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Except for the empty graph, we show that the orthogonal ma-
trix X of the adjacency matrix A determines that adjacency 
matrix completely, but not always uniquely. The proof relies 
on interesting properties of the Hadamard product Ξ = X◦X. 
As a consequence of the theory, we show that irregular co-
eigenvector graphs exist only if the number of nodes N ≥ 6. 
Co-eigenvector graphs possess the same orthogonal eigenvec-
tor matrix X, but different eigenvalues of the adjacency ma-
trix. Co-eigenvector graphs are the dual of co-spectral graphs, 
that share all eigenvalues of the adjacency matrix, but possess 
a different orthogonal eigenvector matrix. We deduce general 
properties of co-eigenvector graph and start to enumerate all 
co-eigenvector graphs on N = 6 and N = 7 nodes. Finally, we 
list many open problems.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

A graph G (N ,L) is composed of a set N of N = |N | nodes and a set L of L = |L|
links. An undirected and unweighted graph with N nodes can be represented by an N×N
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symmetric adjacency matrix A. The element aij of the adjacency matrix A equals aij = 1
if there exists a link between node i and j, else aij = 0. We exclude self-loops, implying 
that A has zero diagonal elements, i.e. ajj = 0 for 1 ≤ j ≤ N . We call a graph simple if it 
is undirected without self-loops. Just as any symmetric matrix, the symmetric, zero-one 
adjacency matrix A possesses the eigenvalue decomposition

A = XΛXT (1)

as reviewed in the introduction of [1]. The equality in (1) implies that all information 
at the left-hand side, that we call the topology domain, is also contained in the right-
hand side, that we call the spectral domain. Most insight so far in graphs is gained 
in the topology domain that allows a straightforward drawing of a graph: nodes are 
interconnected by links and the picture of a graph is attractive and understandable 
to humans. The spectral domain, consisting of the set of orthogonal and normalized 
eigenvectors x1, x2, . . . , xN stored as columns in the orthogonal eigenvector matrix X
in (1) and the corresponding set of eigenvalues λ1, λ2, . . . , λN stored in the eigenvalue 
vector λ = (λ1, λ2, . . . , λN ) in Λ = diag(λ), is less intuitive for humans; the meaning of 
an eigenvector and eigenvalue of a graph is not obvious. However, as mentioned in the 
preface of [1], the relation A = XΛXT represents a transformation of a similar nature as 
a Fourier transform, which suggests that some information is better or more adequately 
accessible in one domain and other information in the other domain. Besides the topology 
domain and the spectral domain, there exists a third equivalent representation, called 
the geometric domain, where each, possibly weighted, undirected graph is a simplex in 
the N − 1 dimensional Euclidean space [2].

Most of the spectral results are obtained for eigenvalues, in particular, for the largest 
eigenvalue or spectral radius [3]. While the number of mathematical results on other 
eigenvalues is already considerably less than for the spectral radius, results on eigenvec-
tors are scarce [4,5].

Earlier, Haemers and van Dam [6] have conjectured that, when the number of nodes 
N → ∞, the eigenvalue vector λ = (λ1, λ2, . . . , λN ) characterizes the graph almost surely, 
i.e. the probability that eigenvalue vector λ determines the graph tends to 1. The Haemers 
and van Dam conjecture practically means that the eigenvalue vector λ is a fingerprint 
of a real-world, large graph, that is comparable to a photoluminescence spectrum of 
a material (see e.g. [7]). Here, we present a kind of dual of the Haemers and van Dam 
conjecture and concentrate on the orthogonal eigenvector matrix X in (1) rather than on 
the eigenvalue vector λ. In particular, Theorem 2 in Section 4 demonstrates that, given 
the orthogonal eigenvector matrix X of the adjacency matrix A, the precise adjacency 
matrix is recovered, in contrast to a partial or approximated one as in network inference 
methods (see e.g. [8], [9]) that estimate the most likely underlying graph. Section 5
discusses consequences of Theorem 2: we will show that co-eigenvector graphs exist and 
that the orthogonal eigenvector matrix X does not always “uniquely” specifies a graph, 
because different graphs can possess the same orthogonal eigenvector matrix X.



36 P. Van Mieghem, I. Jokić / Linear Algebra and its Applications 689 (2024) 34–59
We briefly review the orthogonal eigenvector matrix X of a symmetric matrix in 
Section 2, introduce the Hadamard product Ξ = X ◦ X and derive some properties of 
the matrix Ξ in Section 3, which we apply to the adjacency matrix of an undirected 
graph in Section 3.2. We provide the proof of Theorem 2 in Section 4 and analyze its 
consequences in Section 5. Section 6 deduces general properties of co-eigenvector graphs, 
for both regular and irregular graphs. Section 7 enumerates nearly all co-eigenvector 
graphs on N = 6 and N = 7 nodes. For N < 6, our enumeration algorithm did not find 
irregular co-eigenvector graphs. Proceeding with a higher number N of nodes rapidly 
becomes computationally challenging due to the huge increase in the number of unlabeled 
graph on N nodes. Section 8 concludes and poses open problems.

2. Eigenvectors and eigenvalues: brief review

Following the notation of [1], we denote by xk the N ×1 eigenvector of the symmetric 
matrix A belonging to the eigenvalue λk, normalized so that xT

k xk = 1. Here, in Section 2, 
A is any symmetric matrix and not necessarily equal to the adjacency matrix. The 
eigenvalues of an N × N symmetric matrix A = AT are real and can be ordered as 
λ1 ≥ λ2 ≥ . . . ≥ λN . Let X be the orthogonal matrix with eigenvectors of A in the 
columns,

X =
[
x1 x2 x3 · · · xN

]
or explicitly in terms of the m-th component (xj)m of eigenvector xj ,

X =

⎡⎢⎢⎢⎢⎢⎢⎣
(x1)1 (x2)1 (x3)1 · · · (xN )1
(x1)2 (x2)2 (x3)2 · · · (xN )2
(x1)3 (x2)3 (x3)3 · · · (xN )3

...
...

...
. . .

...
(x1)N (x2)N (x3)N · · · (xN )N

⎤⎥⎥⎥⎥⎥⎥⎦ (2)

where the element Xij = (xj)i.
The relation XTX = I = XXT (see e.g. [1, art. 247]) expresses, in fact, double 

orthogonality. The first equality XTX = I translates, with the Kronecker delta δkm = 0
if k �= m, otherwise δkm = δmm = 1, to the well-known orthogonality relation

xT
k xm =

N∑
j=1

(xk)j (xm)j = δkm (3)

stating that the eigenvector xk belonging to eigenvalue λk is orthogonal to any other 
eigenvector belonging to a different eigenvalue. The second equality XXT = I, which 
arises from the commutativity of the inverse matrix X−1 = XT with the matrix X itself, 
can be written as 

∑N
j=1 (xj) (xj) = δmk and suggests us to define the row vector in X
m k
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as ym = ((x1)m , (x2)m , . . . , (xN )m). Then, the second orthogonality condition XXT = I

implies orthogonality of the row vectors of X,

yTl yj =
N∑

k=1

(xk)l(xk)j = δlj (4)

The N ×N matrix Ξ = X ◦X, where ◦ denotes the Hadamard product,1

Ξ =

⎡⎢⎢⎢⎢⎢⎢⎣
(x1)21 (x2)21 (x3)21 · · · (xN )21
(x1)22 (x2)22 (x3)22 · · · (xN )22
(x1)23 (x2)23 (x3)23 · · · (xN )23

...
...

