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Abstract

Although eigenvectors belong to the core of linear algebra, relatively few closed-form expressions

exist, which we bundle and discuss here. A particular goal is their interpretation for graph-related

matrices, such as the adjacency matrix of an undirected, possibly weighted graph.

1 Introduction

The eigenvectors x1, x2, . . . , xN of an N × N symmetric matrix A, belonging to the real eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λN respectively, are orthogonal. The classical proof (see e.g. [1], [2, p. 88-90], [3,

art. 237, 247]) is elegant and a pearl in linear algebra. The proof relies on the eigenvalue equation

Axk = λkxk and on geometry, in particular, on the notion of independent vectors that span an N -

dimensional space. One of the most powerful properties of the set {xk}1≤k≤N of eigenvectors is that

they form an orthogonal coordinate frame [3, Sec. 1.3, art. 191] that represents any vector into the

eigenbasis of the symmetric matrix (operator) A. Orthogonality is a powerful property, that also

appears in the theory of functions (e.g. Fourier series and orthogonal polynomials), as overwhelmingly

shown in Lanczos’s beautiful book [2]. Here in Section 3, we give another demonstration of the

orthogonality of eigenvectors, that does not rely on “geometry nor spaces”, but only on the Caley-

Hamilton theorem, Cramer’s method and Taylor’s theorem.

A main motivation, that started with [4] almost a decade ago, is to understand what eigenvector

components of graph-related matrices, such as the adjacency matrix, mean. The manuscript starts

in Section 2 with a couple of representations of the j-th component (xk)j of the eigenvector xk of

a symmetric matrix A belonging to eigenvalue λk with multiplicity 1. The elegant formula (xk)
2
j =

−det(A\{j}−λkI)
c′A(λk)

for 1 ≤ j, k ≤ N in (6), which was reviewed in [5], is extended in Section 4 to an

eigenvalue λk with multiplicity mk > 1. The closed-form formulae in Theorem 3 in Section 4 improve

Hagos’s result [6] and are applied to strongly regular graphs [7]. We proceed in Section 5 with the

interpretation of (xk)
2
j in terms of walks in graphs and concentrate in Section 6 on the stochastic,

asymmetric matrix Ξ = X ◦X with elements (xk)
2
j , because Ξ allows us to construct co-eigenvector
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graphs, as demonstrated in [8], provided rank(Ξ) < N−1. An open question remains the determination

of the rank(Ξ) or, equivalently, the multiplicity of the zero eigenvalue of the stochastic matrix Ξ of

an adjacency matrix. Alternatively, what are the conditions imposed on the matrix X or Ξ in order

to construct from them co-eigenvector graphs? The final Section 7 proposes to consider the squared

eigenvector component (xk)
2
j as a graph metric, but also points to the weakness of the dependence

among those graph metrics (xk)
2
j . Section 8 summarizes and poses open questions. Most proofs are

deferred to the Appendices.

2 Eigenvector components as determinants

The characteristic polynomial cA (λ) = det (A− λI) of an N ×N matrix A has, like any polynomial,

a product and a series representation [3, art. 235]

cA (λ) = det (A− λI) =

N∏
j=1

(λj − λ) =

N∑
k=0

ckλ
k (1)

Differentiation of log cA (λ) =
∑N

j=1 log (λj − λ) with respect to λ yields

c′A (λ) = −cA (λ)

N∑
j=1

1

λj − λ
= −

N∑
j=1

∏N
k=1 (λk − λ)

λj − λ
= −

N∑
j=1

N∏
k=1;k ̸=j

(λk − λ) (2)

from which

c′A (λm) = −
N∏

k=1;k ̸=m

(λk − λm) = (−1)N
N∏

k=1;k ̸=m

(λm − λk) (3)

The derivative c′A (λm) will play an important role in our story on eigenvector components, which is

a development of [4].

For simplicity and computational elegance, we limit the computation of eigenvector xk here in

Section 2 by assuming that the eigenvalue λk of the symmetric matrix A is single, thus with mul-

tiplicity one, mk = 1. A multiplicity mk > 1 is considered in Section 4. If the multiplicity mk of

eigenvalue λk equals one, then rank(A− λkI) = N − 1. This means that the eigenvalue equation

(A− λkI)xk = 0 contains only N − 1 linearly independent equations to determine the N unknowns

(xk)1 , (xk)2 , . . . , (xk)N . There are basically two approaches to determine the N unknowns: (i) one

of the N equations/rows in A − λkI can be replaced by an additional linear equation as explored in

Section 2.1 and (ii) the set is rewritten in N − 1 unknowns in terms of one of them, whose derivations

are in Section 2.2. These two approaches are complemented in Section 2.3 by a third method, based

on the adjoint matrix adj(A− λI) = cA (λ) (λI −A)−1, whose columns are eigenvectors.

