ILIGRA: An Efficient Inverse Line Graph Algorithm

Dajie Liu •Stojan Trajanovski • Piet Van Mieghem

Received: 11 December 2012 / Accepted: 3 February 2014 / Published online: 25 April 2014
© Springer Science+Business Media Dordrecht 2014

Abstract

This paper presents a new and efficient algorithm, ILIGRA, for inverse line graph construction. Given a line graph H, Iligra constructs its root graph G with the time complexity being linear in the number of nodes in H. If Iligra does not know whether the given graph H is a line graph, it firstly assumes that H is a line graph and starts its root graph construction. During the root graph construction, Iligra checks whether the given graph H is a line graph and Iligra stops once it finds H is not a line graph. The time complexity of ILIGRA with line graph checking is linear in the number of links in the given graph H. For sparse line graphs of any size and for dense line graphs of small size, numerical results of the running time show that ILIGRA outperforms all currently available algorithms.

Keywords Graph algorithm • Line graph • Root graph

1 Introduction

A simple graph with N nodes (vertices) and L links (edges), denoted by $G(N, L)$, is an unweighted, undirected graph containing no self-loops (links starting and ending at the same node) nor multiple links between the same pair of nodes. The line graph $H=l(G)$ of a graph G is a graph [22] in which every node in H corresponds to a link in G and two nodes are adjacent if and only if their corresponding links have a common node in G. The

[^0]graph G is called the root graph of H. The complete graph with three nodes K_{3} is a line graph, which has two different root graphs, K_{3} and the bipartite graph $K_{1,3}$. Except for K_{3}, Whitney's theorem [24] states that all connected line graphs have only one root graph up to an isomorphism. Whitney's theorem provides the theoretical basis for the inverse line graph conversion. Cvetković et al. [5] reviewed the state-of-the-art knowledge about line graphs.

There exist plenty of real-world networks that can be modeled by line graphs [16, 17]. A graph is assortative if its low-degree nodes tend to be adjacent with other low-degree nodes and its high-degree nodes tend to be adjacent with other high-degree nodes. Line graphs are assortative and clustered $[11,13,14,16]$. If two or more communities overlap on a node, it is not feasible to partition nodes to detect communities. In order to detect the overlapping communities, the links are partitioned. However, the algorithms for partitioning links are less efficient than the algorithms for partitioning the nodes. We can transform the networks into their line graphs and partition the nodes of the line graphs [1, 8].

To facilitate the applications of line graphs, the construction of a line graph H from a root graph G and the inverse construction from the line graph $H=l(G)$ to the root graph G are necessary. The root-to-line graph construction follows straightforwardly from the definition of a line graph [22]. However, the line-to-root graph construction is more complex. Two algorithms for line-to-root graph construction were proposed concurrently by Roussopoulos [20] and Lehot [12]. The algorithm of Roussopoulos is based on the theorem of Krausz [10]: A graph is a line graph if and only if it is possible to find a collection of cliques in the graph, partitioning all the links, such that each node belongs to at most two of the cliques (some of the cliques can be a single node) and two cliques share at most one node. Lehot's algorithm employs the principles of van Rooij and Wilf [23]: A graph is a line graph if and only if it does not have the complete bipartite graph $K_{1,3}$ as an induced sub-graph, and if two odd triangles ${ }^{1}$ have a common link, the sub-graph induced by their nodes is the complete graph K_{4}. Lehot's algorithm first constructs a root graph G from the given graph H, and then compares $l(G)$ and H to determine whether the given H is a line graph, unlike Roussopoulos' algorithm, which determines whether the given graph H is a line graph during the construction of the root graph G. Naor and Novick [18] proposed a parallel algorithm for line-to-root graph construction based on a divide-and-conquer scheme. Motivated by eigenvectors, Simić [21] proposed an algorithm for recognizing generalized line graphs. Simić's algorithm searches for the maximum degree node in each loop. Degiorgi and Simon [6] proposed a constructive algorithm, based on the Ore's proof [19] of Whitney's theorem [24], which states that two connected and edge-isomorphic graphs with more than four nodes are also node isomorphic and there exists exactly one node isomorphism which generates the given edge isomorphism. The original graph construction examines 2 -coloring classes in the input graph components. They showed that their algorithm is more time-efficient than the algorithms of Roussopoulos and Lehot for sparse line graphs and non-line graphs.

In this paper, we propose Iligra, an Inverse LIne GRaph Algorithm, for line-to-root graph construction. Unlike previous algorithms, Iligra checks the connectivity locally. The root graph G is constructed based on the correspondence between a node in the line graph H and a link in its root graph G. Due to the choice of an arbitrary node in the line graph H and checking the connectivity of its neighbors during the algorithm's execution, IligRA is the simplest inverse line graph algorithm proposed so far.

[^1]The paper is organized as follows. ILIGRA is presented in Section 2 and additional details are given in Appendix A. Section 3 demonstrates how ILIGRA works on a descriptive example. Numerical comparisons of Iligra with the algorithms of Lehot, Roussopoulos, and Degiorgi and Simon for different types of line graphs are presented in Section 4. Finally, we conclude in Section 5. The link density of line graphs is discussed in Appendix B.

2 iligra

2.1 Notation

Table 1 summarizes the notation, which is used in the presentation of Iligra. According to the definition of the line graph, each node in a line graph $H\left(N_{H}, L_{H}\right)$ corresponds to a link in its root graph $G(N, L)$. Hence, the number of nodes N_{H} in the line graph H and the number of links L in the root graph G are equal, $N_{H}=L$. We always use n (or n with subscript) to denote a node in H. The link in G corresponding to node n in H is denoted by l_{n}. In the remainder of the paper, we use v (or v with subscript) to denote a node in G. Denote by $\mathcal{N}_{b}(n)$ the set of the nodes in H which are adjacent to node n and called the neighbors ${ }^{2}$ of node n. Denote by $\mathcal{L}_{b}\left(l_{n}\right)$ the set of the links in G which corresponds to the nodes in $\mathcal{N}_{b}(n)$. Every link in the root graph G has two incident nodes. ${ }^{3}$ In order to construct the root graph G from a given line graph H, we have to determine the two incident nodes of every link in G. In the root graph G, we denote by $v_{l_{n}}$ the incident node of link l_{n} which is first encountered during the algorithm's execution. The set of the nodes in H, which corresponds to the links in G whose incident nodes are not yet determined, is denoted by \mathcal{N}_{w}. The set of the nodes in H corresponding to the links in G of which one incident node is determined, is denoted by \mathcal{N}_{h}.

2.2 Concept

The nodes in a line graph $H\left(N_{H}, L_{H}\right)$ are denoted by $n_{1}, n_{2}, n_{3}, \cdots, n_{N_{H}}$, and the corresponding links in the root graph G are denoted by $l_{n_{1}}, l_{n_{2}}, l_{n_{3}}, \cdots, l_{n_{N_{H}}}$. Initially, it is unknown how the links $l_{n_{1}}, l_{n_{2}}, l_{n_{3}}, \cdots, l_{n_{N_{H}}}$ connect the nodes in G, and even the number of nodes N in G is unknown.

Suppose that link $l_{n_{1}}$ is incident to v_{1} and v_{2} in G. From the line graph H, the set $\mathcal{N}_{b}\left(n_{1}\right)$ of the neighbors of node n_{1} in H is known, and the set $\mathcal{L}_{b}\left(l_{n_{1}}\right)$ of the links in G, which corresponds to the nodes in $\mathcal{N}_{b}\left(n_{1}\right)$, is also known. By the definition of a line graph, the links in $\mathcal{L}_{b}\left(l_{n_{1}}\right)$ are the neighboring links of link $l_{n_{1}}$, hence, the links in $\mathcal{L}_{b}\left(l_{n_{1}}\right)$ should be incident to either v_{1} or v_{2}. If the links in $\mathcal{L}_{b}\left(l_{n_{1}}\right)$ which are incident to v_{1} are known, the rest of links in $\mathcal{L}_{b}\left(l_{n_{1}}\right)$ must be incident to v_{2}. Unfortunately, it is unknown which links in $\mathcal{L}_{b}\left(l_{n_{1}}\right)$ are incident to v_{1}.

When considering links $l_{n_{2}}, l_{n_{3}}, \cdots, l_{n_{N_{H}}}$, the same problem appears. The difficulty in constructing the root graph G lies in partitioning the set of the neighboring links into two complementary subsets of links: the links that are incident to the first incident node of the concerned link, and the other links which are incident to the second incident node of that link.

[^2]Table 1 Notation

$G(N, L)$	The root graph with N nodes and L links
$H\left(N_{H}, L_{H}\right)$	The line graph of G with N_{H} nodes and L_{H} links
n	The node n in H
\mathcal{N}	The set of all the nodes in H
\mathcal{N}_{w}	The set of the nodes in H, corresponding to the
	links in G whose incident nodes are not yet determined
\mathcal{N}_{h}	The set of the nodes in H, corresponding to the
	links in G of which one incident node is determined
$\mathcal{N}_{b}(n)$	The set of the neighbors of node n in H
l_{n}	The link in G which corresponds to node n in H
$\mathcal{L}_{b}\left(l_{n}\right)$	The set of the links in G which correspond to the nodes in $\mathcal{N}_{b}(n)$
$v_{l_{n}}$	The first identified incident node of link l_{n} in G
$\operatorname{ADDNODE}(G, v)$	The function which adds a node v to G
ADDLINK $\left(G, v_{1}, v_{2}\right)$	The function which adds a link $v_{1} \sim v_{2}$ to G

Without loss of generality, suppose that $\mathcal{L}_{b}\left(l_{n_{1}}\right)=\left\{l_{n_{2}}, l_{n_{3}}, \cdots, l_{n_{k}}\right\}$, where k is an integer. Suppose that the set $\mathcal{L}_{b}\left(l_{n_{1}}\right)$ of the neighboring links of $l_{n_{1}}$ are partitioned successfully into two subsets: $\mathcal{L}_{b, v_{1}}\left(l_{n_{1}}\right)=\left\{l_{n_{2}}, l_{n_{3}}, l_{n_{4}}\right\}$ where the links are incident to v_{1}, and $\mathcal{L}_{b, v_{2}}\left(l_{n_{1}}\right)=\left\{l_{n_{5}}, l_{n_{6}}, \cdots, l_{n_{k}}\right\}$ where the links are incident to v_{2}. Then, the set $\mathcal{L}_{b}\left(l_{n_{2}}\right)$ of the neighboring links of $l_{n_{2}}$ is automatically partitioned: the links $l_{n_{1}}, l_{n_{3}}, l_{n_{4}}$ are incident to v_{1}, and the rest of links in $\mathcal{L}_{b}\left(l_{n_{2}}\right)$ are incident to the second incident node of $l_{n_{2}}$. Similarly, the sets of the neighboring links of links $l_{n_{3}}, l_{n_{4}}, \cdots, l_{n_{k}}$, are also automatically partitioned. Assuming H is a connected line graph, the sets of the neighboring links of all the links in G can be partitioned by iterating the described process. This is the basic idea of Iligra.