...
. . .

...
(x1)2N (x2)2N (x3)2N · · · (xN )2N

⎤⎥⎥⎥⎥⎥⎥⎦ (5)

will play an important role in this paper.

3. Function of a symmetric matrix and the stochastic matrix Ξ

From the general relation for diagonalizable matrices (see e.g. [11, p. 526]),

f (A) =
N∑

k=1

f (λk)xkx
T
k (6)

valid for a function f defined on the eigenvalues {λk}1≤k≤N of the N × N symmetric 
matrix A, the element for node j equals

(f (A))jj =
N∑

k=1

f (λk) (xk)2j (7)

Written in matrix form for all 1 ≤ j ≤ N results in⎡⎢⎢⎢⎢⎢⎢⎣
(f (A))11
(f (A))22
(f (A))33

...
(f (A))NN

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
(x1)21 (x2)21 (x3)21 · · · (xN )21
(x1)22 (x2)22 (x3)22 · · · (xN )22
(x1)23 (x2)23 (x3)23 · · · (xN )23

...
...

...
. . .

...
(x1)2N (x2)2N (x3)2N · · · (xN )2N

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
f (λ1)
f (λ2)
f (λ3)

...
f (λN )

⎤⎥⎥⎥⎥⎥⎥⎦ (8)

We write (8) in matrix form as ψ = Ξχ with the vectors

1 The Hadamard product [10] (entrywise product) of two matrices is (A ◦ B)ij = AijBij . If A and B are 
both diagonal matrices, then AB = A ◦ B.
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ψ =

⎡⎢⎢⎢⎢⎢⎢⎣
(f (A))11
(f (A))22
(f (A))33

...
(f (A))NN

⎤⎥⎥⎥⎥⎥⎥⎦ and χ =

⎡⎢⎢⎢⎢⎢⎢⎣
f (λ1)
f (λ2)
f (λ3)

...
f (λN )

⎤⎥⎥⎥⎥⎥⎥⎦
where the N ×N matrix Ξ = X ◦X is defined in (5). We denote by u the all-one vector.

Since Ξu = u and ΞTu = u, by “double orthogonality” of (3) and (4), and since 
each element 0 ≤ (xk)2j ≤ 1, the matrix Ξ with squared eigenvector components of a 
diagonalizable matrix A is doubly2-stochastic [1] with largest eigenvalue equal to 1. The 
latter property follows from the Perron-Frobenius Theorem of non-negative matrices. 
The product3 of two doubly-stochastic matrices is also a doubly-stochastic matrix. The 
doubly-stochastic matrix Ξ also provides a vehicle to generate sharp inequalities, for 
which we refer to the book of Marshall et al. [12].

The N ×N doubly-stochastic matrix Ξ in (5) can have a rank that is lower than N , 
in contrast to the N × N orthogonal eigenvector matrix X, whose rank always equals 
N . The fact that Ξ is not necessary of full rank, i.e. det(Ξ) = 0 is possible, is exploited 
in the proof of Theorem 2 in Section 4 for graph recovery.

3.1. Eigenstructure of the matrix Ξ

Let us denote the eigenvalue equation of the asymmetric4 N ×N matrix Ξ by

Ξwj = ξjwj (9)

Double-stochasticity combined with the Perron-Frobenius theorem tells us that ξ1 =
1 ≥ |ξj | for any j > 1 and w1 = u. Each eigenvalue ξj of the asymmetric matrix Ξ thus 
lies within the unit circle and is either real on [−1, 1] or occurs in complex conjugate 
pairs, i.e. if Im ξj �= 0, then existence of ξj implies existence of its complex conjugate ξ∗j . 
The corresponding eigenvector w∗

j of ξ∗j follows by taking the complex conjugate of the 
eigenvalue equation (i.e. replacing i by −i), thus Ξw∗

j = ξ∗jw
∗
j . All eigenvalues of Ξm, 

i.e. ξmj for 1 ≤ j ≤ N and for any positive integer m, lie within the unit circle and the 

2 Sinkhorn’s theorem (1964) states that any matrix with strictly positive entries can be made doubly-
stochastic by pre- and post-multiplication by diagonal matrices.
3 Indeed, let Ξ and Ψ be two N × N doubly-stochastic matrices. Then, left-multiplying both sides in 

Ξu = u by Ψ and using Ψu = u yields ΨΞu = u. Similarly, left-multiplying both sides in ΨT u = u by ΞT

and using ΞTu = u yields (ΨΞ)T u = u. Finally, an element of ΨΞ equals

0 ≤ (ΨΞ)ij =
N∑

k=1

ΨikΞkj ≤ min
(

max
1≤k≤N

Ψik, max
1≤k≤N

Ξkj

)
≤ 1

which demonstrates the property.
4 Since symmetric orthogonal eigenvector matrices exist [20], their corresponding symmetric Ξ matrices 

have real eigenvalues in the interval [−1, 1].
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largest eigenvalue ξ1 = 1 possesses the all-one vector u as eigenvector. This fact follows 
from (a) the above eigenvalue equation and (b), separately, from the property that the 
product of two doubly-stochastic matrices is also a doubly-stochastic matrix. The trace 
of the matrix Ξ is trace(Ξ) =

∑N
j=1 (xj)2j ≥ 0, implying that the sum of the eigenvalues 

of Ξ is non-negative. It follows from trace
(
Ξ2) =

∑N
j=1 ξ

2
j =

∑N
i=1

∑N
k=1 (xk)2i (xi)2k that ∑N

k=1 (Re ξk)2 ≥
∑N

k=1 (Im ξk)2.
Since the matrix Ξ is asymmetric, the eigenvectors are not necessarily orthogonal, but 

only independent (provided that Ξ is not defective and that there exist N independent 
eigenvectors). We find from the eigenvalue equation (9) that (a) wT

k Ξwj = ξjw
T
k wj and 

(b) wT
j Ξwk = ξkw

T
j wk and subtraction

(ξj − ξk)wT
k wj = wT

k Ξwj − wT
j Ξwk = wT

k

(
Ξ − ΞT

)
wj

indicates that orthogonality between wk and wj , for j �= k, only holds for symmetric 
matrices. Thus, wT

j wk is not necessarily zero if k �= j.

Lemma 1. All eigenvectors wj of a doubly-stochastic matrix Ξ with j > 1 are orthogonal 
to w1 = u.

Proof. Right-multiplying the transpose of the eigenvalue equation (9) by the all-one vec-
tor yields wT

j ΞTu = ξjw
T
j u. After using ΞTu = u, we find that 0 = (ξj − 1)wT

j u, which 
implies that any eigenvector wj , except for w1 = u belonging to ξ1 = 1, is orthogonal to 
the all-one vector u. �

A consequence of Lemma 1 is that the sum of the components of an eigenvector wj

with j > 1 of a doubly-stochastic matrix is zero.