2.1 Replacement of an arbitrary row in A− λkI by a new linear equation bTxk

We replace an arbitrary equation or row in the set (A− λkI)xk = 0 by a new linear equation bTxk =∑N
j=1 bj (xk)j , where b is a real vector and the real number βk = bTxk is non-zero. Let A\{j} denote

the (N − 1)× (N − 1) symmetric matrix, deduced from the N ×N symmetric matrix A after removal

of row j and column j.
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Theorem 1 Let the eigenvalue λk of the N ×N real, symmetric matrix A possess multiplicity 1. For

any vector b with βk = bTxk ̸= 0, the j-th component of eigenvector xk of A belonging to eigenvalue

λk can be written as

(xk)j =
βk det

(
A\{j} − λkI

)
det (A− λkI)row j=b

(4)

or

(xk)j = −
det (A− λkI)row j=b

βkc
′
A (λk)

(5)

where det (A− λkI)row j=b is the N × N matrix obtained from (A− λkI) by replacing row j by the

vector b. The square of the j-th component of eigenvector xk of A belonging to eigenvalue λk with

multiplicity 1 equals

(xk)
2
j = − 1

c′A (λk)
det
(
A\{j} − λkI

)
= −

cA\{j} (λk)

c′A (λk)
(6)

where cA (λ) = det (A− λI) is the characteristic polynomial of A and c′A (λ) = dcA(λ)
dλ .

The proof of Theorem 1 is presented in Appendix A.1. In particular in graph theory, the symmetric

matrix A and A\{j} denote the adjacency matrix of undirected graph G and of the graph G\{j} in

which node j and all its incident links are removed from G, respectively. Theorem 1 also holds for

any Hermitian matrix. Recently, a survey of formula (6), written for a Hermitian matrix A as

|xk|2j
N∏

i=1;i ̸=k

(λk (A)− λi (A)) =

N−1∏
i=1

(
λk (A)− λi

(
A\{j}

))
has appeared in [5], after a sequence of versions on arxiv1908.03795, in which “our” formula (6) also

plays a role in its history1.

The second proof of (6) in Appendix A.2 has appeared earlier in Cvetkovic et al. [9, Theorem 3.1],

who referred to Hagos [6], who in turn mentioned that Mukherjee and Datta [10] (using a perturbation

technique) and Li and Feng (only for the largest eigenvalue) have preceded him. Hagos [6] mentioned

rightly that “Eq. (6) is probably not as well known as it should be”, as witnessed by the appearance

of the survey [5].

2.2 The set is rewritten in N − 1 unknowns in terms of one of them

The second approach avoids the addition of a supplementary linear equation bTxk =
∑N

j=1 bj (xk)j =

βk.

Theorem 2 Let the eigenvalue λk of the N ×N real, symmetric matrix A possess multiplicity 1. The

eigenvector xk, belonging to the eigenvalue λk and normalized as xTk xk = 1, contains, for any integer

1 ≤ m ≤ N , as j-th component

(xk)j = (−1)j−m
det
(
(A− λkI)\ rowm\ col j

)
√∑N

l=1 det
2
(
(A− λkI)\ rowm\ col l

) for 1 ≤ j ≤ N (7)

1The story on 14 November 2019 in https://www.quantamagazine.org/neutrinos-lead-to-unexpected-discovery-in-

basic-math-20191113 contained a pointer to (6) in [4] which is now omitted.

3



which can also be written as

(xk)j = (−1)j−m
det
(
(A− λkI)\ rowm\ col j

)
√
−c′A (λk) det

(
A\{m} − λkI

) (8)

Two proofs of Theorem 2 are given in Appendix A.3. The second proof in Appendix A.3 illustrates

that Theorem 1 is more general than Theorem 2. On the other hand, when the multiplicity mk >

1, then the approach of reducing the number of equations is more straightforward and followed in

Appendix C. A slight variation on the second proof in Appendix A.3 leads to2

Corollary 1 The product of the j-th and m-th component of eigenvector xk of A belonging to eigen-

value λk with multiplicity 1 equals

(xk)j (xk)m =
(−1)j+m+1

c′A (λk)
det
(
A\ row j\ colm − λkI

)
(9)

Proof: We expand the determinant in (5) in the cofactors of row j and obtain, with βk =∑N
m=1 bm (xk)m,

N∑
m=1

bm (xk)m (xk)j = − (−1)j

c′A (λk)

N∑
m=1

(−1)m bm det
(
A\ row j\ colm − λkI

)
Since this relation holds for any vector b = (b1, b2, . . . , bN ), equating the corresponding coefficient bm

at both sides yields (9). □

When m = j in (9), we arrive again at (6). Hence, (9) generalizes (6).

In a similar vein, choosing m = j in (8) reduces to

(xk)j =
det
(
A\{j} − λkI

)√
−c′A (λk) det

(
A\{j} − λkI

)
indicating that the sign of (xk)j is determined by det

(
A\{j} − λkI

)
. We deduce from (6) that

(xk)
2
i

(xk)
2
j

=
det
(
A\{i} − λkI

)
det
(
A\{j} − λkI

) =
cA\{i} (λk)

cA\{j} (λk)
(10)

illustrating that det
(
A\{i} − λkI

)
and det

(
A\{j} − λkI

)
have the same sign for any pair of nodes (i, j)

for a given frequency λk, but, by (40), opposite to the sign of c′A (λk) (as verified from Fig. 1 below).

