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Abstract This paper presents a new and efficient algorithm, ILIGRA, for inverse line graph
construction. Given a line graph H , ILIGRA constructs its root graph G with the time com-
plexity being linear in the number of nodes in H . If ILIGRA does not know whether the given
graph H is a line graph, it firstly assumes that H is a line graph and starts its root graph
construction. During the root graph construction, ILIGRA checks whether the given graph
H is a line graph and ILIGRA stops once it finds H is not a line graph. The time complexity
of ILIGRA with line graph checking is linear in the number of links in the given graph H .
For sparse line graphs of any size and for dense line graphs of small size, numerical results
of the running time show that ILIGRA outperforms all currently available algorithms.

Keywords Graph algorithm · Line graph · Root graph

1 Introduction

A simple graph with N nodes (vertices) and L links (edges), denoted by G (N,L), is an
unweighted, undirected graph containing no self-loops (links starting and ending at the same
node) nor multiple links between the same pair of nodes. The line graph H = l (G) of
a graph G is a graph [22] in which every node in H corresponds to a link in G and two
nodes are adjacent if and only if their corresponding links have a common node in G. The
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graph G is called the root graph of H . The complete graph with three nodes K3 is a line
graph, which has two different root graphs, K3 and the bipartite graph K1,3. Except for K3,
Whitney’s theorem [24] states that all connected line graphs have only one root graph up to
an isomorphism. Whitney’s theorem provides the theoretical basis for the inverse line graph
conversion. Cvetković et al. [5] reviewed the state-of-the-art knowledge about line graphs.

There exist plenty of real-world networks that can be modeled by line graphs [16, 17]. A
graph is assortative if its low-degree nodes tend to be adjacent with other low-degree nodes
and its high-degree nodes tend to be adjacent with other high-degree nodes. Line graphs are
assortative and clustered [11, 13, 14, 16]. If two or more communities overlap on a node,
it is not feasible to partition nodes to detect communities. In order to detect the overlapping
communities, the links are partitioned. However, the algorithms for partitioning links are
less efficient than the algorithms for partitioning the nodes. We can transform the networks
into their line graphs and partition the nodes of the line graphs [1, 8].

To facilitate the applications of line graphs, the construction of a line graph H from a
root graph G and the inverse construction from the line graph H = l(G) to the root graph
G are necessary. The root-to-line graph construction follows straightforwardly from the
definition of a line graph [22]. However, the line-to-root graph construction is more com-
plex. Two algorithms for line-to-root graph construction were proposed concurrently by
Roussopoulos [20] and Lehot [12]. The algorithm of Roussopoulos is based on the theorem
of Krausz [10]: A graph is a line graph if and only if it is possible to find a collection of
cliques in the graph, partitioning all the links, such that each node belongs to at most two
of the cliques (some of the cliques can be a single node) and two cliques share at most one
node. Lehot’s algorithm employs the principles of van Rooij and Wilf [23]: A graph is a
line graph if and only if it does not have the complete bipartite graph K1,3 as an induced
sub-graph, and if two odd triangles1 have a common link, the sub-graph induced by their
nodes is the complete graph K4. Lehot’s algorithm first constructs a root graph G from
the given graph H , and then compares l(G) and H to determine whether the given H is
a line graph, unlike Roussopoulos’ algorithm, which determines whether the given graph
H is a line graph during the construction of the root graph G. Naor and Novick [18] pro-
posed a parallel algorithm for line-to-root graph construction based on a divide-and-conquer
scheme. Motivated by eigenvectors, Simić [21] proposed an algorithm for recognizing gen-
eralized line graphs. Simić’s algorithm searches for the maximum degree node in each loop.
Degiorgi and Simon [6] proposed a constructive algorithm, based on the Ore’s proof [19] of
Whitney’s theorem [24], which states that two connected and edge-isomorphic graphs with
more than four nodes are also node isomorphic and there exists exactly one node iso-
morphism which generates the given edge isomorphism. The original graph construction
examines 2-coloring classes in the input graph components. They showed that their algo-
rithm is more time-efficient than the algorithms of Roussopoulos and Lehot for sparse line
graphs and non-line graphs.

In this paper, we propose ILIGRA, an Inverse LIne GRaph Algorithm, for line-to-root
graph construction. Unlike previous algorithms, ILIGRA checks the connectivity locally.
The root graph G is constructed based on the correspondence between a node in the line
graph H and a link in its root graph G. Due to the choice of an arbitrary node in the line
graph H and checking the connectivity of its neighbors during the algorithm’s execution,
ILIGRA is the simplest inverse line graph algorithm proposed so far.

1If every node is adjacent to two or zero nodes of a triangle then it is an even triangle.
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The paper is organized as follows. ILIGRA is presented in Section 2 and additional details
are given in Appendix A. Section 3 demonstrates how ILIGRA works on a descriptive exam-
ple. Numerical comparisons of ILIGRA with the algorithms of Lehot, Roussopoulos, and
Degiorgi and Simon for different types of line graphs are presented in Section 4. Finally, we
conclude in Section 5. The link density of line graphs is discussed in Appendix B.