3.2. The matrix Ξ = X ◦X of the adjacency matrix

We apply the general theory to the adjacency matrix A and refer to [1, art. 109] for 
the Laplacian matrix. Let us denote the vector λk =

(
λk

1 , λ
k
2 , . . . , λ

k
N

)
so that, for the 

function f (z) = zk in (8) where k is a non-negative integer, we can write (8) as

diag
((

Ak
)
jj

)
u = Ξλk (10)

where u = (1, 1, . . . , 1) is the all-one vector. From (10) and uTΞ = uT , we find the 

well-known trace relation [1], namely that uTdiag
((

Ak
)
jj

)
u = trace

(
Ak

)
= uTλk =∑N

j=1 λ
k
j .

Formula (10) for integer powers f (z) = zk leads to nice formulae. Indeed, for k = 0, 
we find from (6) the second orthogonality relation (4); for k = 1 (since ajj = 0, from 
which trace(A) =

∑N
j=1 λj = 0)



40 P. Van Mieghem, I. Jokić / Linear Algebra and its Applications 689 (2024) 34–59
0 =
N∑

k=1

λk (xk)2j and 0 = Ξλ (11)

that appeared earlier in [1, art. 96], while for k = 2 (since the degree of node j is 
dj =

(
A2)

jj
)

dj =
N∑

k=1

λ2
k (xk)2j and d = Ξλ2 (12)

For any adjacency matrix A without self-loops (i.e. ajj = 0 for each 1 ≤ j ≤ N), the 
instance (11)

Ξλ = 0 (13)

is the special case of the eigenvalue equation (9) in Section 3.1, where the eigenvalue 
vector λ = (λ1, λ2, . . . , λN ) of the adjacency matrix A is the eigenvector of Ξ corre-
sponding to eigenvalue zero. Lemma 1 states that λTu = 0 or 

∑N
j=1 λj = 0. In addition, 

the eigenvalue equation (9) implies that det(Ξ) = 0, which is equivalent to the fact that 
rank(Ξ) ≤ N − 1. Thus, the rank of the matrix Ξ for an adjacency matrix is at most 
N − 1.

We can write (10) for integers k ranging from k = 0 up to k = N − 1,

Y =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 d1 · · ·

(
Ak

)
11 · · ·

(
AN−1)

11
1 0 d2 · · ·

(
Ak

)
22 · · ·

(
AN−1)

22
1 0 d3 · · ·

(
Ak

)
33 · · ·

(
AN−1)

33
...

...
...

. . .
...

. . .
...

1 0 dN · · ·
(
Ak

)
NN

· · ·
(
AN−1)

NN

⎤⎥⎥⎥⎥⎥⎥⎦

= Ξ.

⎡⎢⎢⎢⎢⎢⎢⎣
1 λ1 λ2

1 · · · λk
1 · · · λN−1

1
1 λ2 λ2

2 · · · λk
2 · · · λN−1

2
1 λ3 λ2

3 · · · λk
3 · · · λN−1

3
...

...
...

. . .
...

. . .
...

1 λN λ2
N · · · λk

N · · · λN−1
N

⎤⎥⎥⎥⎥⎥⎥⎦

(14)

where 
(
Ak

)
jj

equals the number of closed walks of length k from node j and back to 
node j and the right-hand side matrix is an N ×N Vandermonde matrix V .

3.3. Examples of particular graphs

(a) In a line topology or path on N nodes, only even closed walks are possible and (
Ak

)
jj

= 0 for odd k. For finite N and even k, symmetry is broken and 
(
Ak

)
jj

�=
(
Ak

)
ll

for any pair (l, j) of nodes, due to the end nodes. Since all eigenvalues of the adjacency 
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matrix of a path graph are distinct [1, Sec. 6.4], we deduce from (14) and the property 
rank(C.D) ≤ min (rank (C) , rank (D)) that rank(Ξpath) =

[
N
2
]
, where [x] is the integer 

part of the real number x. The same result, rank(Ξpath) =
[
N
2
]
, can also be obtained 

from the explicit analytic expression (e.g. [1, p. 203]) for the orthogonal eigenvector 
matrix Xpath.

(b) For a regular graph with degree r, the degree vector is d = r.u and the first and 
third column in the non-negative matrix Y in (14) are dependent. Hence, rank(Y ) is at 
most N − 2 for regular graphs, but rank(Ξ) can still be N − 1 as shown in (c) below.

(c) The adjacency matrix of the complete graph AKN
= J − I, where J = u.uT is 

the all-one matrix. For the complete graph KN , the matrix Y in (14) can be computed 

analytically, because 
(
Ak

KN

)
jj

= (J − I)kjj = 1
N

(
(N − 1)k − (−1)k

)
+ (−1)k, which is 

the same for any node j, as

YKN
=

[
u 0 (N − 1)u · · ·

(
(N−1)k−(−1)k

N + (−1)k
)
u · · ·

(
(J − I)N−1

jj

)
u
]

Since all columns are multiples of the all-one vector u, we find that rank(YKN
) = 1. The 

adjacency matrix AKN
= J − I of the complete graph KN has two eigenvalues: N − 1

belonging to eigenvector x1 = u and −1 with multiplicity N − 1. Hence, the rank of the 
Vandermonde matrix V in (14) is rank(V ) = 2 and (14) is not effective to determine 
rank(Ξ). Fortunately, the orthogonal eigenvector matrix of adjacency matrix AKN

=
J − I can be computed analytically, in at least two ways.

The eigenvalue equation for λ = −1 is (J − I)x = −x, which is equivalent to 0 = Jx =
u.uTx. Hence, any set of N − 1 independent vectors {x2, x3, . . . , xN} with a component 
sum equal to zero is possible. In other words, there are infinitely many orthogonal X-
matrices for the complete graph KN . Perhaps, the simplest not normalized eigenvector 
for the complete graph KN is

x̃j = ej −
1

j − 1

j−1∑
m=1

em for j > 1

where ej is the basic vector with component (ej)k = δjk. The eigenvector x̃j satisfies the 
eigenvalue equation (J − I) x̃j = −x̃j or Jx̃j = 0, because Jej = u. In addition, using 
eTmek = δmk, the scalar product x̃T

j x̃k = δjk is

x̃T
j x̃k =

(
eTj − 1

j − 1

j−1∑
m=1

eTm

)(
ek − 1

k − 1

k−1∑
l=1

el

)

= eTj ek − 1
k − 1

k−1∑
l=1

eTj el −
1

j − 1

j−1∑
m=1

eTmek + 1
j − 1

1
k − 1

j−1∑
m=1

k−1∑
l=1

eTmel

= δjk − 1
k − 1

k−1∑
δjl −

1
j − 1

j−1∑
δmk + 1

j − 1
1

k − 1

j−1∑ k−1∑
δml
l=1 m=1 m=1 l=1
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= δjk − 1
k − 11{j∈[1,k−1]} −