Applying (8) illustrates, for any 1 ≤ m ≤ N ,

(xk)i
(xk)j

= (−1)i−j det
(
A\ rowm\ col i − λkI

)
det
(
A\ rowm\ col j − λkI

)
and choosing m = j,

(xk)i
(xk)j

= (−1)i−j det
(
A\ row j\ col i − λkI

)
det
(
A\{j} − λkI

) (11)

shows that generally not much about the sign of the determinants can be concluded.

2Assuming the appropriate dimensions of the identity matrix I to obtain a square matrix in the brackets, we use both

equivalent notations: det
(
(A− λkI)\ rowm\ col j

)
= det

(
A\ rowm\ col j − λkI

)
.
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2.3 The adjoint matrix

Let us define

φ−1
km =

√√√√ N∑
l=1

(
det
(
A\ rowm\ col l − λkI

))2
=
√
−c′A (λk) det

(
A\{m} − λkI

)
(12)

Formulae (7) and (8) show that φkm is a non-negative scaling of the eigenvector xk. With the definition

of the adjugate of matrix A in [3, eq. (A.38) on p. 323],

(adjA)ij = (−1)i+j det
(
A\ row j\ col i

)
the eigenvector component (7), for any integer 1 ≤ m ≤ N , becomes

(xk)j = φkm (adj (A− λkI))jm (13)

We add [3, p. 339] that the adjoint matrix,

adj (A− λI) = (λI −A)−1 cA (λ)

rewritten as (A− λI)adj(A− λI) = −cA (λ) shows that our starting equation (A− λkI)xk = 0 is

indeed satisfied by (13). Incidentally [11, Chapter IV], we have given a third proof of the eigenvector

component (xk)j in (7) or (13).

We recall formula [3, (A.92) on p. 343] and its combination with (3),

xkx
T
k =

∏N
l=1;l ̸=k

A− λlI

λk − λl
=

(−1)N

c′A (λk)

∏N
l=1;l ̸=k (A− λlI) =

−1

c′A (λk)

N∏
l=1;l ̸=k

(λlI −A) (14)

which is a consequence of the Caley-Hamilton theorem and Taylor’s theorem [3, art. 228]. Appendix

B provides an operator calculus of the eigenvalue equation and deduces in an entirely algebraic way,

without involving the theory of functions and Taylor’s theorem, formula (14) in Section B.2. The

matrix element in (14),
(
xkx

T
k

)
jm

= (xk)j (xk)m = −1
c′A(λk)

(∏N
l=1;l ̸=k (λlI −A)

)
jm

, compared to (9),

leads to

(−1)j+m det
(
A\ row j\ colm − λkI

)
= (adj (A− λkI))mj =

 N∏
l=1;l ̸=k

(λlI −A)


jm

(15)

2.4 Consequences of the theory

Since the matrix A = AT is symmetric, the matrix (A− λI)\ rowm\ col l = (A− λI)T\ row l\ colm =

(A− λI)\ row l\ colm is asymmetric and the zeros of the polynomial det
(
(A− λI)\ rowm\ col l

)
with real

coefficients can be complex conjugate. The polynomials of the set
{
det
(
(A− λI)\ rowm\ col l

)}
1≤m,l≤N

with highest degree are those on the diagonal, i.e. when m = l and det
(
(A− λI)\ rowm\ colm

)
=

det
(
A\{m} − λI

)
, because the resulting matrix after the removal of row m and column l contains

two λ entries less than the original matrix A − λI if m ̸= l, whereas only one λ entry less if m = l.

Moreover, the polynomials det
(
A\{m} − λI

)
have real zeros, because AG\{m} − λI is symmetric.
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Since the cofactor expansion of the determinant det (A− λkI) along row m is

det (A− λkI) =
N∑
j=1

(amj − λkδjm) (−1)m−j det
(
(A− λkI)\ rowm\ col j

)
(16)

we find from (8) that

det (A− λkI)√
−c′A (λk) det

(
A\{m} − λkI

) =
N∑
j=1

(amj − λkδjm) (xk)j

which is the row m of the eigenvalue equation Axk = λkxk, because det (A− λkI) = cA (λk) = 0.

Furthermore, the cofactor expansion (16) expresses, for any 1 ≤ m ≤ N , the k-th eigenvalue as

λk =

∑N
j=1 amj (−1)m−j det

(
(A− λkI)\ rowm\ col j

)
det
(
A\{m} − λkI

)
= amm +

N∑
j=1;j ̸=m

amj (−1)m−j
det
(
(A− λkI)\ rowm\ col j

)
det
(
A\{m} − λkI

)
With (11), we find, for any 1 ≤ m ≤ N , that λk − amm =

∑N
j=1;j ̸=m amj

(xk)j
(xk)m

. Now, we choose

m such that |(xk)m| ≥
∣∣∣(xk)j∣∣∣ for any 1 ≤ j ≤ N . After taking the absolute value, we arrive at

|λk − amm| ≤
∑N

j=1;j ̸=m |amj |, which proves Gerschgorin’s Theorem [3, art. 245] and, in addition, that

there3 is a value of m for which

∣∣∣∣det((A−λkI)\ rowm\ col j)
det(A\{m}−λkI)

∣∣∣∣ ≤ 1 for any 1 ≤ j ≤ N . Thus, the polynomial

det
(
A\{m} − λI

)
with highest degree among the polynomials

{
det
(
(A− λI)\ rowm\ col j

)}
1≤m,j≤N

also numerically exceeds or equals in absolute value all others (with 1 ≤ j ≤ N) for a particular value

of m at a zero λ = λk with multiplicity mk = 1 of the polynomial det (A− λI).