2 iligra

2.1 Notation

Table 1 summarizes the notation, which is used in the presentation of ILIGRA. According
to the definition of the line graph, each node in a line graph H(NH ,LH ) corresponds to a
link in its root graph G(N,L). Hence, the number of nodes NH in the line graph H and
the number of links L in the root graph G are equal, NH = L. We always use n (or n with
subscript) to denote a node in H . The link in G corresponding to node n in H is denoted
by ln. In the remainder of the paper, we use v (or v with subscript) to denote a node in
G. Denote by Nb(n) the set of the nodes in H which are adjacent to node n and called
the neighbors2 of node n. Denote by Lb(ln) the set of the links in G which corresponds
to the nodes in Nb(n). Every link in the root graph G has two incident nodes.3 In order
to construct the root graph G from a given line graph H , we have to determine the two
incident nodes of every link in G. In the root graph G, we denote by vln the incident node
of link ln which is first encountered during the algorithm’s execution. The set of the nodes
in H , which corresponds to the links in G whose incident nodes are not yet determined, is
denoted by Nw . The set of the nodes in H corresponding to the links in G of which one
incident node is determined, is denoted by Nh.

2.2 Concept

The nodes in a line graph H(NH ,LH ) are denoted by n1, n2, n3, · · · , nNH
, and the cor-

responding links in the root graph G are denoted by ln1 , ln2 , ln3 , · · · , lnNH
. Initially, it is

unknown how the links ln1 , ln2 , ln3 , · · · , lnNH
connect the nodes in G, and even the number

of nodes N in G is unknown.
Suppose that link ln1 is incident to v1 and v2 in G. From the line graph H , the set Nb(n1)

of the neighbors of node n1 in H is known, and the set Lb

(
ln1

)
of the links in G, which

corresponds to the nodes in Nb (n1), is also known. By the definition of a line graph, the
links in Lb

(
ln1

)
are the neighboring links of link ln1 , hence, the links in Lb

(
ln1

)
should be

incident to either v1 or v2. If the links in Lb

(
ln1

)
which are incident to v1 are known, the

rest of links in Lb

(
ln1

)
must be incident to v2. Unfortunately, it is unknown which links in

Lb

(
ln1

)
are incident to v1.

When considering links ln2 , ln3 , · · · , lnNH
, the same problem appears. The difficulty in

constructing the root graph G lies in partitioning the set of the neighboring links into two
complementary subsets of links: the links that are incident to the first incident node of the
concerned link, and the other links which are incident to the second incident node of that
link.

2A node is the neighbor of another node if they are connected.
3An incident node of a link is one of the two nodes of that link.
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Table 1 Notation

G(N,L) The root graph with N nodes and L links

H(NH ,LH ) The line graph of G with NH nodes and LH links

n The node n in H

N The set of all the nodes in H

Nw The set of the nodes in H , corresponding to the

links in G whose incident nodes are not yet determined

Nh The set of the nodes in H , corresponding to the

links in G of which one incident node is determined

Nb(n) The set of the neighbors of node n in H

ln The link in G which corresponds to node n in H

Lb(ln) The set of the links in G which correspond to the nodes in Nb(n)

vln The first identified incident node of link ln in G

ADDNODE(G, v) The function which adds a node v to G

ADDLINK(G, v1, v2) The function which adds a link v1 ∼ v2 to G

Without loss of generality, suppose that Lb

(
ln1

) = {
ln2 , ln3 , · · · , lnk

}
, where k is an

integer. Suppose that the set Lb

(
ln1

)
of the neighboring links of ln1 are partitioned success-

fully into two subsets: Lb,v1

(
ln1

) = {
ln2 , ln3 , ln4

}
where the links are incident to v1, and

Lb,v2

(
ln1

) = {
ln5 , ln6 , · · · , lnk

}
where the links are incident to v2. Then, the set Lb

(
ln2

)

of the neighboring links of ln2 is automatically partitioned: the links ln1 , ln3 , ln4 are inci-
dent to v1, and the rest of links in Lb

(
ln2

)
are incident to the second incident node of ln2 .

Similarly, the sets of the neighboring links of links ln3 , ln4 , · · · , lnk
, are also automatically

partitioned. Assuming H is a connected line graph, the sets of the neighboring links of all
the links in G can be partitioned by iterating the described process. This is the basic idea of
ILIGRA.

Partitioning the set Lb

(
ln1

)
of the neighboring links of ln1 becomes a crucial task in the

root graph construction. The theorems in Section 2.3 and Appendix B provide the theoretical
basis for this task.

2.3 Theoretical Preliminaries

Theorem 1 Suppose that two adjacent nodes n1 and n2 in H correspond to links ln1 and
ln2 in G, respectively, where ln1 is incident to v1 and v2 and where v1 is also incident to ln2 ,
as shown in Fig. 1a. Then, for each n ∈ Nb(n1) \ Nb(n2) in H , the corresponding link ln
in G must be incident to v2, and the nodes in Nb(n1) \ Nb(n2) must form a clique in H .