Partitioning the set $\mathcal{L}_{b}\left(l_{n_{1}}\right)$ of the neighboring links of $l_{n_{1}}$ becomes a crucial task in the root graph construction. The theorems in Section 2.3 and Appendix B provide the theoretical basis for this task.

2.3 Theoretical Preliminaries

Theorem 1 Suppose that two adjacent nodes n_{1} and n_{2} in H correspond to links $l_{n_{1}}$ and $l_{n_{2}}$ in G, respectively, where $l_{n_{1}}$ is incident to v_{1} and v_{2} and where v_{1} is also incident to $l_{n_{2}}$, as shown in Fig. 1a. Then, for each $n \in \mathcal{N}_{b}\left(n_{1}\right) \backslash \mathcal{N}_{b}\left(n_{2}\right)$ in H, the corresponding link l_{n} in G must be incident to v_{2}, and the nodes in $\mathcal{N}_{b}\left(n_{1}\right) \backslash \mathcal{N}_{b}\left(n_{2}\right)$ must form a clique in H.

Proof For each $n \in \mathcal{N}_{b}\left(n_{1}\right) \backslash \mathcal{N}_{b}\left(n_{2}\right)$, the corresponding link l_{n} in G has to be incident to either v_{1} or v_{2}, since n is adjacent to n_{1} in H. Because n is not adjacent to n_{2}, l_{n} in G can only be incident to v_{2}. Since the corresponding links of all the nodes $\in \mathcal{N}_{b}\left(n_{1}\right) \backslash \mathcal{N}_{b}\left(n_{2}\right)$ are incident to v_{2}, the nodes in $\mathcal{N}_{b}\left(n_{1}\right) \backslash \mathcal{N}_{b}\left(n_{2}\right)$ must be fully connected with each other and form a clique in H.

Based on Theorem 1, starting with an initial link with nodes n_{1} and n_{2} in H, Iligra determines the first incident node of the links corresponding to the nodes in $\mathcal{N}_{b}\left(n_{1}\right) \backslash$ $\mathcal{N}_{b}\left(n_{2}\right)$. The nodes in $\mathcal{N}_{b}\left(n_{1}\right) \cap \mathcal{N}_{b}\left(n_{2}\right)$ (i.e. common neighbors of n_{1} and n_{2} in G) may

Fig. 1 Scenarios in Theorem 1 and 2. Each node (black) in H corresponds to a link (black) in G
form a clique in H with the corresponding links being incident to v_{1} in G, as shown in Fig. 1a.

There may also exist a node in $\mathcal{N}_{b}\left(n_{1}\right) \cap \mathcal{N}_{b}\left(n_{2}\right)$ which is not adjacent to any other node in $\mathcal{N}_{b}\left(n_{1}\right) \cap \mathcal{N}_{b}\left(n_{2}\right)$ and whose corresponding link in G is incident to v_{2} and another node v_{3}, as shown in Fig. 1b where the corresponding links of n_{1}, n_{2} and that node form a triangle in G. If there are three or more nodes in the set $\mathcal{N}_{b}\left(n_{1}\right) \cap \mathcal{N}_{b}\left(n_{2}\right)$, we can identify the position of the corresponding link in G of that node. The last discussion is formalized in Theorem 2.

Theorem 2 Suppose that two adjacent nodes n_{1} and n_{2} in H correspond to links $l_{n_{1}}$ and $l_{n_{2}}$ respectively in G, where $l_{n_{1}}$ is incident to v_{1} and v_{2} and $l_{n_{2}}$ is incident to v_{1} and v_{3}. Suppose that $\left|\mathcal{N}_{b}\left(n_{1}\right) \cap \mathcal{N}_{b}\left(n_{2}\right)\right| \geq 3$. If there exists $n_{u} \in \mathcal{N}_{b}\left(n_{1}\right) \cap \mathcal{N}_{b}\left(n_{2}\right)$ such that n_{u} is not adjacent to any other node in $\mathcal{N}_{b}\left(n_{1}\right) \cap \mathcal{N}_{b}\left(n_{2}\right)$, then link $l_{n_{u}}$ must be incident to both v_{2} and v_{3} in G.

Proof Since $n_{u} \in \mathcal{N}_{b}\left(n_{1}\right) \cap \mathcal{N}_{b}\left(n_{2}\right), l_{n_{u}}$ can be incident to v_{1} or be incident to both v_{2} and v_{3}. If $l_{n_{u}}$ is incident to v_{1}, n_{u} should be adjacent to at least one other node in $\mathcal{N}_{b}\left(n_{1}\right) \cap$ $\mathcal{N}_{b}\left(n_{2}\right)$, since $\left|\mathcal{N}_{b}\left(n_{1}\right) \cap \mathcal{N}_{b}\left(n_{2}\right)\right| \geq 3$. Because n_{u} is not adjacent to any other node in $\mathcal{N}_{b}\left(n_{1}\right) \cap \mathcal{N}_{b}\left(n_{2}\right), l_{n_{u}}$ can only be incident to v_{2} and v_{3}, as shown in Fig. 1b. The links corresponding to nodes in $\left(\mathcal{N}_{b}\left(n_{1}\right) \cap \mathcal{N}_{b}\left(n_{2}\right)\right) \backslash\left\{n_{u}\right\}$ are incident to v_{1}.

If the set of common neighbors of two adjacent nodes n_{1} and n_{2} have no more than two nodes in H, then for each node in this set that also has at least 3 additional neighbors

Fig. 2 Illustration of Theorem 3
different from n_{1} and n_{2}, the position of its correspondent link in G can be uniquely determined. This is formalized in Theorem 3.

Theorem 3 Suppose that two adjacent nodes n_{1} and n_{2} in H correspond to links $l_{n_{1}}$ and $l_{n_{2}}$ in G, respectively, where $l_{n_{1}}$ is incident to v_{1} and v_{2} and where $l_{n_{2}}$ is incident to v_{1} and v_{3}, as shown in Fig. 2. If $\left|\mathcal{N}_{b}\left(n_{1}\right) \cap \mathcal{N}_{b}\left(n_{2}\right)\right| \leq 2$, then for each $n_{u} \in \mathcal{N}_{b}\left(n_{1}\right) \cap \mathcal{N}_{b}\left(n_{2}\right)$, such that $\left|\mathcal{N}_{b}\left(n_{u}\right) \backslash\left\{n_{1}, n_{2}\right\}\right| \geq 3$ and $\mathcal{N}_{b}\left(n_{u}\right) \subseteq \mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right)$, link $l_{n_{u}}$ must be incident to both v_{2} and v_{3} in G.

Proof Since $n_{u} \in \mathcal{N}_{b}\left(n_{1}\right) \cap \mathcal{N}_{b}\left(n_{2}\right), l_{n_{u}}$ can be incident to v_{1} or be incident to both v_{2} and v_{3}. Let us first assume $l_{n_{u}}$ is incident to v_{1}. Two neighbors $n_{x 1}, n_{x 2}$ of n_{u} can be adjacent to n_{1} or n_{2}. However, we have $\left|\mathcal{N}_{b}\left(n_{u}\right) \backslash\left\{n_{1}, n_{2}\right\}\right| \geq 3$, there must be at least one neighbor of n_{u} which is not adjacent to either n_{1} or n_{2}, which contradicts with the fact that $\mathcal{N}_{b}\left(n_{u}\right) \subseteq \mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right)$. Hence, $l_{n_{u}}$ can only be incident to v_{2} and v_{3}.

When the set of common nodes of two adjacent nodes n_{1} and n_{2} in H has no more than two nodes and a node in this set has no more than two neighbors, different from n_{1} and n_{2}, then Theorems 2 and 3 are not applicable. We treat those remaining cases in Appendix A.

For a given node n_{1}, Iligra uses Theorem 1, 2, 3 and Table 3 from Appendix A to determine which links in $\mathcal{L}_{b}\left(l_{n_{1}}\right)$ are incident to v_{1} and which else are incident to v_{2}, where v_{1} and v_{2} are the nodes of $l_{n_{1}}$ in G. Then, for each link in $\mathcal{L}_{b}\left(l_{n_{1}}\right)$, the first incident node has been determined.

2.4 Algorithm Description

ILIGRA starts by setting G to an empty graph (line 1). Initially, nothing in G is determined, hence $\mathcal{N}_{w}=\mathcal{N}$ and $\mathcal{N}_{h}=\emptyset$ (line 2), where \mathcal{N}_{w} and \mathcal{N}_{h} are defined in Table 1. Then ILIGRA picks an arbitrary node n_{1} in the set \mathcal{N}_{w} and picks an arbitrary neighbor n_{2} of n_{1} in the set $\mathcal{N}_{b}\left(n_{1}\right)$ (lines 3-4). Two nodes v_{1} and v_{2} are added to the root graph G (line 5), and link $l_{n_{1}}=v_{1} \sim v_{2}$ is added to the root graph G (line 6). Since the incident nodes of link $l_{n_{1}}$ have been determined in G, node n_{1} is removed from \mathcal{N}_{w} (line 6). Then v_{1} is chosen ${ }^{4}$ to be

[^3]incident to link $l_{n_{2}}$ (line 7). Since the first incident node of link $l_{n_{2}}$ is determined, node n_{2} is moved from \mathcal{N}_{w} to \mathcal{N}_{h} (line 7).