1
j − 11{k∈[1,j−1]} + 1

j − 1
1

k − 1

j−1∑
m=1

1{m∈[1,k−1]}

If j = k, then

x̃T
k x̃k = 1 + 1

(k − 1)2
k−1∑
m=1

1{m∈[1,k−1]} = 1 + 1
k − 1 = k

k − 1

Without loss of generality, we may assume that j < k (else interchange j and k) and 
then, with 

∑j−1
m=1 1{m∈[1,k−1]} = j − 1, we find

x̃T
j x̃k = − 1

k − 1 + 1
j − 1

1
k − 1

j−1∑
m=1

1{m∈[1,k−1]} = 0

Hence, the normalized eigenvector xj = x̃j√
x̃T
j x̃j

=
√

j−1
j ej − 1√

j(j−1)

∑j−1
m=1 em and the 

corresponding orthogonal eigenvector matrix for the complete graph KN is

XKN
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
N

− 1√
2 − 1√

6 − 1
2
√

3 − 1
2
√

5 · · · − 1√
N(N−1)

1√
N

1√
2 − 1√

6 − 1
2
√

3 − 1
2
√

5 · · · − 1√
N(N−1)

1√
N

0
√

2
3 − 1

2
√

3 − 1
2
√

5 · · · − 1√
N(N−1)

1√
N

0 0
√

3
2 − 1

2
√

5 · · · − 1√
N(N−1)

1√
N

0 0 0
√

5
6 · · · − 1√

N(N−1)
...

...
...

...
...

. . .
...

1√
N

0 0 0 0 · · · N−1√
N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15)

and the rank of the corresponding matrix ΞKN
= XKN

◦XKN
is rank(ΞKN

) = N − 1. 
Barik et al. [13] have shown that only regular graphs, such as the complete graph KN , 
for N = 4k and k ∈ N0, and the regular bipartite graph K2k,2k, are diagonalizable 
by a Hadamard matrix. An n × n Hadamard matrix Hn has as elements either −1
and 1 and obeys HnH

T
n = nIn, where the order n can only be n = 1, 2 or n = 4k, 

subject to the fact that Hadamard’s conjecture, namely that there exists a Hadamard 
matrix H4k for each integer k, holds. Hadamard’s conjecture is still an open, unsolved 
problem. The normalized matrix Xn = 1√

n
Hn is an orthogonal matrix, from which it 

follows that | detHn| = n
n
2 , which is maximal among all n × n matrices with elements 

in absolute value less than or equal to 1 and the latter class includes all orthogonal 
matrices. Any relabeling (permutation of rows and columns) of a Hadamard matrix is 
again a Hadamard matrix; multiplying any row or column by −1 preserves the Hadamard 
properties. Following Barik et al. [13], let Hn =

[
u|H̃

]
so that Hne1 = u. Consider the 

diagonal matrix D = I − e1e
T
1 , then



P. Van Mieghem, I. Jokić / Linear Algebra and its Applications 689 (2024) 34–59 43
HnDHT
n = HnH

T
n −Hne1 (Hne1)T = nIn − u.uT = nI − J

Hence, the Laplacian matrix of the complete graph Kn is QKn
= nI − J = HnDHT

n . 
Since Kn is a regular graph, the eigenvectors of the Laplacian Q and the adjacency 
matrix A are the same.5 In conclusion, any Hadamard matrix with Hne1 = u provides 
the orthogonal matrix for the complete graph Kn. Since Hn ◦Hn = J = u.uT , we find 
that the corresponding rank(ΞKn

) = 1, which is the minimum possible rank for any Ξ
matrix.

In summary, depending on the choice of the orthogonal eigenvector matrix for the 
complete graph KN for N = 4k, we believe that the rank of the corresponding Ξ matrix 
may vary over all possible values: 1 ≤ rank(ΞKN

) ≤ N − 1. However, we do not have a 
proof that rank(ΞKN

) can attain any integer in the interval [1, N ].

4. The orthogonal eigenvector matrix X determines the graphs

After the introduction in Section 2 and the discussion in 3, we now prove our main 
result:

Theorem 2. Given the orthogonal eigenvector matrix X of the adjacency matrix A of an 
undirected, simple graph that is not the empty graph, then that adjacency matrix A can 
be retrieved.

Since the empty graph trivially possesses any orthogonal X matrix with eigenvalue 
vector λ = 0, we exclude this extreme case. Theorem 2 implies that the orthogonal 
eigenvector matrix X of the adjacency matrix A of an undirected, simple graph specifies 
that graph, except for the empty graph.

Proof of Theorem 2. Given the orthogonal eigenvector matrix X of the adjacency matrix 
A of an undirected graph, the Hadamard product Ξ = X ◦X in (5) can be computed.

If the matrix Ξ has n ≥ 1 eigenvectors belonging to the zero eigenvalue, then 
rank(Ξ) = N − n and the dimension n of the kernel or null space obeys 1 ≤ n ≤ N − 1, 
because 1 ≤ rank(Ξ) ≤ N − 1. The kernel space corresponding to Ξ is spanned by n
linearly independent, real vectors v1, v2, . . . , vn and each vector vm of the kernel space is 
orthogonal to all the row vectors of the matrix Ξ. The eigenvalue vector λ, which obeys 
Ξλ = 0 in (13), can thus be written as a linear combination of the n independent kernel 
vectors

λ =
n∑

m=1
βmvm (16)

5 Indeed, for a regular graph with degree r, the Laplacian is Q = rI−A. If Q = ZMZT and A = XΛXT , 
we observe that ZMZT = X (rI − Λ)XT , implying that X = Z.
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where βm for 1 ≤ m ≤ n are real, unknown numbers. The adjacency matrix A = XΛXT

is constructed with (16) as

A =
n∑

m=1
βmXdiag (vm)XT (17)

and each element is aij =
∑n

m=1 βm

(
Xdiag (vm)XT

)
ij

.
We remark that 

(
Xdiag (vm)XT

)
jj

= 0 for any 1 ≤ j ≤ N . Indeed, using 

Xdiag(q)XT =
∑N

k=1 qkxkx
T
k and 

(
xkx

T
k

)
ij

= (xk)i (xk)j , yields

(
Xdiag (vm)XT

)
jj

=
(

N∑
k=1

(vm)k xkx
T
k

)
jj

=
N∑

k=1

(vm)k (xk)2j

Row j of the eigenvalue equation (9) in Section 3.1 of the matrix Ξ (with Ξij = (xj)2i ) 
equals 

∑N
k=1 (wl)k (xk)2j = ξl (wl)j . Since each vector vm of the kernel space belongs to 

eigenvalue ξl = 0 with multiplicity n in (9), we find that 
(
Xdiag (vm)XT

)
jj

= 0. Thus, 
the information that the diagonal elements, ajj = 0 for 1 ≤ j ≤ N , cannot be used to 
determine the unknowns β1, β2, . . . , βn. Hence, we must invoke the off-diagonal elements 
of the adjacency matrix.

