identification of state space models of linear multivariable systems with singular value decomposition. IFAC Proceedings Volumes, 21(9):493-497, 1988.
35. P Van Mieghem, C Doerr, H Wang, J Martin Hernandez, D Hutchison, M Karaliopoulos, and RE Kooij. A framework for computing topological network robustness. Delft University of Technology, Report20101218, 2010.
36. Michel Verhaegen and Vincent Verdult. Filtering and system identification: a least squares approach. Cambridge university press, 2007.
37. S Akbari, PJ Cameron, and GB Khosrovshahi. Ranks and signatures of adjacency matrices. preprint, 2004.

[^0]: ${ }^{1}$ In this work, the words node and system have been used interchangeably

[^1]: ${ }^{2}$ Determining the rank of the matrix in (2.16) is a problem similar to the problem of determining the rank of the adjacency matrix of a directed graph, see e.g. [37].