The cofactor expansion of the determinant det
(
(A− λI)\ rowm\ col j

)
does not easily lead to an

expression for the eigenvectors of the N × N matrix A in terms of those of an (N − 1) × (N − 1)

submatrix of A, which would be helpful in graphs, because the addition or removal of a node frequently

occurs. Such a recursive relation is derived in [3, art. 259], but it is actually a spectral decomposition.

Another interesting observation from (8) and (15) is that the matrix X (λ) with elements

(x (λ))mj =
(−1)j+m det

(
(A− λI)\ rowm\ col j

)
√

−c′A (λ) det
(
AG\{m} − λI

) =
(adj (A− λI))mj√

−c′A (λ) det
(
AG\{m} − λI

)
that are ratio’s of polynomials in λ over the squareroot of polynomials in λ have different rows in m.

However, if λ = λk is an eigenvalue of A and all eigenvalues are different, then all rows are the same

by (8), because (x (λk))mj = (xk)j is independent of m.

Example For the matrix

3Numerical checks on the N ×N matrix R with elements rmj =
det((A−λkI)\ row m\ col j)

det(A\{m}−λkI)
show that there is only one

value of m for which |rmj | ≤ 1 for 1 ≤ j ≤ N , but different eigenvalues λk and λl may possess that same value m.
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A =


0 0 0 1 0

0 0 0 0 1

0 0 0 1 1

1 0 1 0 1

0 1 1 1 0


with eigenvalues λ = {2.30278, 0.618034, 0.,−1.30278,−1.61803}, the corresponding matrix X (λ) is

X (λ) =


λ4 − 4λ2 − 2λ+ 1 λ+ 1 λ2 + λ− 1 λ3 − 2λ λ2 + λ

λ+ 1 λ4 − 4λ2 − 2λ+ 1 λ2 + λ− 1 λ2 + λ λ3 − 2λ

λ2 + λ− 1 λ2 + λ− 1 λ4 − 3λ2 + 1 λ3 + λ2 − λ λ3 + λ2 − λ

λ3 − 2λ λ2 + λ −λ3 − λ2 + λ λ4 − 2λ2 λ3 + λ2

λ2 + λ λ3 − 2λ λ3 + λ2 − λ λ3 + λ2 λ4 − 2λ2

diag (φ)

where the diagonal elements of diag(φ) are the components of the vector

φ =



1√
(λ4−4λ2−2λ+1)(5λ4−15λ2−4λ+3)

1√
(λ4−4λ2−2λ+1)(5λ4−15λ2−4λ+3)

1√
(λ4−3λ2+1)(5λ4−15λ2−4λ+3)

1√
(λ4−2λ2)(5λ4−15λ2−4λ+3)

1√
(λ4−2λ2)(5λ4−15λ2−4λ+3)


Evaluating the above matrix X (λ) for λ1 = 2.30278 reduces to

X (λ1) =


0.245399 0.245399 0.490799 0.5651 0.5651

0.245399 0.245399 0.490799 0.5651 0.5651

0.245399 0.245399 0.490799 0.5651 0.5651

0.245399 0.245399 0.490799 0.5651 0.5651

0.245399 0.245399 0.490799 0.5651 0.5651


with the eigenvector x1 in each row.

3 Orthogonal eigenvector matrix X

The N × N orthogonal eigenvector matrix X with the eigenvectors x1, x2, . . . , xN in the columns

follows from (13) as

X =


(adj (A− λ1I))1m1

(adj (A− λ2I))1m2
· · · (adj (A− λNI))1mN

(adj (A− λ1I))2m1
(adj (A− λ2I))2m2

· · · (adj (A− λNI))2mN
...

...
. . .

...

(adj (A− λ1I))Nm1
(adj (A− λ2I))Nm2

· · · (adj (A− λNI))NmN

diag (φ)

where the vector φ = (φ1m1 , φ2m2 , . . . , φNmN
). In fact, we observe that X is a part of a three-

dimensional matrix (or tensor) with elements (adj (A− λkI))lm in the integers k, l and m. However,

m can be chosen at will and X is thus everywhere the same in the third m dimension.
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In the sequel, we will show that double orthogonality [3, art. 248] arises as a consequence of the

Caley-Hamilton theorem, Cramer’s method and Taylor’s theorem. Clearly, the particular scaling of

eigenvector xk by φkm in (12) plays an essential role in the orthogonality relations. Admittedly, the

proof is more complex than the classical, geometric proof.