Proof For each n ∈ Nb(n1) \ Nb(n2), the corresponding link ln in G has to be incident to
either v1 or v2, since n is adjacent to n1 in H . Because n is not adjacent to n2, ln in G can
only be incident to v2. Since the corresponding links of all the nodes ∈ Nb(n1) \ Nb(n2)

are incident to v2, the nodes in Nb(n1) \ Nb(n2) must be fully connected with each other
and form a clique in H .

Based on Theorem 1, starting with an initial link with nodes n1 and n2 in H , ILIGRA

determines the first incident node of the links corresponding to the nodes in Nb(n1) \
Nb(n2). The nodes in Nb(n1) ∩ Nb(n2) (i.e. common neighbors of n1 and n2 in G) may
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Fig. 1 Scenarios in Theorem 1 and 2. Each node (black) in H corresponds to a link (black) in G

form a clique in H with the corresponding links being incident to v1 in G, as shown in
Fig. 1a.

There may also exist a node in Nb(n1) ∩ Nb(n2) which is not adjacent to any other
node in Nb(n1) ∩ Nb(n2) and whose corresponding link in G is incident to v2 and another
node v3, as shown in Fig. 1b where the corresponding links of n1, n2 and that node form a
triangle in G. If there are three or more nodes in the set Nb(n1) ∩ Nb(n2), we can identify
the position of the corresponding link in G of that node. The last discussion is formalized
in Theorem 2.

Theorem 2 Suppose that two adjacent nodes n1 and n2 in H correspond to links ln1 and
ln2 respectively in G, where ln1 is incident to v1 and v2 and ln2 is incident to v1 and v3.
Suppose that |Nb(n1) ∩Nb(n2)| ≥ 3. If there exists nu ∈ Nb(n1) ∩Nb(n2) such that nu is
not adjacent to any other node in Nb(n1) ∩ Nb(n2), then link lnu must be incident to both
v2 and v3 in G.

Proof Since nu ∈ Nb(n1) ∩ Nb(n2), lnu can be incident to v1 or be incident to both v2
and v3. If lnu is incident to v1, nu should be adjacent to at least one other node in Nb(n1) ∩
Nb(n2), since |Nb(n1) ∩ Nb(n2)| ≥ 3. Because nu is not adjacent to any other node in
Nb(n1) ∩ Nb(n2), lnu can only be incident to v2 and v3, as shown in Fig. 1b. The links
corresponding to nodes in (Nb(n1) ∩ Nb(n2)) \ {nu} are incident to v1.

If the set of common neighbors of two adjacent nodes n1 and n2 have no more than
two nodes in H , then for each node in this set that also has at least 3 additional neighbors
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Fig. 2 Illustration of Theorem 3

different from n1 and n2, the position of its correspondent link in G can be uniquely
determined. This is formalized in Theorem 3.

Theorem 3 Suppose that two adjacent nodes n1 and n2 in H correspond to links ln1 and
ln2 in G, respectively, where ln1 is incident to v1 and v2 and where ln2 is incident to v1 and
v3, as shown in Fig. 2. If |Nb(n1)∩Nb(n2)| ≤ 2, then for each nu ∈ Nb(n1)∩Nb(n2), such
that |Nb(nu) \ {n1, n2}| ≥ 3 and Nb(nu) ⊆ Nb(n1) ∪ Nb(n2), link lnu must be incident to
both v2 and v3 in G.

Proof Since nu ∈ Nb(n1) ∩ Nb(n2), lnu can be incident to v1 or be incident to both
v2 and v3. Let us first assume lnu is incident to v1. Two neighbors nx1, nx2 of nu can be
adjacent to n1 or n2. However, we have |Nb(nu) \ {n1, n2}| ≥ 3, there must be at least one
neighbor of nu which is not adjacent to either n1 or n2, which contradicts with the fact that
Nb(nu) ⊆ Nb(n1) ∪ Nb(n2). Hence, lnu can only be incident to v2 and v3.

When the set of common nodes of two adjacent nodes n1 and n2 in H has no more than
two nodes and a node in this set has no more than two neighbors, different from n1 and n2,
then Theorems 2 and 3 are not applicable. We treat those remaining cases in Appendix A.

For a given node n1, ILIGRA uses Theorem 1, 2, 3 and Table 3 from Appendix A to
determine which links in Lb

(
ln1

)
are incident to v1 and which else are incident to v2, where

v1 and v2 are the nodes of ln1 in G. Then, for each link in Lb

(
ln1

)
, the first incident node

has been determined.

2.4 Algorithm Description

ILIGRA starts by setting G to an empty graph (line 1). Initially, nothing in G is determined,
hence Nw = N and Nh = ∅ (line 2), where Nw and Nh are defined in Table 1. Then
ILIGRA picks an arbitrary node n1 in the set Nw and picks an arbitrary neighbor n2 of n1 in
the set Nb (n1) (lines 3–4). Two nodes v1 and v2 are added to the root graph G (line 5), and
link ln1 = v1 ∼ v2 is added to the root graph G (line 6). Since the incident nodes of link ln1

have been determined in G, node n1 is removed from Nw (line 6). Then v1 is chosen4 to be

4ILIGRA arbitrarily chooses a node from v1 and v2 and lets it be incident to ln2 .
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incident to link ln2 (line 7). Since the first incident node of link ln2 is determined, node n2
is moved from Nw to Nh (line 7).