Any selection of n off-diagonal elements aij =
∑n

m=1 βm

(
Xdiag (vm)XT

)
ij

, where 
i �= j, can be chosen. Without loss of generality, we confine ourselves to n off-diagonal 
elements that lie on a particular row r, but also n elements aij on an upper-diagonal 
(with j = i + k and k > 0) may be considered. Row r of the adjacency matrix A, up to 
column n, is written as the linear set, in which arr is omitted as equation and replaced 
by that of element ar;n+1,⎡⎢⎢⎢⎢⎣
(
Xdiag (v1)XT

)
r1

(
Xdiag (v2)XT

)
r1 · · ·

(
Xdiag (vn)XT

)
r1(

Xdiag (v1)XT
)
r2

(
Xdiag (v2)XT

)
r2 · · ·

(
Xdiag (vn)XT

)
r2

...
...

. . .
...(

Xdiag (v1)XT
)
rn

(
Xdiag (v2)XT

)
rn

· · ·
(
Xdiag (vn)XT

)
rn

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
β1
β2
...
βn

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
ar1
ar2
...

arn

⎤⎥⎥⎥⎥⎦
(18)

The linear set (18) is sufficient to determine all remaining unknowns β1, β2, . . . , βn, 
provided that the rank of the left-hand side n ×n matrix, say M , is n, else a row different 
from r of the adjacency matrix A must be taken (or generally a different selection of 
n off-diagonal elements). The n × n matrix M with rank(M) = n can be inverted 
and the unknowns β1, β2, . . . , βn can be expressed in terms of the partial row vector 
(ar1, ar2, . . . , arn). The only complicating factor is that the partial row vector (ar1, ar2,
. . . , arn) is not precisely known, only that each element is either zero or one. A recipe 
for any chosen row 1 ≤ r ≤ N is to (i) create all 2n − 1 possible partial, zero-one row 
vectors (ar1, ar2, . . . , arn), excluding all zeros, (ii) determine all unknowns β1, β2, . . . , βn
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by solving the set (18) and (iii) compute the eigenvalue vector λ from (16) and (iv) 
check whether the resulting matrix Xdiag(λ)XT is a zero-one matrix, which is a possible 
adjacency matrix corresponding to the orthogonal eigenvector matrix X. Equation Ξλ =
0 in (13) ensures that there must at least be one partial row vector (ar1, ar2, . . . , arn)
out of the 2n − 1 possible combinations that leads to a zero-one matrix.

We cannot exclude, however, that only one adjacency matrix is retrieved. In other 
words, it may happen that l > 1 different adjacency matrices of l different undirected 
graphs are found, that all possess the same orthogonal eigenvector matrix X, but a 
different eigenvalue vector λ. �
5. Consequences of Theorem 2

If rank(Ξ) < N − 1, then the proof of Theorem 2 shows that the orthogonal eigen-
vector matrix X may specify more than one undirected graph. Such graphs are called 
“co-eigenvector graphs” and possess a same orthogonal eigenvector matrix X, but a dif-
ferent eigenvalue vector λ, as opposed to co-spectral graphs that have a same eigenvalue 
vector λ, but a different orthogonal eigenvector matrix X. Only if rank(Ξ) = N − 1, 
the eigenvalue equation Ξλ = 0 in (13) possesses one eigenvalue vector λ and we find 
immediately from Theorem 2

Corollary 1. The orthogonal eigenvector matrix X of the adjacency matrix A of an undi-
rected graph only specifies the graph uniquely if rank(Ξ) = N − 1.

The proof of Theorem 2 fundamentally relies on the zero-one matrix structure when 
rank(Ξ) < N − 1 to recover the adjacency matrix A from the orthogonal eigenvector 
matrix X and thus excludes an extension towards weighted graphs. However, if rank(Ξ) =
N − 1, then also a weighted adjacency matrix, apart from a scaling factor β, can be 
recovered.

Fig. 1 shows the metacode of a graph recovery algorithm, based on the proof of 
Theorem 2 in Section 4.

If rank(Ξ) = N − n with n > 1 and if n = O (Nγ) for large N and 0 < γ ≤ 1, 
meaning that the dimension n 	 αNγ of the kernel space increases with the number N
of nodes, then the proof of Theorem 2 and the corresponding metacode in Fig. 1 looses 
computational efficiency, because 2n ∼ 2αNγ (in the loop in line 6 in Fig. 1) increases 
non-polynomially fast with size N of the graph, pointing towards (but not proving) the 
NP-hard nature of the graph recovery problem in the worst case. In the worst case of 
low rank(Ξ) or high n, one might argue that the proof of Theorem 2 is hardly better 
than the trivial method of finding the eigenvector λ by inversion of (1), i.e. finding 

the adjacency matrix A that diagonalizes XTAX = Λ, by checking all 2(N2 ) possible 
N×N adjacency matrices. Since X is the orthogonal eigenvector matrix of “a particular” 
adjacency matrix, we certainly know that at least one of all possible N ×N adjacency 
matrices converts XTAX to a diagonal matrix Λ. However, extensive simulations so far 



4

Graph Recovery

input: orthogonal matrix X with N orthonormal eigenvectors of A
output: adjacency matrix A

1. Ξ ← X ◦ X Hadamard product
2. n ← size of the kernel space of Ξ
3. vi with i ∈ {1, 2, · · · , n} ← eigenvectors of Ξ obeying Ξvi = 0
4. C({1,2,...,N2},i) ← vec(Xdiag(vi)XT ) for i ∈ {1, 2, · · · , n}
5. Mn×n ← n non-zero rows j of C,

where j �= k(N + 1) + 1, k ∈ {0, 1, . . . , N − 1} —
such that rank(M) = n

6. For (j ← 1 to 2n − 1) do
7. ân×1 ← binary representation in n digits of j

8. β̂n×1 ← M−1â

9. λ̂N×1 ←
∑n

i=1 β̂ivi

10. ÂN×N ← Xdiag(λ̂)XT

11. If (Â contains only ones and zeros)
12. return λ̂, Â
13. End If
14. End For

Fig. 1. Metacode of the algorithm for graph recovery, given the orthogonal eigenvector matrix X.

indicate that rank(Ξ) < N − 1 occurs for relatively small graphs and is extremely rare 
for large N . In other words, for large graphs, nearly always rank(Ξ) = N − 1 holds, so 
that Corollary 1 applies.

Fig. 2 and 3 exemplify the existence of co-eigenvector graphs.
When X = 1√

n
Hn is given for n = 8, then rank(Ξ) = 1 as shown in Section 3.3 and the 

algorithm in Fig. 1 finds 2n−1 = 128 labeled co-eigenvector graphs, that are all regular 
graphs with integer eigenvalues. Indeed, any regular graph has all eigenvectors, except 
for the principal eigenvector x1 = u, orthogonal to the all-one vector u and thus shares 
a common basis of eigenvectors with the complete graph. Regular graphs are further 
examined in Section 6.1.

Fig. 4 presents some co-eigenvector graphs of the line or path topology.