3.1 The first orthogonality relation xT
k xl =

∑N
j=1 (xk)j (xl)j = δkl

With (xk)j = φkm (−1)j+m det
(
(A− λkI)\ rowm\ col j

)
in (13), the first orthogonality relation xTk xl =∑N

j=1 (xk)j (xl)j = δkl translates to

δkl = (−1)mk+ml φkmk
φlml

N∑
j=1

det
(
(A− λkI)\ rowmk\ col j

)
det
(
(A− λlI)\ rowml\ col j

)
where the sum is a non-trivial determinantal property that vanishes if k ̸= l. Substitution of (15)

gives

δkl = φkmk
φlml

N∑
j=1

 N∏
n=1;n̸=k

(λnI −A)


mkj

 N∏
q=1;q ̸=l

(λqI −A)


mlj

Invoking symmetry and matrix multiplication yields

δkl = φkmk
φlml

N∑
j=1

 N∏
n=1;n̸=k

(λnI −A)


mkj

 N∏
q=1;q ̸=l

(λqI −A)


jml

= φkmk
φlml

 N∏
n=1;n ̸=k

(λnI −A)
N∏

q=1;q ̸=l

(λqI −A)


mkml

(17)

The Taylor series f (A) =
∑N

k=1 f (λk)xkx
T
k in [3, (A.88) on p. 342], applied to f (x) =

c2A(x)

(x−λk)(x−λl)
in-

dicates that
∏N

n=1;n̸=k (λnI −A)
∏N

q=1;q ̸=l (λqI −A) = 0 if k ̸= l, because f (λk) = limx→λk

c2A(x)

(x−λk)(x−λl)
=

0. For k = l, the right-hand side bracket of (17) becomes N∏
n=1;n̸=k

(λnI −A)
N∏

q=1;q ̸=l

(λqI −A)


mkml

=

 N∏
n=1;n̸=k

(λnI −A)2


mkmk

The general polynomial formula f (A) =
∑N

k=1 f (λk)
∏N

n=1;n̸=k
(A−λnI)
(λk−λn)

in [3, (A.90) on p. 342] indi-

cates with f (x) =
(
cA(x)
x−λk

)2
that

N∏
n=1;n̸=k

(λnI −A)2 =
(
c′A (λk)

)2 N∏
n=1;n̸=k

(A− λnI)

(λk − λn)
= −c′A (λk)

N∏
n=1;n̸=k

(λnI −A)

Hence, with (15), N∏
n=1;n ̸=k

(λnI −A)2


mkml

= −c′A (λk)

 N∏
n=1;n̸=k

(λnI −A)


mkml

= (−1)mk+ml+1 c′A (λk) det
(
A\ rowmk\ colml

− λkI
)
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the Kronecker delta in (17) becomes with the definition (12) of φkm, for k = l,

φkmk
φkml

 N∏
n=1;n ̸=k

(λnI −A)2


mkml

= φkmk
φkml

(−1)mk+ml+1 c′A (λk) det
(
A\ rowmk\ colml

− λkI
)

=
(−1)mk+ml+1 c′A (λk) det

(
A\ rowmk\ colml

− λkI
)

−c′A (λk)
√
det
(
A\{mk} − λkI

)
det
(
A\{ml} − λkI

)
which is indeed equal to 1 if we choose mk = ml = m.

3.2 The second orthogonality relation
∑N

k=1 (xk)i (xk)j = δij

Formula (9) in Corollary 1 indicates that the second orthogonality relation
∑N

k=1 (xk)i (xk)j = δij is

(−1)j+m+1
N∑
k=1

det
(
A\ row j\ colm − λkI

)
c′A (λk)

= δjm (18)

Substitution of (15) into (18) yields

δjm =

 N∑
k=1

1

c′A (λk)

N∏
l=1;l ̸=k

(λlI −A)


jm

=

 N∑
k=1

N∏
l=1;l ̸=k

(A− λlI)

(λk − λl)


jm

The general polynomial formula f (A) =
∑N

k=1 f (λk)
∏N

l=1;l ̸=k
(A−λlI)
(λk−λl)

in [3, (A.90) on p. 342] indicates

for the above that f (x) = 1 = x0, which indeed demonstrates the second orthogonality relation (18).

Using (xk)j = φkm (−1)j+m det
(
(A− λkI)\ rowm\ col j

)
in (13) results in the more complicated

variant of the second orthogonality relation

δij =

N∑
k=1

φkm (−1)j+m det
(
(A− λkI)\ rowm\ col j

)
(−1)i+m φkm det

(
(A− λkI)\ rowm\ col i

)

= (−1)i+j+1
N∑
k=1

det
(
(A− λkI)\ rowm\ col j

)
det
(
(A− λkI)\ rowm\ col i

)
c′A (λk) det

(
A\{m} − λkI

)
But, since we can choose m at will, the choice i = m leads again to (18), because A is symmetric.

4 Eigenvalue λk has multiplicity mk > 1

Appendix C extends the first proof of Theorem 2 to an eigenvalue λk with multiplicity mk = 2. Al-

though computations with higher-order multiplicities are known to be more involved, especially in the

computations of residues of a complex function, Appendix C illustrates that the increase in complexity

is considerable. Hence, closed formulae for eigenvector components belonging to an eigenvalue λk of

multiplicity mk > 1 are rare and, perhaps, undesirable as they lack insight as well as mathematical

beauty. For the square of the eigenvector components, on the other hand, the situation is different.