According to the definition of the line graph, the links in Lb

(
ln1

)
have a node in com-

mon with link ln1 in G. Since ln1 is incident to v1 and v2, the links in Lb

(
ln1

)
should

also be incident to either v1 or v2. By Theorem 1, ILIGRA determines that the links in
Lb(ln1) \ Lb(ln2), corresponding to the nodes in n ∈ Nb(n1) \ Nb(n2), are incident to v2.
For each node n in Nb(n1) \ Nb(n2), ILIGRA sets the first identified incident node vln of
the corresponding link ln to v2, and moves n from Nw to Nh (lines 8–9).
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ILIGRA sets J to the intersection of Nb(n1) and Nb(n2) (line 10). If there are only 1 or
2 nodes in J , and if there exists nu ∈ J such that any neighbor of nu is also a neighbor
of either n1 or n2, and node nu satisfies |Nb(nu) \ {n1, n2}| ≥ 3, according to Theorem 3,
link lnu should be incident to v2. ILIGRA sets vlnu

to v2, and adds nu to Nh and removes nu

from Nw and removes nu from J (lines 11–14). If |J | ≤ 2 and |Nb(nu) \ {n1, n2}| ≤ 2, the
special cases are handled by the subroutine INITSPECCASES (lines 15–16). The subroutine
INITSPECCASES is stated in Appendix A. If |J | ≥ 3 and if there exists nu ∈ J such that nu

is not adjacent to any other node in J , according to Theorem 2, link lnu should be incident
to v2. ILIGRA sets vlnu

to v2, and adds nu to Nh and removes nu from Nw and removes nu

from J (lines 17–19).
Since node nu has been removed from J , the rest of links in J should be incident to v1.

For each n in J which is adjacent with both n1 and n2, ILIGRA sets vln to v1, and adds n

to Nh and removes n from Nw (lines 20–21). The nodes in J should be fully connected to
each other, since the corresponding links are all incident to v1. If the nodes in J do not form
a clique in H , then H is not a line graph (lines 22–23). The nodes in Nb(n1)\J should also
be fully connected to each other, since the corresponding links are all incident to v2. If the
nodes in Nb(n1) \ J do not form a clique in H , then H is not a line graph (lines 24–25).

The loop (lines 26–38) runs until Nh is an empty set. ILIGRA picks an arbitrary node n

in Nh (line 27). ILIGRA adds a node v and a link ln between vln and v to G (line 28), and
removes n from Nh (line 29). ILIGRA sets C to an empty set (line 29). For each neighbor
nr of n, if nr ∈ Nh and vln 
= vlnr

, ILIGRA adds link lnr between vlnr
and v to G, and

removes nr from Nh, and adds nr to C (lines 30–33); If nr ∈ Nw , ILIGRA sets vlnr
to v, and

moves nr from Nw to Nh, and adds nr to C (lines 34–36). The nodes in C should be fully
connected with each other, since the corresponding links are all incident to v. If the nodes in
C do not form a clique in H , H is not a line graph (lines 37–38). If H is a connected graph,
Nw should be an empty set when Nh becomes an empty set. While Nw 
= ∅, repeat lines
3–38. For each component of a given disconnected line graph, lines 3–38 will be executed
once. If the input graphs are line graphs, lines 22–25 and 37–38 can be skipped, which are
used to check whether the given graph is a line graph.

2.5 Complexity

The lines 1–21 of ILIGRA examine all the neighbors of the n1 in H , with the complexity
O(NH ), where NH is the number of nodes in H . The lines 22–25, which check whether
H is a line graph, have the complexity O(NL), where NL is the number of links in H . The
lines 26–36 have the complexity O(NH ). The lines 37–38 check whether H is a line graph
and have the complexity O(NL). Hence, the overall complexity of ILIGRA with checking if
H is a line graph is O(NL), and the complexity of ILIGRA without checking is O(NH ).

3 An Example

In this section, we use an example depicted in Fig. 3 to show how ILIGRA works. Given a
line graph H shown in Fig. 3a, ILIGRA constructs its root graph G incrementally as shown
in Fig. 3b–i.

Initially, set G to an empty graph. We have Nw = {n1, n2, · · · , n11} and Nh = ∅. Add
nodes v1 and v2 to G, and add link ln1 between v1 and v2 to G as shown in Fig. 3b, and
Nw = {n2, n3, · · · , n11}. Set vln2

to v1, Nw = {n3, n4, · · · , n11} and Nh = {n2}. Since
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Fig. 3 An example shows how ILIGRA constructs G from a given H

Nb(n1) \ Nb(n2) = {n5, n6}, according to Theorem 1, set vln5
to v2 and also set vln6

to v2.
We have Nw = {n3, n4, n7, n8, · · · , n11} and Nh = {n2, n5, n6}. Since Nb(n1)∩Nb(n2) =
{n3, n4, n7} and none of n3 and n4 is not adjacent to n7, according to Theorem 1, set vln7

to
v2. Now Nw = {n3, n4, n8, n9, n10, n11} and Nh = {n2, n5, n6, n7}. For the two nodes n3
and n4 in Nb(n1) ∩Nb(n2) \ {n7}, the corresponding links should be incident to v1. Hence,
set both vln3

and vln4
to v1. Now Nw = {n8, n9, n10, n11} and Nh = {n2, n3, n4, n5, n6, n7}.