6. Properties of co-eigenvector graphs

Section 4 has demonstrated that co-eigenvector graphs can exist, provided that 
rank(Ξ) < N − 1. In this Section 6, we deduce some properties of two co-eigenvector 
graphs G1(N , L1) and G2(N , L2) on N nodes, that possess the same eigenvectors, but 
a different set of eigenvalues:⎧⎨⎩A1 = XΛ1X

T =
∑N

i=1 λi (A1)xix
T
i

A2 = XΛ2X
T =

∑N
i=1 λi (A2)xix

T
i

(19)

where the N ×N diagonal matrices Λ1 and Λ2 contain on the main diagonal the eigen-
values of the adjacency matrices A1 and A2, respectively.
6 P. Van Mieghem, I. Jokić / Linear Algebra and its Applications 689 (2024) 34–59
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Fig. 2. Example of two co-eigenvector graphs.

Fig. 3. Example of two other co-eigenvector graphs.



48 P. Van Mieghem, I. Jokić / Linear Algebra and its Applications 689 (2024) 34–59
Fig. 4. Example of co-eigenvector graphs of a line topology on N = 8 nodes.

First, the sum of the adjacency matrices A1 and A2

A1 + A2 =
N∑
i=1

(λi(A1) + λi(A2))xix
T
i (20)

again represents an adjacency matrix, provided that the existence of a link, i.e. (A1)ij =
1, between node i and j in the graph G1 implies the non-existence of a link, i.e. (A2)ij = 0, 
in G2. In other words, A1 + A2 is an adjacency matrix if the graphs G1 and G2 do not 
share common links (i.e. |L1 ∩ L2| = 0). In Theorem 4 below, we derive the number of 
common links between two co-eigenvector graphs explicitly. Second, the product of the 
adjacency matrices A1 and A2

A1A2 =
N∑
i=1

λi(A1)λi(A2)xix
T
i , (21)

contains the same set of eigenvectors as A1 and A2 due to orthogonality of the eigen-
vectors. Lemma [1, p. 392] indeed tells us that if any two matrices B and C have a 
common complete set of eigenvectors, then B and C commute. Relation (21) may be 
regarded as another demonstration of that Lemma. The diagonal element (A1A2)ii =∑N

k=1(A1)ik(A2)ik equals the number of common neighbors of node i in G1 and G2, i.e. 
each node k for which (A1)ik = (A2)ik = 1.

The N ×N Hadamard product Ac = A1 ◦A2 represents the adjacency matrix of the 
graph Gc (Nc,Lc), composed of common links Lc = L1 ∩ L2 between G1 and G2,

Ac =
(

N∑
i=1

λi(A1)xix
T
i

)
◦

⎛⎝ N∑
j=1

λj(A2)xjx
T
j

⎞⎠ . (22)
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Using the distributive property of a Hadamard product [10, p. 32], we transform (22) as

Ac =
N∑
i=1

N∑
j=1

λi(A1)λj(A2)
(
xix

T
i

)
◦
(
xjx

T
j

)
.

The Hadamard product of outer products xix
T
i and xjx

T
j is written [10] as(

xix
T
i

)
◦
(
xjx

T
j

)
= diag(xi)xjx

T
j diag(xi) = (xi ◦ xj) (xi ◦ xj)T

simplifying (22) further as

Ac =
N∑
i=1

N∑
j=1

λi(A1)λj(A2) (xi ◦ xj) (xi ◦ xj)T . (23)

Definition 3. Two co-eigenvector graphs G1 and G2 are called non-overlapping if they do 
not share common links.

Another way to determine the number of common links between G1 and G2 is by 
summing the elements of the product A1A2 on the main diagonal

2|L1 ∩ L2| = trace (A1A2) . (24)

Theorem 4. Consider two co-eigenvector graphs G1(N , L1) and G2(N , L2) on N nodes, 
defined by the N × N adjacency matrices A1 and A2, respectively. Graphs G1 and G2
are non-overlapping if their eigenvalue vectors are orthogonal.

Proof. Since the graph Gc, with the N × N adjacency matrix Ac defined in (23), is 
composed of common links between G1 and G2, twice the number of common links 
between the co-eigenvector graphs G1 and G2 equals the sum of elements of Ac

2|L1 ∩ L2| = uT (A1 ◦A2)u = uTAcu (25)

where u denotes the all-one vector. By substituting (23) into (25) we obtain

2|L1 ∩ L2| =
N∑
i=1

N∑
j=1

λi(A1)λj(A2)uT (xi ◦ xj) (xi ◦ xj)T u.

The inner product (xi ◦ xj)T u = xT
i xj equals 1 if i = j, otherwise 0, because the eigen-

vectors of a symmetric adjacency matrix are orthogonal. Thus, relation (25) simplifies 
to

2|L1 ∩ L2| = (λ(A1))T λ(A2). (26)
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Since “non-overlapping” in Definition 3 means that |L1∩L2| = 0, relation (26) completes 
the proof. �

Theorem 4 states that if two co-eigenvector graphs G1 and G2 do not share common 
links, their eigenvalue vectors λ(A1) and λ(A2) are orthogonal. The vectors λ(A1) and 
λ(A2) span the kernel space of the N × N matrix Ξ = X ◦ X, as shown in the proof 
of Theorem 2, provided that rank(Ξ) = N − 2. The sum of two non-overlapping co-
eigenvector graphs A1 and A2 is another co-eigenvector graph As = A1 + A2, with the 
eigenvalue vector λ(As) = λ(A1) +λ(A2), as derived in (20). Thus, the eigenvalue vector 
λ(As) also lies in the kernel space of the matrix Ξ, and, hence, rank(Ξ) ≤ N − 2.

The Hadamard product in (23) allows us to determine the number of non-common 
links in G1 and G2.

Corollary 2. Consider a pair of co-eigenvector graph G1(N , L1) and G2(N , L2) on N
nodes with corresponding adjacency matrices A1 and A2, respectively. The number of 
non-common links in G1 and G2 is given by

|L1 \ L2| + |L2 \ L1| =
N∑
i=1

(λi(A1) − λi(A2))2 (27)

Proof. A graph Gu (N , (L1 \ L2) ∪ (L2 \ L1)) contains only non-common links of G1 and 
G2 and has the corresponding N ×N adjacency matrix Au = A1 +A2 − 2 (A1 ◦A2). By 
using the identity A ◦ A = A, that holds for any zero-one matrix, and importing (23), 
we obtain

Au = A1 ◦A1 + A2 ◦A2 − 2 (A1 ◦A2) (28)

=
N∑
i=1

N∑
j=1

(λi(A1)λj(A1) + λi(A2)λj(A2) − 2λi(A1)λj(A2)) (xi ◦ xj) (xi ◦ xj)T

from which the number of not-common links in G1 and G2 is computed as the sum of 
elements of Au

uTAuu =
N∑
i=1

(
λ2
i (A1) + λ2

i (A2) − 2λi(A1)λi(A2)
)
,

which completes the proof. �
An equivalent way to compute the number of not-common links in G1 and G2 is to 

subtract twice the number of common links in G1 and G2 from the sum of elements of 
A1 + A2

|L1 \ L2| + |L2 \ L1| = uT (A1 + A2)u− 2 · trace (A1A2) , (29)
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which, after substituting (20) and (21) again leads to (27). The adjacency matrix Au

with only non-common links in G1 and G2 in (28), using the distributive property of the 
Hadamard product, can be transformed into

Au = (A1 −A2) ◦ (A1 −A2), (30)

where relation (30) holds for adjacency matrices A1 and A2 of any two unweighted graphs 
G1 and G2.