Hagos [6, Theorem 4.1] has attempted to extend formula (6) and proposed (in our notation) that

mk∑
l=1

(xl)
2
j =

mk

c′A (λk)
det
(
A\{j} − λkI

)
9



where λk is an eigenvalue with multiplicity mk and xl is one of the mk orthogonal eigenvectors

belonging to eigenvalue λk. However, the above result of Hagos is only partially correct, because both

det
(
A\{j} − λkI

)
= c′A (λk) = 0 if mk > 1, resulting in an undefined right-hand side. Here in Theorem

3, we extend the theory on eigenvector components in Section 2 to eigenvalues with multiplicity higher

than one and give in (23) the exact, closed formula of Hagos’ result.

4.1 Preliminary consideration

If λk is an eigenvalue of A with multiplicity of two, then it holds that cA (λk) = c′A (λk) = 0. Moreover,

the derivative d
dλ det (A− λI) = −

∑N
n=1 det

(
A\{n} − λI

)
in (40) and the fact that det

(
A\{n} − λkI

)
must have the same sign due to (6) shows that all det

(
AG\{n} − λkI

)
must vanish, implying that λk is

then also an eigenvalue of all A\{n}, i.e. for each node n removed from the graph G. This observation

agrees with the Interlacing Theorem [3, art. 263] that tells us that all eigenvalues of A\{n} for each

1 ≤ n ≤ N are lying in between the eigenvalues of A. If two eigenvalues of A coincide (e.g. λk = λk+1),

the corresponding eigenvalue of each A\{n}, i.e. λk ≥ λ
(
A\{n}

)
≥ λk+1, is squeezed to that same value

λk. Appendix C shows for an eigenvalue λk with multiplicity mk = 2 that we can always find two

orthogonal eigenvectors xk and xk+1 belonging to eigenvalue λk, where at least one eigenvector has at

least one zero component, for example, (xk)m = 0.

If eigenvalue λk has multiplicity mk = 1, then it is possible that det
(
A\{n} − λkI

)
= 0 for a single

n, which implies that (xk)n = 0 by (39). The eigenvalue equation Axk = λkxk reduces then for row

n to (Axk)n =
∑N

j=1 anj (xk)j = 0, i.e. the n-th row an or n-th column aTn of the symmetric matrix

A is orthogonal the eigenvector, thus aTnxk = 0. If A is the adjacency matrix of a graph G, then

(Axk)n =
∑

j∈Nn
(xk)j = 0, where Nn is the set of direct neighbors of node n, means that the sum

of the eigenvector components of xk over all neighbors of node n vanishes. The Perron-Frobenius

theorem [12, Chapter XIII] for a reducible non-negative matrix A states that the principal eigenvector

x1 belonging to the largest eigenvalue λ1 has non-negative components, implying that
∑

j∈Nn
(x1)j = 0

is possible only if all (xk)j = 0. Hence, if
∑

j∈Nn
(x1)j = 0, then all nodes of a disconnected subgraph

containing node n possess a zero eigenvector component (xk)j = 0, but there must be subgraphs of

G whose nodes have positive eigenvector components (xk)l > 0, because the zero vector is never an

eigenvector.

4.2 Eigenvector components belonging to an eigenvalue with multiplicity exceed-

ing 1

Theorem 3 Let the eigenvalue λk of the N×N real, symmetric matrix A possess multiplicity mk > 1,

so that λk = λk+1 = · · · = λk+mk−1. The sum of the squared j-th component of all eigenvector xκ of

A belonging to eigenvalue λk with κ = k, k + 1, . . . , k +mk − 1 equals

k+mk−1∑
κ=k

(xκ)
2
j =

(−1)N (mk)!
dmk cA(λ)

dλmk

∣∣∣
λ=λk

(∏N
l=1;l ̸={k,k+1,...,k+mk−1} (A− λlI)

)
jj

(19)

or

k+mk−1∑
κ=k

(xκ)
2
j =

(∏N
l=1;l ̸={k,k+1,...,k+mk−1} (A− λlI)

)
jj∏N

j=1;j ̸={k,k+1,...,k+mk−1} (λk − λj)
=

(∏N
l=1;l ̸={k,k+1,...,k+mk−1}

A− λlI

λk − λl

)
jj

(20)

10



where
dmkcA (λ)

dλmk

∣∣∣∣
λ=λk

= (−1)N (mk)!
∏N

j=1;j ̸={k,k+1,...,k+mk−1} (λk − λj) (21)

Alternative forms are

k+mk−1∑
κ=k

(xκ)
2
j =

(−1)mk−1∑N−1
n1=1

∑N−2
n2=1 · · ·

∑N−mk−1
nmk−1=1 det

(
A\{j,n1,n2,...,nmk−1} − λkI

)
(mk − 1)!