Take n2 from Nh. Add a node v3 to G and add link ln2 between v3 and vln2
(vln2

has been
found to be v1 previously), as shown in Fig. 3c. Now Nh = {n3, n4, n5, n6, n7}. We have
Nb(n2) = {n1, n3, n4, n7, n8, n9, n10}. Since n7 ∈ Nh and vln7

= v2 
= vln2
= v1, add ln7

between v2 and v3 to G. Now Nh = {n3, n4, n5, n6}. Since n8, n9 and n10 belong to Nw ,
set vln8

, vln9
and vln10

to v3. Now Nw = {n11} and Nh = {n3, n4, n5, n6, n8, n9, n10}.
Take n3 from Nh. Add a node v4 to G and add link ln3 between v4 and vln3

, which is
namely v1, as shown in Fig. 3d. Now Nh = {n4, n5, n6, n8, n9, n10}.
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Fig. 4 Algorithms’ running times for line graphs with different pH and LH

Take n4 from Nh. Add a node v5 to G and add link ln4 between v5 and vln4
, which

is also v1, as shown in Fig. 3e. Now Nh = {n5, n6, n8, n9, n10}. We have Nb(n4) =
{n1, n2, n3, n8, n11}. Since n8 ∈ Nh and vln8

= v3 
= vln4
= v1, add ln8 between v5 and

v3 to G. Now Nh = {n5, n6, n9, n10}. Since n11 ∈ Nw , set vln11 to v5. Now Nw = ∅ and
Nh = {n5, n6, n9, n10, n11}.

Take n5 from Nh. Add a node v6 to G and add link ln5 between v6 and vln5
, which is also

v2, as shown in Fig. 3f. Now Nh = {n6, n9, n10, n11}.



J Math Model Algor (2015) 14:13–33 23

Table 2 The fastest algorithm
for different input line graphs Link density pH Number of links LH

≤ 500 > 500

0.05 ILIGRA ILIGRA

0.125 ILIGRA ILIGRA

0.5 ILIGRA Lehot

0.65 ILIGRA Lehot

Take n6 from Nh. Add a node v7 to G and add link ln6 between v7 and vln6
, which is also

v2, as shown in Fig. 3g. Now Nh = {n9, n10, n11}. We have Nb(n6) = {n1, n5, n7, n10}.
Since n10 ∈ Nh and vln10

= v3 
= vln6
= v2, add ln10 between v7 and v3 to G. Now

Nh = {n9, n11}.
Take n9 from Nh. Add a node v8 to G and add link ln9 between v8 and vln9

, which is also
v3, as shown in Fig. 3h. Now Nh = {n11}.

Take the only node n9 from Nh. Add a node v9 to G and add link ln11 between v9 and
vln11

, which is also v5, as shown in Fig. 3i. Now Nh = ∅. Since Nw is also an empty set,
the construction of G is accomplished.

4 Evaluation

We compare ILIGRA’s running time with the running times of three published line
graph reconstruction algorithms: Roussopouloss’ algorithm [20], Lehot’s algorithm [12],
and Degiorgi and Simon’s algorithm [6]. All algorithms have been implemented in
the same programming language (C++) and the same data structures and libraries [15]
have been used.5 The evaluation of all the algorithms has been conducted on the same
machine.6

The performances of the above-mentioned algorithms have been compared using the
same input graphs H . All the algorithms are able to construct the root graph G if
the given graph H is a line graph, and can tell non-line graph when H if is not
a line graph. The line graphs with link density7 pH = 0.05 and 0.125 are gener-
ated by converting random graphs [3, 7] with a fixed link density into line graphs.
However, the line graphs of these random graphs can never have high link densi-
ties (explained with details in Appendix B). Therefore, the line graphs with pH =
0.5 and 0.65 have been generated by converting the scale-free graphs [2] into line
graphs.

5LEDA: http://www.algorithmic-solutions.com/leda/
6Intel(R) Core(TM) 2 Duo CPU T9600 on 2 × 2.80 GHz; 4 GB RAM memory
7The link density of a given line graph H(L,LH ) is defined by pH = LH /

(
L
2

)
, where L is the number of

nodes in H and LH is the number of links in H .

http://www.algorithmic-solutions.com/leda/
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Figure 4 reflects the trends for the running times of all the algorithms when the
input graphs are line graphs with different link density pH and different number of links
LH . Figure 4a and b show the running times for line graphs with small link density
pH = 0.05, 0.125, where ILIGRA performs faster than all the other algorithms. Fig-
ure 4c, d, e and f illustrate the trends for the algorithms’ running times for line graphs
with high link density pH = 0.50 and pH = 0.65. ILIGRA is the fastest algorithm for
line graphs with small number of links 200 ≤ LH ≤ 500 and Lehot’s algorithm has the
shortest running time for line graphs with high number of links 650 ≤ LH ≤ 18000.
The best algorithms, reflected by the running time for all the cases, are summarized in
Table 2.