According to the definition of the line graph, the links in $\mathcal{L}_{b}\left(l_{n_{1}}\right)$ have a node in common with link $l_{n_{1}}$ in G. Since $l_{n_{1}}$ is incident to v_{1} and v_{2}, the links in $\mathcal{L}_{b}\left(l_{n_{1}}\right)$ should also be incident to either v_{1} or v_{2}. By Theorem 1, ILigra determines that the links in $\mathcal{L}_{b}\left(l_{n_{1}}\right) \backslash \mathcal{L}_{b}\left(l_{n_{2}}\right)$, corresponding to the nodes in $n \in \mathcal{N}_{b}\left(n_{1}\right) \backslash \mathcal{N}_{b}\left(n_{2}\right)$, are incident to v_{2}. For each node n in $\mathcal{N}_{b}\left(n_{1}\right) \backslash \mathcal{N}_{b}\left(n_{2}\right)$, IligRA sets the first identified incident node $v_{l_{n}}$ of the corresponding link l_{n} to v_{2}, and moves n from \mathcal{N}_{w} to \mathcal{N}_{h} (lines 8-9).

```
Algorithm 1: ILIGRA \((H)\)
    Input: A line graph \(H\)
    Output: The root graph \(G\) of \(H\) if \(H\) is a line graph
    \(G \leftarrow\) an empty graph;
    \(\mathcal{N} \leftarrow\) the set of nodes in \(H ; \mathcal{N}_{w} \leftarrow \mathcal{N} ; \mathcal{N}_{h} \leftarrow \emptyset ;\)
    \(n_{1} \leftarrow\) an arbitrary node \(\in \mathcal{N}_{w}\);
    \(n_{2} \leftarrow\) an arbitrary node \(\in \mathcal{N}_{b}\left(n_{1}\right)\);
    \(\operatorname{Addnode}\left(G, v_{1}\right) ; \operatorname{Addnode}\left(G, v_{2}\right) ;\)
    \(\operatorname{Addlink}\left(G, v_{1}, v_{2}\right) ; \mathcal{N}_{w} \leftarrow \mathcal{N}_{w} \backslash\left\{n_{1}\right\} ;\)
    \(v_{l_{n_{2}}} \leftarrow v_{1} ; \mathcal{N}_{h} \leftarrow \mathcal{N}_{h} \cup\left\{n_{2}\right\} ; \mathcal{N}_{w} \leftarrow \mathcal{N}_{w} \backslash\left\{n_{2}\right\} ;\)
    for each \(n \in \mathcal{N}_{b}\left(n_{1}\right) \backslash \mathcal{N}_{b}\left(n_{2}\right)\) do
        \(v_{l_{n}} \leftarrow v_{2} ; \mathcal{N}_{h} \leftarrow \mathcal{N}_{h} \cup\{n\} ; \mathcal{N}_{w} \leftarrow \mathcal{N}_{w} \backslash\{n\} ;\)
    \(J \leftarrow \mathcal{N}_{b}\left(n_{1}\right) \cap \mathcal{N}_{b}\left(n_{2}\right) ;\)
    if \(1 \leq|J| \leq 2\) then
        if \(\exists n_{u} \in J\) such that \(\mathcal{N}_{b}\left(n_{u}\right) \subseteq \mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right)\) and \(\left|\mathcal{N}_{b}\left(n_{u}\right) \backslash\left\{n_{1}, n_{2}\right\}\right| \geq 3\)
        then
            \(v_{l_{n_{u}}} \leftarrow v_{2} ; \mathcal{N}_{h} \leftarrow \mathcal{N}_{h} \cup\left\{n_{u}\right\} ;\)
            \(\mathcal{N}_{w} \leftarrow \mathcal{N}_{w} \backslash\left\{n_{u}\right\} ; J \leftarrow J \backslash\left\{n_{u}\right\} ;\)
        else
            InitSpecCases \(\left(H, n_{1}, n_{2}, n_{u}\right)\)
    else if \(|J| \geq 3\) and \(\exists n_{u} \in J\) such that \(n_{u}\) is not adjacent to any other node in \(J\)
    then
        \(v_{l_{n_{u}}} \leftarrow v_{2} ; \mathcal{N}_{h} \leftarrow \mathcal{N}_{h} \cup\left\{n_{u}\right\} ;\)
        \(\mathcal{N}_{w} \leftarrow \mathcal{N}_{w} \backslash\left\{n_{u}\right\} ; J \leftarrow J \backslash\left\{n_{u}\right\} ;\)
    for each \(n \in J\) do
        \(v_{l_{n}} \leftarrow v_{1} ; \mathcal{N}_{h} \leftarrow \mathcal{N}_{h} \cup\{n\} ; \mathcal{N}_{w} \leftarrow \mathcal{N}_{w} \backslash\{n\} ;\)
    if \(J \neq \emptyset\) and \(J\) is not a clique in \(H\) then
        \(H\) is not a line graph. Exit.
    if \(\left|\mathcal{N}_{b}\left(n_{1}\right) \backslash J\right| \neq 0\) and \(\mathcal{N}_{b}\left(n_{1}\right) \backslash J\) is not a clique then
        \(H\) is not a line graph. Exit.
    while \(\mathcal{N}_{h} \neq \emptyset\) do
        \(n \leftarrow\) an arbitrary node in \(\mathcal{N}_{h}\);
        \(\operatorname{Addnode}(G, v) ; \operatorname{Addlink}\left(G, v_{l_{n}}, v\right) ;\)
        \(\mathcal{N}_{h} \leftarrow \mathcal{N}_{h} \backslash\{n\} ; \mathcal{C} \leftarrow \emptyset ;\)
        for each \(n_{r} \in \mathcal{N}_{b}(n)\) do
            if \(n_{r} \in \mathcal{N}_{h}\) and \(v_{l_{n}} \neq v_{l_{n_{r}}}\) then
                    \(\mathcal{C} \leftarrow \mathcal{C} \cup\left\{n_{r}\right\} ;\)
                \(\operatorname{AddLink}\left(G, v_{l_{n_{r}}}, v\right) ; \mathcal{N}_{h} \leftarrow \mathcal{N}_{h} \backslash\left\{n_{r}\right\} ;\)
            else if \(n_{r} \in \mathcal{N}_{w}\) then
                    \(\mathcal{C} \leftarrow \mathcal{C} \cup\left\{n_{r}\right\} ; v_{l_{n_{r}}} \leftarrow v ;\)
                    \(\mathcal{N}_{h} \leftarrow \mathcal{N}_{h} \cup\left\{n_{r}\right\} ; \mathcal{N}_{w} \leftarrow \mathcal{N}_{w} \backslash\left\{n_{r}\right\} ;\)
        if \(\mathcal{C} \neq \emptyset\) and \(\mathcal{C}\) is not a clique in \(H\) then
            \(H\) is not a line graph. Exit.
```

ILIGRA sets J to the intersection of $\mathcal{N}_{b}\left(n_{1}\right)$ and $\mathcal{N}_{b}\left(n_{2}\right)$ (line 10). If there are only 1 or 2 nodes in J, and if there exists $n_{u} \in J$ such that any neighbor of n_{u} is also a neighbor of either n_{1} or n_{2}, and node n_{u} satisfies $\left|\mathcal{N}_{b}\left(n_{u}\right) \backslash\left\{n_{1}, n_{2}\right\}\right| \geq 3$, according to Theorem 3, link $l_{n_{u}}$ should be incident to v_{2}. ILIGRA sets $v_{l_{n_{u}}}$ to v_{2}, and adds n_{u} to \mathcal{N}_{h} and removes n_{u} from \mathcal{N}_{w} and removes n_{u} from J (lines 11-14). If $|J| \leq 2$ and $\left|\mathcal{N}_{b}\left(n_{u}\right) \backslash\left\{n_{1}, n_{2}\right\}\right| \leq 2$, the special cases are handled by the subroutine InitSpecCases (lines 15-16). The subroutine InITSPECCASES is stated in Appendix A. If $|J| \geq 3$ and if there exists $n_{u} \in J$ such that n_{u} is not adjacent to any other node in J, according to Theorem 2 , link $l_{n_{u}}$ should be incident to v_{2}. ILIGRA sets $v_{l_{n_{u}}}$ to v_{2}, and adds n_{u} to \mathcal{N}_{h} and removes n_{u} from \mathcal{N}_{w} and removes n_{u} from J (lines 17-19).

Since node n_{u} has been removed from J, the rest of links in J should be incident to v_{1}. For each n in J which is adjacent with both n_{1} and n_{2}, ILIGRA sets $v_{l_{n}}$ to v_{1}, and adds n to \mathcal{N}_{h} and removes n from \mathcal{N}_{w} (lines 20-21). The nodes in J should be fully connected to each other, since the corresponding links are all incident to v_{1}. If the nodes in J do not form a clique in H, then H is not a line graph (lines 22-23). The nodes in $\mathcal{N}_{b}\left(n_{1}\right) \backslash J$ should also be fully connected to each other, since the corresponding links are all incident to v_{2}. If the nodes in $\mathcal{N}_{b}\left(n_{1}\right) \backslash J$ do not form a clique in H, then H is not a line graph (lines 24-25).