6.1. Regular graphs

In a regular graph Gr on N nodes, defined by the N ×N adjacency matrix Ar, each 
node has the same degree r. The complement graph Gc

r of Gr is also a regular graph 
with degree q = N − 1 − r and the N ×N adjacency matrix [1, p. 15] is

Ac
r = J − I −Ar, (31)

where the N×N all-one matrix is denoted by J = u.uT . Since each node in Gr has degree 
r, it holds that Aru = dr = ru. Thus, the principal eigenvalue λ1(Ar) = r corresponds 
to the principal eigenvector x1 = 1√

N
u. The remaining N − 1 eigenvectors of Ar are 

orthogonal to u, implying that uTxj = 0 or

N∑
i=1

(xj)i = 0, (32)

where 1 < j ≤ N . The following theorem is also provided in [14, p. 15].

Theorem 5. A regular graph Gr on N nodes with degree r and its complement graph Gc
r

compose a pair of co-eigenvector graphs.

Proof. By multiplying the N × N adjacency matrix Ac
r of the complement graph Gc

r, 
defined in (31), with the eigenvector xj of Ar, where j > 1, we obtain

Ac
rxj = (J − I −Ar)xj .

From (32) we conclude that Jxj = uuTxj = 0 and the above equation becomes

Ac
rxj = (−1 − λj(Ar))xj . (33)

Additionally, multiplying the adjacency matrix Ac with the principal eigenvector 1√
N
u

yields

Ac
r

1√ u = (J − I −Ar)
1√ u = (N − 1 − r1)

1√ u

N N N
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showing that the adjacency matrix Ac
r shares the same eigenvectors with Ar, which 

completes the proof. �
Relation (33) shows that the adjacency matrix Ac

r of the complement graph Gc
r of a 

regular graph possesses the spectral decomposition

Ac
r = N − 1 − r

N
uuT +

N∑
j=2

(−1 − λj(Ar))xjx
T
j . (34)

Theorem 4 states that the eigenvalue vectors λ(Ar) and λ(Ac
r) are orthogonal. Indeed, 

the inner product (λ(Ar))Tλ(Ac
r) transforms, after using (34), into

(λ(Ar))Tλ(Ac
r) = r(N − 1 − r) +

N∑
j=2

λj(Ar) (−1 − λj(Ar))

= r ·N −

⎛⎝r +
N∑
j=2

λj(Ar)

⎞⎠−

⎛⎝r2 +
N∑
j=2

(λj(Ar))2
⎞⎠ .

(35)

The adjacency matrix Ar represents a simple graph without self-loops and thus 
trace(Ar) =

∑N
i=1 λi(Ar) = 0. Further, the sum of squared eigenvalues is 

∑N
i=1(λi(Ar))2

= r · N , simplifying (35) to (λ(Ar))T · λ(Ac
r) = 0. The following Corollary is proved in 

[14, p. 15], while we provide another proof.

Corollary 3. The eigenvectors of a regular graph Gr on N nodes and degree r are also 
eigenvectors of the complete graph KN on N nodes, implying that a regular graph Gr

and the complete graph KN compose a pair of co-eigenvector graphs.

Proof. The sum of adjacency matrices Ar of a regular graph Gr and Ac
r of its complement 

graph Gc
r establishes the adjacency matrix J−I = Ar+Ac

r of the complete graph KN , as 
directly follows from (31). By substituting (20) and (34), the previous relation transforms 
into

J − I =
(

r

N
+ N − 1 − r

N

)
· uuT +

N∑
j=2

(λj(Ar) + (−1 − λj(Ar))) · xjx
T
j ,

while after grouping terms, the adjacency matrix of the complete graph KN becomes

J − I = N − 1
N

· uuT −
N∑
j=2

xj · xT
j , (36)

from which we observe that the complete graph KN , together with a regular graph 
Gr (or with its complement graph Gc

r) compose a pair of co-eigenvector graphs, which 
completes the proof. �
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Fig. 5. Example of pairs of regular co-eigenvector graphs on N = 6 nodes. Each regular graph is enclosed in a 
circle, where circles are connected if the two corresponding regular graphs compose a pair of co-eigenvector 
graphs.

Corollary 4. Not each set of eigenvectors of the complete graph KN can represent the 
eigenvectors of a regular graph Gr.

Proof. In Section 3.3, we have shown two orthogonal eigenvector matrices of the complete 
graph with maximally different rank(Ξ) = 1 and rank(Ξ) = N − 1. Corollary 1 tells us 
that the N × N eigenvector matrix XKN

in (15) with rank(Ξ) = N − 1 determines 
the complete graph KN uniquely. In other words, the eigenvectors in (15) cannot be 
the eigenvectors of a non-complete regular graph Gr, although the eigenvectors of any 
regular graph Gr can also be the eigenvectors of the complete graph KN . As illustrated 
by XKN

in (15), the reverse does not always hold, which completes the proof. �
Corollary 3 shows that a regular graph Gr together with the complete graph KN

compose a pair of co-eigenvector graphs. However, Corollary 4 informs us that two regular 
graphs Gr1 and Gr2 do not form a pair of co-eigenvector graphs, in general. Fig. 5 presents 
the pairs of co-eigenvector graphs of size N = 6 that are regular graphs.

6.2. Irregular co-eigenvector graphs

The definition of co-eigenvector graphs imposes a strong constraint on the N × N

adjacency matrix A of an undirected graph G. The N × 1 all-one vector u is [1, Sec. 3.3]
the only eigenvector, corresponding to the principal eigenvalue λ1 = r of a regular graph 
Gr with degree r. Thus, a regular graph Gr and an irregular graph G1 cannot form a 
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pair of co-eigenvector graphs. Therefore, it is relevant to study how often co-eigenvector 
graphs emerge among irregular graphs.

We consider the N ×N adjacency matrix A1 of a graph G1 and the N ×N adjacency 
matrix A2 of a relabeled graph G2, such that

A2 = PTA1P, (37)

where the N × N permutation matrix P [1, p. 43] is an orthogonal matrix, satisfying 
PTP = I. In other words, the adjacency matrices A1 and A2 define two isomorphic 
graphs. While G1 and G2 are co-spectral graphs and share the same set of eigenvalues, 
because a permutation does not influence eigenvalues [1], they are not a pair of different 
co-eigenvector graphs.

Graph relabeling does not affect the eigenvalues of an adjacency matrix. On the other 
side, two isomorphic graphs in general do not constitute a pair of co-eigenvector graphs.

Corollary 5. Consider a pair of co-eigenvector graphs G1 and G2, with the corresponding 
N ×N adjacency matrices A1 and A2. When using the same N ×N permutation matrix 
P , the relabeled graphs G1 and G2 still compose a pair of co-eigenvector graphs.