5 Conclusion

We present ILIGRA algorithm for inverse line graph construction. Given a line graph H ,
ILIGRA constructs its root graph G and checks whether the given graph is a line graph during
the construction. ILIGRA also works for disconnected line graphs by iterating through the
connected components of the input line graph. The time complexity of ILIGRA is linear in
the number of nodes in the input graph H without checking if the given graph is a line graph.
The time complexity of ILIGRA with full functionality is linear in the number of links in
the given line graphs. Numerical comparisons with the algorithms of Lehot, Roussopoulos,
and Degiorgi and Simon have been demonstrated. Given line graphs with small link density
(i.e. sparse graphs), ILIGRA is the fastest algorithm in root graph construction, as shown in
Table 2.

Acknowledgments We would like to thank Prof. Dr. Klaus Simon from ETH Zürich for providing us
with the initial implementations of the algorithms of Lehot, Roussopoulos, and Degiorgi and Simon. We are
grateful to two anonymous reviewers who provided us with valuable comments.

Appendix A: Special cases

We start with two adjacent nodes n1 and n2 in H that correspond to links ln1 and ln2 in G,
respectively, where ln1 is incident to v1 and v2 and where ln2 is incident to v1 and v3. We
denote by J = Nb(n1) ∩ Nb(n2), C = Nb(n1) ∪ Nb(n2) and L is the number of links in
G. For each nu ∈ J , link lnu is either incident to v1, or incident to both v2 and v3. For each
nu ∈ J , we denote Z = Nb(nu) \ {n1, n2}. In the remainder of this appendix and Table 3,
we continue with the case analysis for the remaining cases: |J | ≤ 2 and |Z| ≤ 2.

1. Z = ∅
(a) |J | = 1

i. L = 3
The root graph G is K3 or K1,3, as shown in Fig. 5a.

ii. L ≥ 4
lnu is incident to v1.

Proof Let us assume lnu is incident to v2 and v3. Since H has more than
3 nodes and Nb(n1)∩Nb(n2) = {nu}, the extra links must be incident to
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Table 3 All cases for identifying the special node in J , whose corresponding link is incident to v2

Notation: J = Nb(n1) ∩ Nb(n2), nu ∈ J,C = Nb(n1) ∪ Nb(n2), Z = Nb(nu) \ {n1, n2}

v2 or v3 in G, which means nu must have other neighbors different from
n1 and n2, contradicting the fact that Z = Nb(nu)\{n1, n2} = ∅. Hence,
lnu can only be incident to v1.

(b) |J | = 2 (J = {nu, nr }) and nr /∈ Nb(nu)

i. L = 4
lnu is incident to v1 or v2, as shown in Fig. 5b. The resulting root graphs
are isomorphic.

ii. L ≥ 5 and nx is the node in H different from n1, n2, nu, and nr .
If nx /∈ C = Nb(n1) ∪ Nb(n2), then lnu is incident to v2 (Fig. 5c),
otherwise lnu is incident to v1.

Proof Let us first assume nx /∈ C = Nb(n1)∪Nb(n2) and lnu is incident
to v1. Since |Z| = 0, lnx must be incident to either v2 or v3, which
contradicts the fact that nx /∈ C. Hence, lnu is incident to v2. Let us
now assume nx ∈ C = Nb(n1) ∪ Nb(n2) and lnu is incident to v2.
Since |Z| = 0, lnx must be incident to v1, which contradicts the fact that
|J | = 2. Hence, lnu is incident to v1.

2. |Z| = 1 (Z = {ns})
(a) |J | = 1
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Fig. 5 Scenarios for (a) |Z| = 0, |J | = 1, L = 3; (b) |Z| = 0, |J | = 2, L = 4; (c) |Z| = 0, |J | = 2,
L = 5, nx /∈ C; (d) |Z| = 1, |J | = 1, L = 4; (e) |Z| = 1, |J | = 1, L = 5, nx /∈ C; (f) |Z| = 1, |J | = 2,
L = 5, ns /∈ Nb(nr ), ns ∈ C; (g) |Z| = 1, |J | = 2, L = 5, ns ∈ Nb(nr ); and (h) |Z| = 1, |J | = 2, L = 6,
ns ∈ Nb(nr ), nx /∈ C

i. L = 4
lnu is incident to v1 or v2, as shown in Fig. 5d. The resulting root graphs
are isomorphic.

ii. L ≥ 5 and nx is the node in H different from n1, n2, nu, and ns .
If nx /∈ C = Nb(n1) ∪ Nb(n2), lnu is incident to v2 (Fig. 5e), otherwise
lnu is incident to v1.

Proof Let us first assume nx /∈ C = Nb(n1)∪Nb(n2) and lnu is incident
to v1. Since |J | = 1 and |Z| = 1, lnx must be incident to either v2 or v3,
which contradicts the fact that nx /∈ C. Hence, lnu is incident to v2. Let
us now assume nx ∈ C = Nb(n1) ∪Nb(n2) and lnu is incident to v2 and
v3. Since |Z| = 1, lnx must be incident to v1, which contradicts the fact
that |J | = 1. Hence, lnu is incident to v1.
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(b) |J | = 2 (J = {nu, nr }) and nr /∈ Nb(nu)

i. ns /∈ Nb(nr)

If ns ∈ C = Nb(n1) ∪ Nb(n2), lnu is incident to v2 (Fig. 5f), otherwise
lnu is incident to v1.