The loop (lines 26-38) runs until \mathcal{N}_{h} is an empty set. Iligra picks an arbitrary node n in \mathcal{N}_{h} (line 27). Iligra adds a node v and a link l_{n} between $v_{l_{n}}$ and v to G (line 28), and removes n from \mathcal{N}_{h} (line 29). Iligra sets \mathcal{C} to an empty set (line 29). For each neighbor n_{r} of n, if $n_{r} \in \mathcal{N}_{h}$ and $v_{l_{n}} \neq v_{l_{n r}}$, ILIGRA adds link $l_{n_{r}}$ between $v_{l_{n r}}$ and v to G, and removes n_{r} from \mathcal{N}_{h}, and adds n_{r} to \mathcal{C} (lines 30-33); If $n_{r} \in \mathcal{N}_{w}$, Iligra sets $v_{l_{n r}}$ to v, and moves n_{r} from \mathcal{N}_{w} to \mathcal{N}_{h}, and adds n_{r} to \mathcal{C} (lines 34-36). The nodes in \mathcal{C} should be fully connected with each other, since the corresponding links are all incident to v. If the nodes in \mathcal{C} do not form a clique in H, H is not a line graph (lines 37-38). If H is a connected graph, \mathcal{N}_{w} should be an empty set when \mathcal{N}_{h} becomes an empty set. While $\mathcal{N}_{w} \neq \emptyset$, repeat lines 3-38. For each component of a given disconnected line graph, lines 3-38 will be executed once. If the input graphs are line graphs, lines 22-25 and 37-38 can be skipped, which are used to check whether the given graph is a line graph.

2.5 Complexity

The lines $1-21$ of Iligra examine all the neighbors of the n_{1} in H, with the complexity $O\left(N_{H}\right)$, where N_{H} is the number of nodes in H. The lines $22-25$, which check whether H is a line graph, have the complexity $O\left(N_{L}\right)$, where N_{L} is the number of links in H. The lines 26-36 have the complexity $O\left(N_{H}\right)$. The lines 37-38 check whether H is a line graph and have the complexity $O\left(N_{L}\right)$. Hence, the overall complexity of Iligra with checking if H is a line graph is $O\left(N_{L}\right)$, and the complexity of ILIGRA without checking is $O\left(N_{H}\right)$.

3 An Example

In this section, we use an example depicted in Fig. 3 to show how Iligra works. Given a line graph H shown in Fig. 3a, ILIGRA constructs its root graph G incrementally as shown in Fig. 3b-i.

Initially, set G to an empty graph. We have $\mathcal{N}_{w}=\left\{n_{1}, n_{2}, \cdots, n_{11}\right\}$ and $\mathcal{N}_{h}=\emptyset$. Add nodes v_{1} and v_{2} to G, and add link $l_{n_{1}}$ between v_{1} and v_{2} to G as shown in Fig. 3b, and $\mathcal{N}_{w}=\left\{n_{2}, n_{3}, \cdots, n_{11}\right\}$. Set $v_{l_{n_{2}}}$ to $v_{1}, \mathcal{N}_{w}=\left\{n_{3}, n_{4}, \cdots, n_{11}\right\}$ and $\mathcal{N}_{h}=\left\{n_{2}\right\}$. Since

Fig. 3 An example shows how ILIGRA constructs G from a given H
$\mathcal{N}_{b}\left(n_{1}\right) \backslash \mathcal{N}_{b}\left(n_{2}\right)=\left\{n_{5}, n_{6}\right\}$, according to Theorem 1, set $v_{l_{5}}$ to v_{2} and also set $v_{l_{n}}$ to v_{2}. We have $\mathcal{N}_{w}=\left\{n_{3}, n_{4}, n_{7}, n_{8}, \cdots, n_{11}\right\}$ and $\mathcal{N}_{h}=\left\{n_{2}, n_{5}, n_{6}\right\}$. Since $\mathcal{N}_{b}\left(n_{1}\right) \cap \mathcal{N}_{b}\left(n_{2}\right)=$ $\left\{n_{3}, n_{4}, n_{7}\right\}$ and none of n_{3} and n_{4} is not adjacent to n_{7}, according to Theorem 1 , set $v_{l_{n_{7}}}$ to v_{2}. Now $\mathcal{N}_{w}=\left\{n_{3}, n_{4}, n_{8}, n_{9}, n_{10}, n_{11}\right\}$ and $\mathcal{N}_{h}=\left\{n_{2}, n_{5}, n_{6}, n_{7}\right\}$. For the two nodes n_{3} and n_{4} in $\mathcal{N}_{b}\left(n_{1}\right) \cap \mathcal{N}_{b}\left(n_{2}\right) \backslash\left\{n_{7}\right\}$, the corresponding links should be incident to v_{1}. Hence, set both $v_{l_{n_{3}}}$ and $v_{l_{n_{4}}}$ to v_{1}. Now $\mathcal{N}_{w}=\left\{n_{8}, n_{9}, n_{10}, n_{11}\right\}$ and $\mathcal{N}_{h}=\left\{n_{2}, n_{3}, n_{4}, n_{5}, n_{6}, n_{7}\right\}$.

Take n_{2} from \mathcal{N}_{h}. Add a node v_{3} to G and add link $l_{n_{2}}$ between v_{3} and $v_{l_{n_{2}}}\left(v_{l_{n_{2}}}\right.$ has been found to be v_{1} previously), as shown in Fig. 3c. Now $\mathcal{N}_{h}=\left\{n_{3}, n_{4}, n_{5}, n_{6}, n_{7}\right\}$. We have $\mathcal{N}_{b}\left(n_{2}\right)=\left\{n_{1}, n_{3}, n_{4}, n_{7}, n_{8}, n_{9}, n_{10}\right\}$. Since $n_{7} \in \mathcal{N}_{h}$ and $v_{l_{7}}=v_{2} \neq v_{l_{n_{2}}}=v_{1}$, add $l_{n_{7}}$ between v_{2} and v_{3} to G. Now $\mathcal{N}_{h}=\left\{n_{3}, n_{4}, n_{5}, n_{6}\right\}$. Since n_{8}, n_{9} and n_{10} belong to \mathcal{N}_{w}, set $v_{l_{n}}, v_{l_{n 9}}$ and $v_{l_{n_{10}}}$ to v_{3}. Now $\mathcal{N}_{w}=\left\{n_{11}\right\}$ and $\mathcal{N}_{h}=\left\{n_{3}, n_{4}, n_{5}, n_{6}, n_{8}, n_{9}, n_{10}\right\}$.

Take n_{3} from \mathcal{N}_{h}. Add a node v_{4} to G and add link $l_{n_{3}}$ between v_{4} and $v_{l_{3}}$, which is namely v_{1}, as shown in Fig. 3d. Now $\mathcal{N}_{h}=\left\{n_{4}, n_{5}, n_{6}, n_{8}, n_{9}, n_{10}\right\}$.

Fig. 4 Algorithms' running times for line graphs with different p_{H} and L_{H}

Take n_{4} from \mathcal{N}_{h}. Add a node v_{5} to G and add link $l_{n_{4}}$ between v_{5} and $v_{l_{4}}$, which is also v_{1}, as shown in Fig. 3e. Now $\mathcal{N}_{h}=\left\{n_{5}, n_{6}, n_{8}, n_{9}, n_{10}\right\}$. We have $\mathcal{N}_{b}\left(n_{4}\right)=$ $\left\{n_{1}, n_{2}, n_{3}, n_{8}, n_{11}\right\}$. Since $n_{8} \in \mathcal{N}_{h}$ and $v_{l_{n_{8}}}=v_{3} \neq v_{l_{n_{4}}}=v_{1}$, add $l_{n_{8}}$ between v_{5} and v_{3} to G. Now $\mathcal{N}_{h}=\left\{n_{5}, n_{6}, n_{9}, n_{10}\right\}$. Since $n_{11} \in \mathcal{N}_{w}$, set $v_{l_{1} 1}$ to v_{5}. Now $\mathcal{N}_{w}=\emptyset$ and $\mathcal{N}_{h}=\left\{n_{5}, n_{6}, n_{9}, n_{10}, n_{11}\right\}$.

Take n_{5} from \mathcal{N}_{h}. Add a node v_{6} to G and add $\operatorname{link} l_{n_{5}}$ between v_{6} and $v_{l_{5}}$, which is also v_{2}, as shown in Fig. 3f. Now $\mathcal{N}_{h}=\left\{n_{6}, n_{9}, n_{10}, n_{11}\right\}$.

Table 2 The fastest algorithm for different input line graphs

Link density p_{H}	Number of links L_{H}	
	≤ 500	>500
0.05	ILIGRA	ILIGRA
0.125	ILIGRA	ILIGRA
0.5	ILIGRA	Lehot
0.65	ILIGRA	Lehot

Take n_{6} from \mathcal{N}_{h}. Add a node v_{7} to G and add link $l_{n_{6}}$ between v_{7} and $v_{l_{n_{6}}}$, which is also v_{2}, as shown in Fig. 3g. Now $\mathcal{N}_{h}=\left\{n_{9}, n_{10}, n_{11}\right\}$. We have $\mathcal{N}_{b}\left(n_{6}\right)=\left\{n_{1}, n_{5}, n_{7}, n_{10}\right\}$. Since $n_{10} \in \mathcal{N}_{h}$ and $v_{l_{n_{10}}}=v_{3} \neq v_{l_{n}}=v_{2}$, add $l_{n_{10}}$ between v_{7} and v_{3} to G. Now $\mathcal{N}_{h}=\left\{n_{9}, n_{11}\right\}$.

Take n_{9} from \mathcal{N}_{h}. Add a node v_{8} to G and add $\operatorname{link} l_{n_{9}}$ between v_{8} and $v_{l_{9}}$, which is also v_{3}, as shown in Fig. 3h. Now $\mathcal{N}_{h}=\left\{n_{11}\right\}$.

Take the only node n_{9} from \mathcal{N}_{h}. Add a node v_{9} to G and add link $l_{n_{11}}$ between v_{9} and $v_{l_{n 1}}$, which is also v_{5}, as shown in Fig. 3i. Now $\mathcal{N}_{h}=\emptyset$. Since \mathcal{N}_{w} is also an empty set, the construction of G is accomplished.