∏N
j=1;j ̸={k,k+1,...,k+mk−1} (λj − λk)

(22)

and
k+mk−1∑

κ=k

(xκ)
2
j = − mk

dmk cA(λ)
dλmk

∣∣∣
λ=λk

N−1∑
n1=1

N−2∑
n2=1

· · ·
N−mk−1∑
nmk−1=1

det
(
A\{j,n1,n2,...,nmk−1} − λkI

)
(23)

Formulae (19)-(21) in Theorem 3 are proved in Appendix B.3, formulae (22) and (23) are proved

in Appendix B.4. If matrix A is the adjacency matrix of a graph G, then A\{j,n1,n2,...,nmk−1} is the

adjacency matrix of the graph obtained from the graph G, by first deleting the node j (and all its

incident links) to create the graph G\{j} and subsequently in G\{j} any possible combination of set

of mk − 1 nodes is removed. Instead of specifying a single eigenvector component (xκ)
2
j , Theorem 3

only allows us to compute the average 1
mk

∑k+mk−1
κ=k (xκ)

2
j over all mk squared eigenvector components

belonging to the same eigenvalue λk.

For example, if mk = 2 and c′′A (λk) =
d2cA(λ)

dλ2

∣∣∣
λ=λk

, then (23) reduces to

(xk)
2
j + (xk+1)

2
j

2
=

1

c′′A (λk)

N−1∑
n=1;n ̸=j

det
(
A\{j,n} − λkI

)
(24)

while (19) returns

(xk)
2
j + (xk+1)

2
j

2
=

1

c′′A (λk)

(∏N
l=1;l ̸={k,k+1} (λlI −A)

)
jj

(25)

The right-hand side of (24) sums over all the characteristic polynomials det
(
A\{j,n} − λkI

)
of graphs

G\{j,n} obtained from the original graph G where first node j is removed and in the resulting graph

G\{j}, subsequently every node is removed.

4.3 Strongly regular graphs

In this subsection, we apply Theorem 3 to strongly regular graphs. A strongly regular graph [3, art. 56]

is a regular graph (where all nodes have the same degree r), whose adjacency matrix has three distinct

eigenvalues, λ1 = r, λ2 with multiplicity m2 and λ3 with multiplicity m3. The largest eigenvalue λ1

of the adjacency matrix A of a connected graph has multiplicity m1 = 1 by the Perron-Frobenius

Theorem [3, art. 269]. Hence, following the recent book [7] of Brouwer and Van Maldeghem, it holds

that 1 +m2 +m3 = N and, from the property trace(A) =
∑N

j=1 λj = 0 for any adjacency matrix A,

it follows that r +m2λ2 +m3λ3 = 0. Solving the positive integers m2 and m3 from these two linear

equations yields

m2 = − (N−1)λ3+r
λ2−λ3

and m3 =
(N−1)λ2+r

λ2−λ3

If m2 ̸= m3, then Theorem 10 in [3, art. 269] states that the number of common neighbors of adjacent

nodes equals n1 = r + λ2 + λ3 + λ2λ3, while n2 = r + λ2λ3 is the number of common neighbors
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of non-adjacent nodes. Hence, n1 − n2 = λ2 + λ3 and, combined with r + m2λ2 + m3λ3 = 0 from

trace(A) = 0 allows us to solve the eigenvalue λ2 and λ3 as

λ2 =
(n1−n2)m3+r

m3−m2
and λ3 = − (n1−n2)m2+r

m3−m2

Since eigenvalues of the adjacency matrix are either integer or irrational [3, art. 45], we conclude

that all adjacency matrix eigenvalues of strongly regular graphs are integers, provided the multiplicity

m2 ̸= m3. If m2 = m3 = N−1
2 , then we arrive at the so-called “half case” [7, p. 3], where λ2 =

√
N−1
2

and λ3 =
−1−

√
N

2 .

We rewrite (20) for strongly regular graphs, by denoting k = 2 if k = 3 and k = 3 if k = 2,(∏N
l=1;l ̸={k,k+1,...,k+mk−1}

A− λlI

λk − λl

)
jj

=

(
A− λ1I

λk − λ1

(
A− λkI

λk − λk

)mk
)

jj

Since the matrices (A− λlI) and (A− λmI) commute (as explained in Appendix B) and λ1 = r, we

find

A− λ1I

λk − λ1

(
A− λkI

λk − λk

)mk

=
(A− rI)

∑mk
l=0

(mk
l

)
Al
(
−λk

)mk−l

(λk − r)
(
λk − λk

)mk

=
A1+mk +

∑mk
l=1

{(mk
l−1

) (
−λk

)1+mk−l − r
(mk

l

) (
−λk

)mk−l
}
Al − rI

(
−λk

)mk

(λk − r)
(
λk − λk

)mk

which leads, for the j-th eigenvector components belonging to eigenvalue λk with multiplicity mk, to

k+mk−1∑
κ=k

(xκ)
2
j =

A
1+mk
jj −

∑mk
l=1

(mk
l

) (
−λk

)mk−l
{
(mk+1)r−(r−λk)l

mk+1−l

}(
Al
)
jj
− r

(
−λk

)mk

(λk − r)
(
λk − λk

)mk

where
(
Al
)
jj

are the number of closed walks with l hops starting and ending at node j.