Proof Let us first assume ns ∈ C = Nb(n1)∪Nb(n2) and lnu is incident
to v1. Since lnu is incident to v1, lnr must be incident to v2 and v3. Since
ns /∈ Nb(nr), lns must be incident to v1, contradicting the fact that |J | ≤
2. Hence, lnu is incident to v2. Let us now assume ns /∈ C = Nb(n1) ∪
Nb(n2) and lnu is incident to v2 and v3. Since ns ∈ Nb(nu), ns is incident
to either v2 or v3, contradicting the fact that ns /∈ C. Hence, lnu is incident
to v1.

ii. ns ∈ Nb(nr)

A. L = 5
lnu is incident to v1 or v2, as shown in Fig. 5g. The resulting
root graphs are isomorphic.

B. L ≥ 6 and nx is the node in H different from n1, n2, nu, nr ,
and ns .
If nx /∈ C = Nb(n1) ∪ Nb(n2), lnu is incident to v2 (Fig. 5h),
otherwise lnu is incident to v1.

Proof Assume that nx /∈ C = Nb(n1) ∪ Nb(n2) and lnu is
incident to v1. Since nr /∈ Nb(nu), lnr is incident to v2 and
v3. Since ns ∈ Nb(nr ) and ns ∈ Nb(nu), lns is incident to
the node of lnu different from v1 and either v2 or v3. Since
|J | = 2 and |Z| = 1, lnx must be incident to either v2 or v3,
which contradicts the fact that nx /∈ C. Hence, lnu is incident
to v2. Now, assume that nx ∈ C = Nb(n1) ∪ Nb(n2) and lnu

is incident to v2 and v3 and lnr is incident to v1. Since ns ∈
Nb(nu), lns is incident to either v2 or v3. Since |Z| = 1, lnx

must be incident to v1, which contradicts the fact that |J | = 2.
Hence, lnu is incident to v1.

3. |Z| = 2 (Z = {ns, nt })
(a) ns /∈ Nb(nt )

i. |J | = 1 (J = {nu})
lnu is incident to v2.

Proof Assume that lnu is incident to v1 and vu. Since |J | = 1, both
lns and lnt must be incident to vu, then ns ∈ Nb(nt ), contradicting the
assumption that ns /∈ Nb(nt ). Hence, lnu is incident to v2.
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ii. |J | = 2 (J = {nu, nr }) and nr /∈ Nb(nu)

lnu is incident to v2, as shown in Fig. 6a.

Proof Assume that lnu is incident to v1 and vu. Since lnu is inci-
dent to v1, lnr must be incident to v2. Since |J | = 2, both lns

and lnt must be incident to vu, then ns ∈ Nb(nt ), contradict-
ing with the assumption that ns /∈ Nb(nt ). Hence, lnu is incident
to v2.

(b) ns ∈ Nb(nt ) and ns, nt , n1 (or n2) are pairwise adjacent
lnu is incident to v2, as shown in Fig. 6b.

Proof If lnu is incident to v1, neither ns, nt , n1 nor ns, nt , n2 can be pairwise
adjacent, hence lnu is incident to v2.

(c) ns ∈ Nb(nt ) and ns, nt , n1 are not pairwise adjacent

i. |J | = 1

A. L = 5
lnu is incident to v1 or v2, as shown in Fig. 6c. The resulting
root graphs are isomorphic.

B. L ≥ 6 and nx is the node in H different from n1, n2, nu, ns ,
and nt .
If nx /∈ C = Nb(n1) ∪ Nb(n2), lnu is incident to v2 (Fig. 6d),
otherwise lnu is incident to v1.

Proof Assume nx /∈ C = Nb(n1) ∪ Nb(n2) and lnu is inci-
dent to v1. Since |J | = 1 and |Z| = 2, there is no link
incident to both v2 and v3, hence lns and lnt are incident to
the node of lnu different from v1 and one of the nodes v2 and
v3. Now, lnx cannot be adjacent to v1 as |J | = 1; it cannot
be adjacent to none of v2, v3 and the node of lnu different
from v1, because |Z| = 1, hence there will not be a space
for link lnx , which contradicts the assumption of the existence
of nx and L ≥ 6. Hence, lnu is incident to v2. Now, assume
nx ∈ C = Nb(n1) ∪ Nb(n2) and lnu is incident to v2 and
v3. Since |J | = 1, no other link is incident to v1, there-
fore lns , lnt and lnx are all incident to either v2 or v3, which
contradicts the assumption |Z| = 2. Hence, lnu is incident
to v1.

ii. |J | = 2 (J = {nu, nr }) and nr /∈ Nb(nu)

A. L = 6
lnu is incidentto v1 or v2, as shown in Fig. 6e. The resulting
root graphs areisomorphic.
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Fig. 6 Scenarios for |Z| = 2: (a) ns /∈ Nb(nt ), |J | = 2; (b) ns ∈ Nb(nt ) and ns, nt , n1 (or n2) are pairwise
adjacent; ns ∈ Nb(nt ) and ns, nt , n1 (or n2) are not pairwise adjacent: (c) |J | = 1, L = 5; (d) |J | = 1,
L = 6, nx /∈ C; (e) |J | = 2, L = 6; and (f) |J | = 2, L = 7, nx /∈ C

B. L ≥ 7 and nx is the node in H different from n1, n2, nu, nr , ns ,
and nt .
If nx /∈ C = Nb(n1) ∪ Nb(n2), lnu is incident to v2 (Fig. 6f),
otherwise lnu is incident to v1.