4 Evaluation

We compare Iligra's running time with the running times of three published line graph reconstruction algorithms: Roussopouloss' algorithm [20], Lehot's algorithm [12], and Degiorgi and Simon's algorithm [6]. All algorithms have been implemented in the same programming language ($\mathrm{C}++$) and the same data structures and libraries [15] have been used. ${ }^{5}$ The evaluation of all the algorithms has been conducted on the same machine. ${ }^{6}$

The performances of the above-mentioned algorithms have been compared using the same input graphs H. All the algorithms are able to construct the root graph G if the given graph H is a line graph, and can tell non-line graph when H if is not a line graph. The line graphs with link density ${ }^{7} p_{H}=0.05$ and 0.125 are generated by converting random graphs $[3,7]$ with a fixed link density into line graphs. However, the line graphs of these random graphs can never have high link densities (explained with details in Appendix B). Therefore, the line graphs with $p_{H}=$ 0.5 and 0.65 have been generated by converting the scale-free graphs [2] into line graphs.

[^4]Figure 4 reflects the trends for the running times of all the algorithms when the input graphs are line graphs with different link density p_{H} and different number of links L_{H}. Figure 4 a and b show the running times for line graphs with small link density $p_{H}=0.05,0.125$, where ILIGRA performs faster than all the other algorithms. Figure $4 \mathrm{c}, \mathrm{d}$, e and f illustrate the trends for the algorithms' running times for line graphs with high link density $p_{H}=0.50$ and $p_{H}=0.65$. ILIGRA is the fastest algorithm for line graphs with small number of links $200 \leq L_{H} \leq 500$ and Lehot's algorithm has the shortest running time for line graphs with high number of links $650 \leq L_{H} \leq 18000$. The best algorithms, reflected by the running time for all the cases, are summarized in Table 2.

5 Conclusion

We present Iligra algorithm for inverse line graph construction. Given a line graph H, ILIGRA constructs its root graph G and checks whether the given graph is a line graph during the construction. Iligra also works for disconnected line graphs by iterating through the connected components of the input line graph. The time complexity of Iligra is linear in the number of nodes in the input graph H without checking if the given graph is a line graph. The time complexity of IlIGRa with full functionality is linear in the number of links in the given line graphs. Numerical comparisons with the algorithms of Lehot, Roussopoulos, and Degiorgi and Simon have been demonstrated. Given line graphs with small link density (i.e. sparse graphs), ILIGRA is the fastest algorithm in root graph construction, as shown in Table 2.

Acknowledgments We would like to thank Prof. Dr. Klaus Simon from ETH Zürich for providing us with the initial implementations of the algorithms of Lehot, Roussopoulos, and Degiorgi and Simon. We are grateful to two anonymous reviewers who provided us with valuable comments.

Appendix A: Special cases

We start with two adjacent nodes n_{1} and n_{2} in H that correspond to links $l_{n_{1}}$ and $l_{n_{2}}$ in G, respectively, where $l_{n_{1}}$ is incident to v_{1} and v_{2} and where $l_{n_{2}}$ is incident to v_{1} and v_{3}. We denote by $J=\mathcal{N}_{b}\left(n_{1}\right) \cap \mathcal{N}_{b}\left(n_{2}\right), C=\mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right)$ and L is the number of links in G. For each $n_{u} \in J$, link $l_{n_{u}}$ is either incident to v_{1}, or incident to both v_{2} and v_{3}. For each $n_{u} \in J$, we denote $Z=\mathcal{N}_{b}\left(n_{u}\right) \backslash\left\{n_{1}, n_{2}\right\}$. In the remainder of this appendix and Table 3, we continue with the case analysis for the remaining cases: $|J| \leq 2$ and $|Z| \leq 2$.

1. $Z=\emptyset$
(a) $|J|=1$
i. $\quad L=3$

The root graph G is K_{3} or $K_{1,3}$, as shown in Fig. 5a.
ii. $L \geq 4$
$l_{n_{u}}$ is incident to v_{1}.

Proof Let us assume $l_{n_{u}}$ is incident to v_{2} and v_{3}. Since H has more than 3 nodes and $\mathcal{N}_{b}\left(n_{1}\right) \cap \mathcal{N}_{b}\left(n_{2}\right)=\left\{n_{u}\right\}$, the extra links must be incident to

Table 3 All cases for identifying the special node in J, whose corresponding link is incident to v_{2}

Conditions					ln_{u} is incident to
$\|\mathrm{J}\| \geq 3$					Use Theorem 2.
$\mathrm{Z} \mid \geq 3$					Use Theorem 3.
$\|\mathrm{J}\| \leq 2$	$\mathrm{Z} \mid=0$	$\|\mathrm{J}\|=1$	$\mathrm{L}=3$		v1 or v2 (G is K3 or K1;3)
			$\mathrm{L} \geq 4$		v1
		$\begin{aligned} & \|\mathrm{J}\|=2 \text { and } \\ & \mathrm{nr} \notin \mathrm{Nb}(\mathrm{nu}) \end{aligned}$	$\mathrm{L}=4$		v 1 or v2 (isomorphic)
			$\mathrm{L} \geq 5$		v 2 if $\mathrm{nx} \notin \mathrm{C} ; \mathrm{v} 1$ if $\mathrm{nx} \in \mathrm{C}$
	$\mathrm{Z} \mid=1$	$\|\mathrm{J}\|=1$	$\mathrm{L}=4$		v 1 or v2 (isomorphic)
			$\mathrm{L} \geq 5$		v 2 if $\mathrm{nx} \notin \mathrm{C} ; \mathrm{v} 1$ if $\mathrm{nx} \in \mathrm{C}$
		$\begin{aligned} & \|\mathrm{J}\|=2 \text { and } \\ & \mathrm{nr}=\notin \mathrm{Nb}(\mathrm{nu}) \end{aligned}$	$\mathrm{ns} \notin \mathrm{Nb}(\mathrm{nr})$		$v 2$ if $\mathrm{ns} \in \mathrm{C} ; \mathrm{v} 1$ if $\mathrm{ns} \notin \mathrm{C}$
			$\mathrm{ns} \in \mathrm{Nb}(\mathrm{nr})$	$\mathrm{L}=5$	v 1 or v2 (isomorphic)
				$\mathrm{L} \geq 6$	v 2 if $\mathrm{nx} \notin \mathrm{C} ; \mathrm{v} 1$ if $\mathrm{nx} \in \mathrm{C}$
	$\mathrm{Z} \mid=2$	$\mathrm{ns} \notin \mathrm{Nb}(\mathrm{nt})$	$\|\mathrm{J}\|=1$		Figure 6 (a)
			$\|\mathrm{J}\|=2$ and nr	$\mathrm{Nb}(\mathrm{nu})$	v2
		$\mathrm{ns} \in \mathrm{Nb}(\mathrm{nt}), \mathrm{ns}, \mathrm{nt}, \mathrm{n}_{1}$ pairwise adjacent			v2
		$\mathrm{ns} \in \mathrm{Nb}(\mathrm{nt})$, $\mathrm{ns} ; \mathrm{nt}$; n_{1} are not pairwise adjacent	$\|\mathrm{J}\|=1$	$\mathrm{L}=5$	v 1 or v2 (isomorphic)
				$\mathrm{L} \geq 6$	v 2 if $\mathrm{nx} \notin \mathrm{C} ; \mathrm{v} 1$ if $\mathrm{nx} \in \mathrm{C}$
			$\begin{aligned} & \|\mathrm{J}\|=1 \text { and } \\ & \mathrm{nr} \notin \mathrm{Nb}(\mathrm{nu}) \end{aligned}$	$\mathrm{L}=6$	v 1 or v2 (isomorphic)
				$\mathrm{L} \geq 7$	v 2 if $\mathrm{nx} \notin \mathrm{C} ; \mathrm{v} 1$ if $\mathrm{nx} \in \mathrm{C}$

Notation: $J=\mathcal{N}_{b}\left(n_{1}\right) \cap \mathcal{N}_{b}\left(n_{2}\right), n_{u} \in J, C=\mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right), Z=\mathcal{N}_{b}\left(n_{u}\right) \backslash\left\{n_{1}, n_{2}\right\}$
v_{2} or v_{3} in G, which means n_{u} must have other neighbors different from n_{1} and n_{2}, contradicting the fact that $Z=\mathcal{N}_{b}\left(n_{u}\right) \backslash\left\{n_{1}, n_{2}\right\}=\emptyset$. Hence, $l_{n_{u}}$ can only be incident to v_{1}.
(b) $\quad|J|=2\left(J=\left\{n_{u}, n_{r}\right\}\right)$ and $n_{r} \notin \mathcal{N}_{b}\left(n_{u}\right)$
i. $\quad L=4$
$l_{n_{u}}$ is incident to v_{1} or v_{2}, as shown in Fig. 5b. The resulting root graphs are isomorphic.
ii. $\quad L \geq 5$ and n_{x} is the node in H different from n_{1}, n_{2}, n_{u}, and n_{r}. If $n_{x} \notin C=\mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right)$, then $l_{n_{u}}$ is incident to v_{2} (Fig. 5c), otherwise $l_{n_{u}}$ is incident to v_{1}.