Proof. The i-th eigenvector xi corresponds to the i-th eigenvalue λi(A1), but also to 
the i-th eigenvalue λi(A2). After permutation with P , the relabeled eigenvector PTxi

satisfies the eigenvector equation for both relabeled graphs

PTA1P (PTxi) =PTA1xi = λi(A1)(PTxi)

PTA2P (PTxi) =PTA2xi = λi(A2)(PTxi),

where i ∈ N . Thus, relabeled graphs G1 and G2 share eigenvectors, which completes the 
proof. �

Corollary 5 is understood geometrically. The N eigenvectors of an adjacency matrix 
A define a polytope on N points in the N -dimensional space. If two adjacency matrices 
A1 and A2 form a pair of co-eigenvector graphs, the N × N eigenvector matrix X of 
both adjacency matrices contains the same polytope in the N -dimensional space. The 
permutation matrix P changes the coordinate system, but not the nature of the polytope 
on N points.

7. Identifying co-eigenvector graphs

We identify pairs of co-eigenvector graphs of different size N . Firstly, for a fixed N , 
we create all possible unlabeled graphs. The first co-eigenvector graphs, that are not
regular graphs, occur for N = 6. We present an algorithm, with metacode in Fig. 6, for 
identifying pairs of co-eigenvector graphs, among all possible connected, irregular graphs 
with N nodes based on permutation or relabeling (Section 6.2). The N ×N adjacency 
matrix A of each possible unlabeled graph with N nodes is provided as input to the 
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CoEigenvectorGraphs(A1, A2, . . . ANu
)

Input: A1, A2, . . . ANu

Output: C
1. C ← ONu×Nu

2. for i ← 1 to Nu − 1
3. for j ← i + 1 to Nu

4. Xi ← N × N eigenvector matrix of Ai

5. Xj ← N × N eigenvector matrix of Aj

6. m ← 1
7. while (Cij = 0) and (m < N !)
8. Pm ← N × N m-th permutation matrix
9. Ti ← (PmXi)T Aj (PmXi)
10. Tj ← (PmXj)T Ai (PmXj)
11. if (I ◦ Ti = Ti) or (I ◦ Tj = Tj)
12. Cij ← 1, Cji ← 1
13. end if
14. m ← m + 1
15. end while
16. end for
17. end for
18. return C

Fig. 6. Pseudocode for identifying co-eigenvector graphs among all possible unlabeled graphs with N nodes 
(in total Nu of them), provided as input.

algorithm. Using the double for loop (line 2-3), we examine each pair of graphs. Graph 
relabeling in (37) affects eigenvectors. Therefore, we need to account for each possible 
permutation whether a pair of non-isomorphic graphs share the same eigenvectors. In 
line 9, we define each possible N×N permutation matrix P and observe that the matrix 
(PXj)T Ai (PXj) is a diagonal matrix only if (PXj) = Xi. The proposed algorithm 
returns the Nu ×Nu matrix C, whose entry Cij = 1 if graphs Gi and Gj share the same 
eigenvectors, otherwise Cij = 0.

Computing all Nu unlabeled graphs on N nodes is intractable for large N , because 

their number increases as O
(

2(N2 )
N !

)
. Furthermore, the proposed algorithm in Fig. 6

cannot guarantee that each pair of co-eigenvector graphs, for a given network size N , 
is identified. The limitation is due to the fact that some graphs may contain multiple 
sets of eigenvectors (i.e. multiple different orthogonal X-matrices), while the algorithm 
in Fig. 6 computes, for each adjacency matrix Ai, only one N × N eigenvector matrix 
Xi (line 4-5).

Some examples of irregular co-eigenvector graphs with N = 6 nodes are drawn in 
Fig. 7. The algorithm identified two triples of co-eigenvector graphs with N = 6 nodes. 
Fig. 8 overviews the identified irregular, connected and unlabeled, co-eigenvector graphs 
with N = 7 nodes.

8. Conclusion and open questions

The proof of Theorem 2 relies on the zero-one structure of the adjacency matrix and 
reveals that only unweighted graphs can be recovered when rank(Ξ) < N−1. The idea to 
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Fig. 7. Pairs of non-regular, unlabeled, co-eigenvector graphs with N = 6 nodes.

reconstruct the unweighted, undirected graph from the orthogonal eigenvector matrix X
of the adjacency matrix A can be extended similarly to the orthogonal eigenvector matrix 
Z of the Laplacian Q = Δ − A. The remainder of the paper has deduced properties of 
co-eigenvector graphs. In particular, irregular co-eigenvector graphs, that are less trivial 
to find than their regular companions, are found by a rather exhaustive algorithm, based 
on Theorem 2 and the rank of the matrix Ξ.

A deeper knowledge of the matrix Ξ is desirable. The meaning of the rank(Ξ) turns 
out to be difficult. For example, if the graph is connected, then rank(Ξ) can be smaller 
than N − 1. The reverse also is observed: if rank(Ξ) = N − 1, then the graph can be 
disconnected. The relation between rank(Ξ) and the number of distinct eigenvalues of 
the adjacency matrix A is also unclear. The relation to the diameter of the graph needs 
to be investigated. It is also unclear whether the matrix Ξ is diagonalizable. Since Ξ is 
doubly-stochastic, the underlying associated Markov graph is connected and the matrix 
Ξ is irreducible [15]. However, an irreducible matrix may still possess a Jordan block. 
Another question concerns the number of co-eigenvector graphs of size N and its relation 
to rank(Ξ). Simulations suggest that the less structure or symmetry a graph possesses, 
the higher the probability that rank(Ξ) = N − 1.

Earlier [16], the reconstructability coefficient θ was defined as the smallest value of 
m in Ã =

∑m
k=1 λkxkx

T
k that allows us to exactly reconstruct the zero-one adjacency 

matrix A. Fig. 9 seems to suggest for small Erdős-Rényi graphs that there is hardly 



P. Van Mieghem, I. Jokić / Linear Algebra and its Applications 689 (2024) 34–59 57
Fig. 8. Pairs of non-regular, unlabeled, co-eigenvector graphs with N = 7 nodes.

any correlation between the reconstructability coefficient θ and rank(Ξ). Perhaps, other 
graph classes or/and larger graphs may reveal a relation?

Furthermore, one may ask whether the confinement to undirected graphs, that pos-
sess a symmetric adjacency matrix, can be relaxed to directed graphs, whose general 
eigenvector matrix X may be complex. If that extension is favorable, one may consider 
Hermitian matrices, which may open possible applications to quantum mechanics and 
quantum computing. Data measured over time on complex networks is often related to a 
dynamic process that runs on the underlying graph. If that dynamic process is linear or 
proportional to the graph (as e.g. the flow of currents in a resistor or impedance network 
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Fig. 9. Correlation between reconstructability coefficient θ and the rank(Ξ) for ER graphs with N = 8 (left-
hand side figures), N = 15 (figures in the middle) and N = 30 nodes (right-hand side figures). The link 
density p is varied between p = 3 log N

4N and p = 3 log N
2N , while 105 connected graphs are generated for each 

network size N .

[17]), then the eigendecomposition of the graph is reflected by that data and Theorem 2
may provide insight in the underlying topology on which data is collected.

At last, from an information theoretical point of view discussed in [18], Theorem 2 is 
not surprising, because the presentation of the orthogonal X matrix needs more digits 
(i.e. more information) than the zero-one adjacency matrix.
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