Proof Assume nx /∈ C = Nb(n1) ∪ Nb(n2) and lnu is inci-
dent to v1. Since |J | = 2 and |Z| = 2, lnr is incident to both
v2 and v3; lns and lnt are incident to the node of lnu differ-
ent from v1 and one of the nodes v2 and v3. Since nx /∈ C,
link lnx is incident to the node of lnu different from v1, which
contradicts the assumption of |Z| = 2. Hence, lnu is incident
to v2. Now, assume nx ∈ C = Nb(n1) ∪ Nb(n2) and lnu is
incident to v2 and v3. Since |J | = 2, lnr is incident to v1.
Since nx ∈ C and |J | = 1, link lnx cannot be incident to
v1. Finally, lns , lnr and lnx are all incident to either v2 or v3,
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which contradicts the fact that |Z| = 2. Hence, lnu is incident
to v1.

Appendix B: The Link Density of Line Graphs

The link density is an important characteristic for the topology of line graphs. This section
discusses the relation between the link density of line graph H , the number of nodes N and
the number of links L in the root graph G(N,L).

The number of nodes NH in the line graph H is equal to the number of links L in the
root graph G. For the number of links LH in the line graph H ,we have

LH = 1

2

N∑

i=1

d2
i − L (1)

where d = [d1, d2, · · · , dN ] is the degree sequence of G.
By using (1), the link density pH of H equals

pH = LH(
L

2

) =
1
2

∑N
i=1 d2

i − L
(

L

2

) =
∑N

i=1 d2
i − 2L

L2 − L
(2)

Using the basic law of degrees,
∑N

i=1 di = 2L, and Cauchy’s inequality [4, 9]

N∑

i=1

d2
i ≥

(∑N
i=1 di

)2

N
= 4L2

N
(3)

and using (3) into (2), we obtain

pH =
∑N

i=1 d2
i − 2L

L2 − L
≥

2L
(

2L
N

− 1
)

L2 − L
= 2

N

2L − N

L − 1
(4)
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Equality in (4) holds for regular root graphs G, where di = 2L
N

, for i = 1, 2, · · · , N . When
L � N , the link density pH asymptotically tends to 4

N
. Hence, the line graphs of dense

root graphs with L � N have small link densities.
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We derive an upper bound for the link density pH . Using L =
(∑N

i=1 di

)
/2 and the

inequality
(∑N

i=1 xi

)2 ≥ ∑N
i=1 x2

i for xi = di − 1 ≥ 0, we obtain

N∑

i=1

d2
i =

N∑

i=1

(di − 1)2 − N + 2
N∑

i=1

di =
N∑

i=1

(di − 1)2 − N + 4L

≤ 4L − N +
(

N∑

i=1

(di − 1)

)2

= (2L − N + 1)2 + N − 1 (5)

Finally, pH is bounded by

4L − 2N

N(L − 1)
≤ pH ≤ (2L − N + 1)2 + N − 2L − 1

L2 − L

Equality in (5) is achieved if and only if (di − 1)(dj − 1) = 0 for all i, j ∈ 1, 2, · · · , N .
The star graph K1,N satisfies the condition for equality in (5), indicating that the line graph
of K1,N reaches the upper bound of link density pH . In fact, the line graph of K1,N is
complete graph KN−1 with maximum link density of 1. In conclusion, dense line graphs
can be obtained if the original graph has one node with a high degree and the other nodes
have relatively small degrees. On the other hand, the line graph of a regular graph has the
minimum link density. Hence, the line graphs with pH = 0.5 and 0.65 in Section 4 are
generated by converting the scale-free graphs into line graphs.
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21. Simić, S.: An algorithm to recognize a generalized line graphs and ouput its root graph. Publ. Math. Inst.

(Belgrade) 49(63), 21–26 (1990)
22. Van Mieghem, P.: Graph Spectra for Complex Networks. Cambridge University Press, Cambridge (2011)
23. van Rooij, A.C.M., Wilf, H.S.: The interchange graph of a finite graph. Acta Math. Acad. Sci. Hung. 16,

263–269 (1965)
24. Whitney, H.: Congruent graphs and the connectivity of graphs. Am. J. Math. 54, 150–168 (1932)


	ILIGRA: An Efficient Inverse Line Graph Algorithm
	Abstract
	Introduction
	iligra
	Notation
	Concept
	Theoretical Preliminaries
	Algorithm Description
	Complexity

	An Example
	Evaluation
	Conclusion
	Acknowledgments
	Appendix A: Special cases
	Appendix B: The Link Density of Line Graphs
	References