Proof Let us first assume $n_{x} \notin C=\mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right)$ and $l_{n_{u}}$ is incident to v_{1}. Since $|Z|=0, l_{n_{x}}$ must be incident to either v_{2} or v_{3}, which contradicts the fact that $n_{x} \notin C$. Hence, $l_{n_{u}}$ is incident to v_{2}. Let us now assume $n_{x} \in C=\mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right)$ and $l_{n_{u}}$ is incident to v_{2}. Since $|Z|=0, l_{n_{x}}$ must be incident to v_{1}, which contradicts the fact that $|J|=2$. Hence, $l_{n_{u}}$ is incident to v_{1}.
2. $|Z|=1\left(Z=\left\{n_{s}\right\}\right)$
(a) $|J|=1$

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Fig. 5 Scenarios for (a) $|Z|=0,|J|=1, L=3$; (b) $|Z|=0,|J|=2, L=4 ;(\mathbf{c})|Z|=0,|J|=2$, $L=5, n_{x} \notin C$; (d) $|Z|=1,|J|=1, L=4 ;(\mathbf{e})|Z|=1,|J|=1, L=5, n_{x} \notin C ;(\mathbf{f})|Z|=1,|J|=2$, $L=5, n_{s} \notin \mathcal{N}_{b}\left(n_{r}\right), n_{s} \in C ;(\mathbf{g})|Z|=1,|J|=2, L=5, n_{s} \in \mathcal{N}_{b}\left(n_{r}\right)$; and $(\mathbf{h})|Z|=1,|J|=2, L=6$, $n_{s} \in \mathcal{N}_{b}\left(n_{r}\right), n_{x} \notin C$
i. $\quad L=4$
$l_{n_{u}}$ is incident to v_{1} or v_{2}, as shown in Fig. 5d. The resulting root graphs are isomorphic.
ii. $\quad L \geq 5$ and n_{x} is the node in H different from n_{1}, n_{2}, n_{u}, and n_{s}.

If $n_{x} \notin C=\mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right), l_{n_{u}}$ is incident to v_{2} (Fig. 5e), otherwise $l_{n_{u}}$ is incident to v_{1}.

Proof Let us first assume $n_{x} \notin C=\mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right)$ and $l_{n_{u}}$ is incident to v_{1}. Since $|J|=1$ and $|Z|=1, l_{n_{x}}$ must be incident to either v_{2} or v_{3}, which contradicts the fact that $n_{x} \notin C$. Hence, $l_{n_{u}}$ is incident to v_{2}. Let us now assume $n_{x} \in C=\mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right)$ and $l_{n_{u}}$ is incident to v_{2} and v_{3}. Since $|Z|=1, l_{n_{x}}$ must be incident to v_{1}, which contradicts the fact that $|J|=1$. Hence, $l_{n_{u}}$ is incident to v_{1}.
(b) $\quad|J|=2\left(J=\left\{n_{u}, n_{r}\right\}\right)$ and $n_{r} \notin \mathcal{N}_{b}\left(n_{u}\right)$
i. $\quad n_{s} \notin \mathcal{N}_{b}\left(n_{r}\right)$

If $n_{s} \in C=\mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right), l_{n_{u}}$ is incident to v_{2} (Fig. 5f), otherwise $l_{n_{u}}$ is incident to v_{1}.

Proof Let us first assume $n_{s} \in C=\mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right)$ and $l_{n_{u}}$ is incident to v_{1}. Since $l_{n_{u}}$ is incident to $v_{1}, l_{n_{r}}$ must be incident to v_{2} and v_{3}. Since $n_{s} \notin \mathcal{N}_{b}\left(n_{r}\right), l_{n_{s}}$ must be incident to v_{1}, contradicting the fact that $|J| \leq$ 2. Hence, $l_{n_{u}}$ is incident to v_{2}. Let us now assume $n_{s} \notin C=\mathcal{N}_{b}\left(n_{1}\right) \cup$ $\mathcal{N}_{b}\left(n_{2}\right)$ and $l_{n_{u}}$ is incident to v_{2} and v_{3}. Since $n_{s} \in \mathcal{N}_{b}\left(n_{u}\right), n_{s}$ is incident to either v_{2} or v_{3}, contradicting the fact that $n_{s} \notin C$. Hence, $l_{n_{u}}$ is incident to v_{1}.
ii. $\quad n_{s} \in \mathcal{N}_{b}\left(n_{r}\right)$
A. $L=5$
$l_{n_{u}}$ is incident to v_{1} or v_{2}, as shown in Fig. 5 g . The resulting root graphs are isomorphic.
B. $L \geq 6$ and n_{x} is the node in H different from $n_{1}, n_{2}, n_{u}, n_{r}$, and n_{s}.
If $n_{x} \notin C=\mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right), l_{n_{u}}$ is incident to v_{2} (Fig. 5h), otherwise $l_{n_{u}}$ is incident to v_{1}.

Proof Assume that $n_{x} \notin C=\mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right)$ and $l_{n_{u}}$ is incident to v_{1}. Since $n_{r} \notin \mathcal{N}_{b}\left(n_{u}\right), l_{n_{r}}$ is incident to v_{2} and v_{3}. Since $n_{s} \in \mathcal{N}_{b}\left(n_{r}\right)$ and $n_{s} \in \mathcal{N}_{b}\left(n_{u}\right), l_{n_{s}}$ is incident to the node of $l_{n_{u}}$ different from v_{1} and either v_{2} or v_{3}. Since $|J|=2$ and $|Z|=1, l_{n_{x}}$ must be incident to either v_{2} or v_{3}, which contradicts the fact that $n_{x} \notin C$. Hence, $l_{n_{u}}$ is incident to v_{2}. Now, assume that $n_{x} \in C=\mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right)$ and $l_{n_{u}}$ is incident to v_{2} and v_{3} and $l_{n_{r}}$ is incident to v_{1}. Since $n_{s} \in$ $\mathcal{N}_{b}\left(n_{u}\right), l_{n_{s}}$ is incident to either v_{2} or v_{3}. Since $|Z|=1, l_{n_{x}}$ must be incident to v_{1}, which contradicts the fact that $|J|=2$. Hence, $l_{n_{u}}$ is incident to v_{1}.
3. $|Z|=2\left(Z=\left\{n_{s}, n_{t}\right\}\right)$
(a) $n_{s} \notin \mathcal{N}_{b}\left(n_{t}\right)$
i. $\quad|J|=1\left(J=\left\{n_{u}\right\}\right)$
$l_{n_{u}}$ is incident to v_{2}.

Proof Assume that $l_{n_{u}}$ is incident to v_{1} and v_{u}. Since $|J|=1$, both $l_{n_{s}}$ and $l_{n_{t}}$ must be incident to v_{u}, then $n_{s} \in \mathcal{N}_{b}\left(n_{t}\right)$, contradicting the assumption that $n_{s} \notin \mathcal{N}_{b}\left(n_{t}\right)$. Hence, $l_{n_{u}}$ is incident to v_{2}.
ii. $\quad|J|=2\left(J=\left\{n_{u}, n_{r}\right\}\right)$ and $n_{r} \notin \mathcal{N}_{b}\left(n_{u}\right)$
$l_{n_{u}}$ is incident to v_{2}, as shown in Fig. 6a.

Proof Assume that $l_{n_{u}}$ is incident to v_{1} and v_{u}. Since $l_{n_{u}}$ is incident to $v_{1}, l_{n_{r}}$ must be incident to v_{2}. Since $|J|=2$, both $l_{n_{s}}$ and $l_{n_{t}}$ must be incident to v_{u}, then $n_{s} \in \mathcal{N}_{b}\left(n_{t}\right)$, contradicting with the assumption that $n_{s} \notin \mathcal{N}_{b}\left(n_{t}\right)$. Hence, $l_{n_{u}}$ is incident to v_{2}.
(b) $\quad n_{s} \in \mathcal{N}_{b}\left(n_{t}\right)$ and n_{s}, n_{t}, n_{1} (or n_{2}) are pairwise adjacent
$l_{n_{u}}$ is incident to v_{2}, as shown in Fig. 6b.

Proof If $l_{n_{u}}$ is incident to v_{1}, neither n_{s}, n_{t}, n_{1} nor n_{s}, n_{t}, n_{2} can be pairwise adjacent, hence $l_{n_{u}}$ is incident to v_{2}.
(c) $n_{s} \in \mathcal{N}_{b}\left(n_{t}\right)$ and n_{s}, n_{t}, n_{1} are not pairwise adjacent
i. $\quad|J|=1$
A. $L=5$
$l_{n_{u}}$ is incident to v_{1} or v_{2}, as shown in Fig. 6c. The resulting root graphs are isomorphic.
B. $L \geq 6$ and n_{x} is the node in H different from $n_{1}, n_{2}, n_{u}, n_{s}$, and n_{t}.
If $n_{x} \notin C=\mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right), l_{n_{u}}$ is incident to v_{2} (Fig. 6d), otherwise $l_{n_{u}}$ is incident to v_{1}.

Proof Assume $n_{x} \notin C=\mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right)$ and $l_{n_{u}}$ is incident to v_{1}. Since $|J|=1$ and $|Z|=2$, there is no link incident to both v_{2} and v_{3}, hence $l_{n_{s}}$ and $l_{n_{t}}$ are incident to the node of $l_{n_{u}}$ different from v_{1} and one of the nodes v_{2} and v_{3}. Now, $l_{n_{x}}$ cannot be adjacent to v_{1} as $|J|=1$; it cannot be adjacent to none of v_{2}, v_{3} and the node of $l_{n_{u}}$ different from v_{1}, because $|Z|=1$, hence there will not be a space for link $l_{n_{x}}$, which contradicts the assumption of the existence of n_{x} and $L \geq 6$. Hence, $l_{n_{u}}$ is incident to v_{2}. Now, assume $n_{x} \in C=\mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right)$ and $l_{n_{u}}$ is incident to v_{2} and v_{3}. Since $|J|=1$, no other link is incident to v_{1}, therefore $l_{n_{s}}, l_{n_{t}}$ and $l_{n_{x}}$ are all incident to either v_{2} or v_{3}, which contradicts the assumption $|Z|=2$. Hence, $l_{n_{u}}$ is incident to v_{1}.
ii. $\quad|J|=2\left(J=\left\{n_{u}, n_{r}\right\}\right)$ and $n_{r} \notin \mathcal{N}_{b}\left(n_{u}\right)$
A. $L=6$
$l_{n_{u}}$ is incidentto v_{1} or v_{2}, as shown in Fig. 6e. The resulting root graphs areisomorphic.

Fig. 6 Scenarios for $|Z|=2$: (a) $n_{s} \notin \mathcal{N}_{b}\left(n_{t}\right),|J|=2$; (b) $n_{s} \in \mathcal{N}_{b}\left(n_{t}\right)$ and n_{s}, n_{t}, n_{1} (or n_{2}) are pairwise adjacent; $n_{s} \in \mathcal{N}_{b}\left(n_{t}\right)$ and n_{s}, n_{t}, n_{1} (or n_{2}) are not pairwise adjacent: $(\mathbf{c})|J|=1, L=5$; (d) $|J|=1$, $L=6, n_{x} \notin C$; (e) $|J|=2, L=6$; and (f) $|J|=2, L=7, n_{x} \notin C$
B. $\quad L \geq 7$ and n_{x} is the node in H different from $n_{1}, n_{2}, n_{u}, n_{r}, n_{s}$, and n_{t}.
If $n_{x} \notin C=\mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right), l_{n_{u}}$ is incident to v_{2} (Fig. 6f), otherwise $l_{n_{u}}$ is incident to v_{1}.

Proof Assume $n_{x} \notin C=\mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right)$ and $l_{n_{u}}$ is incident to v_{1}. Since $|J|=2$ and $|Z|=2, l_{n_{r}}$ is incident to both v_{2} and $v_{3} ; l_{n_{s}}$ and $l_{n_{t}}$ are incident to the node of $l_{n_{u}}$ different from v_{1} and one of the nodes v_{2} and v_{3}. Since $n_{x} \notin C$, link $l_{n_{x}}$ is incident to the node of $l_{n_{u}}$ different from v_{1}, which contradicts the assumption of $|Z|=2$. Hence, $l_{n_{u}}$ is incident to v_{2}. Now, assume $n_{x} \in C=\mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right)$ and $l_{n_{u}}$ is incident to v_{2} and v_{3}. Since $|J|=2, l_{n_{r}}$ is incident to v_{1}. Since $n_{x} \in C$ and $|J|=1$, link $l_{n_{x}}$ cannot be incident to v_{1}. Finally, $l_{n_{s}}, l_{n_{r}}$ and $l_{n_{x}}$ are all incident to either v_{2} or v_{3},
which contradicts the fact that $|Z|=2$. Hence, $l_{n_{u}}$ is incident to v_{1}.

Appendix B: The Link Density of Line Graphs

The link density is an important characteristic for the topology of line graphs. This section discusses the relation between the link density of line graph H, the number of nodes N and the number of links L in the root graph $G(N, L)$.

The number of nodes N_{H} in the line graph H is equal to the number of links L in the root graph G. For the number of links L_{H} in the line graph H, we have

$$
\begin{equation*}
L_{H}=\frac{1}{2} \sum_{i=1}^{N} d_{i}^{2}-L \tag{1}
\end{equation*}
$$

where $d=\left[d_{1}, d_{2}, \cdots, d_{N}\right]$ is the degree sequence of G.
By using (1), the link density p_{H} of H equals

$$
\begin{equation*}
p_{H}=\frac{L_{H}}{\binom{L}{2}}=\frac{\frac{1}{2} \sum_{i=1}^{N} d_{i}^{2}-L}{\binom{L}{2}}=\frac{\sum_{i=1}^{N} d_{i}^{2}-2 L}{L^{2}-L} \tag{2}
\end{equation*}
$$

Using the basic law of degrees, $\sum_{i=1}^{N} d_{i}=2 L$, and Cauchy's inequality [4, 9]

$$
\begin{equation*}
\sum_{i=1}^{N} d_{i}^{2} \geq \frac{\left(\sum_{i=1}^{N} d_{i}\right)^{2}}{N}=\frac{4 L^{2}}{N} \tag{3}
\end{equation*}
$$

and using (3) into (2), we obtain

$$
\begin{equation*}
p_{H}=\frac{\sum_{i=1}^{N} d_{i}^{2}-2 L}{L^{2}-L} \geq \frac{2 L\left(\frac{2 L}{N}-1\right)}{L^{2}-L}=\frac{2}{N} \frac{2 L-N}{L-1} \tag{4}
\end{equation*}
$$

Equality in (4) holds for regular root graphs G, where $d_{i}=\frac{2 L}{N}$, for $i=1,2, \cdots, N$. When $L \gg N$, the link density p_{H} asymptotically tends to $\frac{4}{N}$. Hence, the line graphs of dense root graphs with $L \gg N$ have small link densities.

```
Algorithm 2: \(\operatorname{InitSpecCases}\left(H, n_{1}, n_{2}, n_{u}\right)\)
    if \(\mathcal{N}_{b}\left(n_{u}\right) \backslash\left\{n_{1}, n_{2}\right\}=\emptyset\) then
        if \(J=\left\{n_{u}\right\}\) then
            if \(L=3\) then
                \(G\) is \(K_{1,3}\) or \(K_{3}\). Exit.
            else if \(L \geq 4\) then
                \(v_{l_{n_{u}}} \leftarrow v_{1} ; \mathcal{N}_{h} \leftarrow \mathcal{N}_{h} \cup\left\{n_{u}\right\} ; \mathcal{N}_{w} \leftarrow \mathcal{N}_{w} \backslash\left\{n_{u}\right\} ; J \leftarrow J \backslash\left\{n_{u}\right\} ;\)
        else if \(J=\left\{n_{u}, n_{r}\right\}\) and \(n_{r} \notin \mathcal{N}_{b}\left(n_{u}\right)\) then
            if \(L=4\) then
                \(v_{l_{n_{u}}} \leftarrow v_{2} ; \mathcal{N}_{h} \leftarrow \mathcal{N}_{h} \cup\left\{n_{u}\right\} ; \mathcal{N}_{w} \leftarrow \mathcal{N}_{w} \backslash\left\{n_{u}\right\} ; J \leftarrow J \backslash\left\{n_{u}\right\} ;\)
            else if \(L \geq 5\) and \(n_{x} \notin \mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right)\) then
                \(v_{l_{n_{u}}} \leftarrow v_{2} ; \mathcal{N}_{h} \leftarrow \mathcal{N}_{h} \cup\left\{n_{u}\right\} ; \mathcal{N}_{w} \leftarrow \mathcal{N}_{w} \backslash\left\{n_{u}\right\} ; J \leftarrow J \backslash\left\{n_{u}\right\} ;\)
    else if \(\mathcal{N}_{b}\left(n_{u}\right) \backslash\left\{n_{1}, n_{2}\right\}=\left\{n_{s}\right\}\) then
        if \(J=\left\{n_{u}\right\}\) then
            if \(L=4\) then
                \(v_{l_{n_{u}}} \leftarrow v_{2} ; \mathcal{N}_{h} \leftarrow \mathcal{N}_{h} \cup\left\{n_{u}\right\} ; \mathcal{N}_{w} \leftarrow \mathcal{N}_{w} \backslash\left\{n_{u}\right\} ; J \leftarrow J \backslash\left\{n_{u}\right\} ;\)
            else if \(L \geq 5\) and \(n_{x} \notin \mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right)\) then
                \(v_{l_{n_{u}}} \leftarrow v_{2} ; \mathcal{N}_{h} \leftarrow \mathcal{N}_{h} \cup\left\{n_{u}\right\} ; \mathcal{N}_{w} \leftarrow \mathcal{N}_{w} \backslash\left\{n_{u}\right\} ; J \leftarrow J \backslash\left\{n_{u}\right\} ;\)
        else if \(J=\left\{n_{u}, n_{r}\right\}\) and \(n_{r} \notin \mathcal{N}_{b}\left(n_{u}\right)\) then
            if \(n_{s} \notin \mathcal{N}_{b}\left(n_{r}\right)\) and \(n_{s} \in \mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right)\) then
                \(v_{l_{n_{u}}} \leftarrow v_{2} ; \mathcal{N}_{h} \leftarrow \mathcal{N}_{h} \cup\left\{n_{u}\right\} ; \mathcal{N}_{w} \leftarrow \mathcal{N}_{w} \backslash\left\{n_{u}\right\} ; J \leftarrow J \backslash\left\{n_{u}\right\} ;\)
            else if \(n_{s} \in \mathcal{N}_{b}\left(n_{r}\right)\) then
                if \(L=5\) then
                        \(v_{l_{n_{u}}} \leftarrow v_{2} ; \mathcal{N}_{h} \leftarrow \mathcal{N}_{h} \cup\left\{n_{u}\right\} ; \mathcal{N}_{w} \leftarrow \mathcal{N}_{w} \backslash\left\{n_{u}\right\} ; J \leftarrow J \backslash\left\{n_{u}\right\} ;\)
                    else if \(L \geq 6\) and \(n_{x} \notin \mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right)\) then
                    \(v_{l_{n_{u}}} \leftarrow v_{2} ; \mathcal{N}_{h} \leftarrow \mathcal{N}_{h} \cup\left\{n_{u}\right\} ; \mathcal{N}_{w} \leftarrow \mathcal{N}_{w} \backslash\left\{n_{u}\right\} ; J \leftarrow J \backslash\left\{n_{u}\right\} ;\)
    else if \(\mathcal{N}_{b}\left(n_{u}\right) \backslash\left\{n_{1}, n_{2}\right\}=\left\{n_{s}, n_{t}\right\}\) then
        if \(n_{s} \notin \mathcal{N}_{b}\left(n_{t}\right)\) then
            if \(J=\left\{n_{u}\right\}\) then
                \(v_{l_{n_{u}}} \leftarrow v_{2} ; \mathcal{N}_{h} \leftarrow \mathcal{N}_{h} \cup\left\{n_{u}\right\} ; \mathcal{N}_{w} \leftarrow \mathcal{N}_{w} \backslash\left\{n_{u}\right\} ; J \leftarrow J \backslash\left\{n_{u}\right\} ;\)
            else if \(J=\left\{n_{u}, n_{r}\right\}\) and \(n_{r} \notin \mathcal{N}_{b}\left(n_{u}\right)\) then
                \(v_{l_{n_{u}}} \leftarrow v_{2} ; \mathcal{N}_{h} \leftarrow \mathcal{N}_{h} \cup\left\{n_{u}\right\} ; \mathcal{N}_{w} \leftarrow \mathcal{N}_{w} \backslash\left\{n_{u}\right\} ; J \leftarrow J \backslash\left\{n_{u}\right\} ;\)
        else if \(n_{s} \in \mathcal{N}_{b}\left(n_{t}\right)\) and \(n_{s}, n_{t}, n_{1}\) or \(n_{2}\) form a \(K_{3}\) then
            \(v_{l_{n_{u}}} \leftarrow v_{2} ; \mathcal{N}_{h} \leftarrow \mathcal{N}_{h} \cup\left\{n_{u}\right\} ; \mathcal{N}_{w} \leftarrow \mathcal{N}_{w} \backslash\left\{n_{u}\right\} ; J \leftarrow J \backslash\left\{n_{u}\right\} ;\)
        else if \(n_{s} \in \mathcal{N}_{b}\left(n_{t}\right)\) and neither \(n_{s}, n_{t}, n_{1}\) nor \(n_{s}, n_{t}, n_{2}\) form a \(K_{3}\) then
            if \(J=\left\{n_{u}\right\}\) then
            if \(L=5\) then
                    \(v_{l_{n_{u}}} \leftarrow v_{2} ; \mathcal{N}_{h} \leftarrow \mathcal{N}_{h} \cup\left\{n_{u}\right\} ; \mathcal{N}_{w} \leftarrow \mathcal{N}_{w} \backslash\left\{n_{u}\right\} ; J \leftarrow J \backslash\left\{n_{u}\right\} ;\)
            else if \(L \geq 6\) and \(n_{x} \notin \mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right)\) then
                    \(v_{l_{n_{u}}} \leftarrow v_{2} ; \mathcal{N}_{h} \leftarrow \mathcal{N}_{h} \cup\left\{n_{u}\right\} ; \mathcal{N}_{w} \leftarrow \mathcal{N}_{w} \backslash\left\{n_{u}\right\} ; J \leftarrow J \backslash\left\{n_{u}\right\} ;\)
            else if \(J=\left\{n_{u}, n_{r}\right\}\) and \(n_{r} \notin \mathcal{N}_{b}\left(n_{u}\right)\) then
                if \(L=6\) then
                    \(v_{l_{n_{u}}} \leftarrow v_{2} ; \mathcal{N}_{h} \leftarrow \mathcal{N}_{h} \cup\left\{n_{u}\right\} ; \mathcal{N}_{w} \leftarrow \mathcal{N}_{w} \backslash\left\{n_{u}\right\} ; J \leftarrow J \backslash\left\{n_{u}\right\} ;\)
            else if \(L \geq 7\) and \(n_{x} \notin \mathcal{N}_{b}\left(n_{1}\right) \cup \mathcal{N}_{b}\left(n_{2}\right)\) then
                    \(v_{l_{n_{u}}} \leftarrow v_{2} ; \mathcal{N}_{h} \leftarrow \mathcal{N}_{h} \cup\left\{n_{u}\right\} ; \mathcal{N}_{w} \leftarrow \mathcal{N}_{w} \backslash\left\{n_{u}\right\} ; J \leftarrow J \backslash\left\{n_{u}\right\} ;\)
```

We derive an upper bound for the link density p_{H}. Using $L=\left(\sum_{i=1}^{N} d_{i}\right) / 2$ and the inequality $\left(\sum_{i=1}^{N} x_{i}\right)^{2} \geq \sum_{i=1}^{N} x_{i}^{2}$ for $x_{i}=d_{i}-1 \geq 0$, we obtain

$$
\begin{align*}
\sum_{i=1}^{N} d_{i}^{2}= & \sum_{i=1}^{N}\left(d_{i}-1\right)^{2}-N+2 \sum_{i=1}^{N} d_{i}=\sum_{i=1}^{N}\left(d_{i}-1\right)^{2}-N+4 L \\
& \leq 4 L-N+\left(\sum_{i=1}^{N}\left(d_{i}-1\right)\right)^{2}=(2 L-N+1)^{2}+N-1 \tag{5}
\end{align*}
$$

Finally, p_{H} is bounded by

$$
\frac{4 L-2 N}{N(L-1)} \leq p_{H} \leq \frac{(2 L-N+1)^{2}+N-2 L-1}{L^{2}-L}
$$

Equality in (5) is achieved if and only if $\left(d_{i}-1\right)\left(d_{j}-1\right)=0$ for all $i, j \in 1,2, \cdots, N$. The star graph $K_{1, N}$ satisfies the condition for equality in (5), indicating that the line graph of $K_{1, N}$ reaches the upper bound of link density p_{H}. In fact, the line graph of $K_{1, N}$ is complete graph K_{N-1} with maximum link density of 1 . In conclusion, dense line graphs can be obtained if the original graph has one node with a high degree and the other nodes have relatively small degrees. On the other hand, the line graph of a regular graph has the minimum link density. Hence, the line graphs with $p_{H}=0.5$ and 0.65 in Section 4 are generated by converting the scale-free graphs into line graphs.

References

1. Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale complexity in networks. Nature 466(7307), 761-764 (2010)
2. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509-512 (1999)
3. Bollobás, B.: Random Graphs. Cambridge University Press, Cambridge (2001)
4. Cauchy, A.L.: Cours d'analyse de l'Ecole Royale Polytechnique, vol. 3 (1821). Imprimerie royale, Paris (reissued by Cambridge University Press), Cambridge (2009)
5. Cvetković, D., Rowlinson, P., Simić, S.: Spectral Generalizations of Line Graphs. Cambridge University Press, Cambridge (2004)
6. Degiorgi, D.G., Simon, K.: A dynamic algorithm for line graph recognition. In: Proceedings of 21st International Workshop on Graph-Theoretic Concepts in Computer Science (Lecture Notes in Computer Science 1017), pp. 37-48. Springer-Verlag (1995)
7. Erdős, P., Rényi, A.: On random graphs, I. Publ. Math. (Debr.) 6, 290-297 (1959)
8. Evans, T., Lambiotte, R.: Line graphs, link partitions, and overlapping communities. Phys. Rev. E 80(1), 016105 (2009)
9. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1988)
10. Krausz, J.: Démonstration nouvelle d'un théorème de Whitney sur les réseaux. Mat. Fiz. Lapok 50, 7585 (1943)
11. Krawczyk, M.J., Muchnik, L., Manka-Krason, A., Kulakowski, K.: Line graphs as social networks. Phys. A 390, 2611-2618 (2011)
12. Lehot, P.G.H.: An optimal algorithm to detect a line graph and output its root graph. J. ACM 21, 569575 (1974)
13. Manka-Krason, A., Kulakowski, K.: Assortativity in random line graphs. Acta Phys. Pol. B Proc. Suppl. 3(2), 259-266 (2010)
14. Manka-Krason, A., Mwijage, A., Kulakowski, K.: Clustering in random line graphs. Comput. Phys. Commun. 181(1), 118-121 (2010)
15. Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (1999)
16. Nacher, J.C., Ueda, U., Yamada, T., Kanehisa, M., Akutsu, T.: Line graphs as social networks. BMC Bioinfo. 24(207), 2611-2618 (2004)
17. Nacher, J.C., Yamada, T., Goto, S., Kanehisa, M., Akutsu, T.: Two complementary representations of a scale-free network. Phys. A 349, 349-363 (2005)
18. Naor, J., Novick, M.B.: An efficient reconstruction of a graph from its line graph in parallel. J. Algoritm. 11, 132-143 (1990)
19. Ore, O.: Theory of Graphs, vol. 21. American Mathematical Society Colloquium Publications (1962)
20. Roussopoulos, N.D.: A $\max \{m, n\}$ algorithm for detecting the graph h from its line graph g. Info. Process. Lett. 2, 108-112 (1973)
21. Simić, S.: An algorithm to recognize a generalized line graphs and ouput its root graph. Publ. Math. Inst. (Belgrade) 49(63), 21-26 (1990)
22. Van Mieghem, P.: Graph Spectra for Complex Networks. Cambridge University Press, Cambridge (2011)
23. van Rooij, A.C.M., Wilf, H.S.: The interchange graph of a finite graph. Acta Math. Acad. Sci. Hung. 16, 263-269 (1965)
24. Whitney, H.: Congruent graphs and the connectivity of graphs. Am. J. Math. 54, 150-168 (1932)

[^0]: This research was supported by Next Generation Infrastructures (Bsik).
 D. Liu (\boxtimes) • S. Trajanovski • P. Van Mieghem

 Faculty of Electrical Engineering, Mathematics and Computer Science,
 Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands
 e-mail: totle.liu@gmail.com
 S. Trajanovski
 e-mail: s.trajanovski@tudelft.nl
 P. Van Mieghem
 e-mail: p.f.a.vanmieghem@tudelft.nl

[^1]: ${ }^{1}$ If every node is adjacent to two or zero nodes of a triangle then it is an even triangle.

[^2]: ${ }^{2} \mathrm{~A}$ node is the neighbor of another node if they are connected.
 ${ }^{3} \mathrm{An}$ incident node of a link is one of the two nodes of that link.

[^3]: ${ }^{4}$ ILIGRA arbitrarily chooses a node from v_{1} and v_{2} and lets it be incident to $l_{n_{2}}$.

[^4]: ${ }^{5}$ LEDA: http://www.algorithmic-solutions.com/leda/
 ${ }^{6}$ Intel(R) Core(TM) 2 Duo CPU T9600 on $2 \times 2.80 \mathrm{GHz} ; 4$ GB RAM memory
 ${ }^{7}$ The link density of a given line graph $H\left(L, L_{H}\right)$ is defined by $p_{H}=L_{H} /\binom{L}{2}$, where L is the number of nodes in H and L_{H} is the number of links in H.