An example of a strongly regular graph with m2 = N − 2 and m3 = 1 are regular bipartite graphs

with N = 2m nodes, where λ1 = m = −λ3 and λ2 = 0, so that (20) for k = 2 simplifies, with(
A2
)
jj

= r and (A)jj = 0, to

k+N−3∑
κ=k

(xκ)
2
j =

(
(A− λ1I)

(
A− λkI

))
jj

(λk − λ1)
(
λk − λk

) =

(
A2 −

(
λ1 + λk

)
A+ λ1λkI

)
jj

(λk − λ1)
(
λk − λk

) =
r + rλk

(λk − r)
(
λk − λk

)
After evaluation, we find

∑N−1
κ=2 (xκ)

2
j = 1 − 1

m = 1 − 2
N , which is independent of j. Symmetry and∑N

k=1 (xk)
2
i = 1 suggest that (x1)

2
j = (xN )2j =

1
N , which indeed is correct [3, (6.28) on p. 213].

5 Walk expansion

We apply the theory, developed in the previous sections, to graphs and deduce a so-called walk

expansion in Theorem 4:

Theorem 4 If all eigenvalues of the adjacency matrix A are different, then the polynomial form of

(14) is

(xk)i (xk)j =
1∏N

l=1;l ̸=k (λk − λl)

N−1∑
r=Hij

br (k) (A
r)ij (26)
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where Hij is the hopcount (number of links) of the shortest path between node i and j and where the

coefficient br (k) obeys
∏N

j=1;j ̸=k (x− λj) =
∑N−1

j=0 bj (k)x
j and equals

br (k) =
1

r!

dr

dxr

N∏
j=1;j ̸=k

(x− λj)

∣∣∣∣∣∣
x=0

(27)

Proof : The Taylor series [3, (A.91)] of a function f (z) is a polynomial of degree n − 1 for any

n× n matrix A,

f (A) =
n−1∑
k=0

ck [f ]A
k (28)

where the coefficient ck [f ], which depends on the function f and on the eigenvalues of A, is

ck [f ] =
1

k!

n∑
m=1

f (λm)∏n
j=1;j ̸=m (λm − λj)

dk

dxk

n∏
j=1;j ̸=m

(x− λj)

∣∣∣∣∣∣
x=0

Applying (28) to the function f (z) = (−1)N cA(z)
(z−λq)

=
∏N

l=1;l ̸=q (z − λl) and the N ×N adjacency matrix

A of a graph G, the Taylor coefficient is

ck [f ] =
1

k!

N∑
m=1

limx→λm

cA(x)
(x−λq)∏N

j=1;j ̸=m (λm − λj)

dk

dxk

N∏
j=1;j ̸=m

(x− λj)

∣∣∣∣∣∣
x=0

=
1

k!

limx→λq

cA(x)
(x−λq)∏N

j=1;j ̸=q (λq − λj)

dk

dxk

N∏
j=1;j ̸=q

(x− λj)

∣∣∣∣∣∣
x=0

=
1

k!

∏N
j=1;j ̸=q (λq − λj)∏N
j=1;j ̸=q (λq − λj)

dk

dxk

N∏
j=1;j ̸=q

(x− λj)

∣∣∣∣∣∣
x=0

Since f (A) =
∏N

l=1;l ̸=q (A− λlI), its Taylor expansion (28) is

∏N
l=1;l ̸=q (A− λlI) =

N−1∑
r=0

1

r!

dr

dxr

N∏
j=1;j ̸=q

(x− λj)

∣∣∣∣∣∣
x=0

Ar

Formula (14) leads to (26) with coefficients br (k) in (27). Finally, (Ar)ij = 0 if r is smaller than the

number Hij of hops in the shortest path between node i and j. □

The coefficients br (k) in (27) in the walk expansion (26) are only function of the eigenvalues

{λk}1≤k≤N of the symmetric matrix A. Apart from bN (m) = 0, bN−1 (m) = 1, we have bN−2 (m) =

λm. More general, we can express br (k) in terms of the coefficients cn of the characteristic polynomial

(1) of the adjacency matrix as bk (m) = (−1)N−1

λk+1
m

∑k
n=0 cnλ

n
m.

The derivative c′A (λk) in (3) plays the role of a normalization factor so that the squared eigenvector
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components satisfy
∑N

j=1 (xk)
2
j = 1. Clearly, if i = j, then Hjj = 0 and (26) reduces to4

(xk)
2
j =

(−1)N

c′A (λk)

N−1∑
r=0

br (k) (A
r)jj (29)

but, if i ̸= j, then the hopcount Hij > 0 and (26) contains less terms in the sum than (29).

Theorem 4 expresses the product of two eigenvector components in terms of the eigenvalues and

the number (Ar)ij of walks with r hops (or links) between node i and j. The longest possible shortest

path in a graph contains N−1 hops and (Ar)ij equals [3] the number of shortest paths with r hops from

node i to node j, provided (Am)ij = 0 for all integers m < r. The squared eigenvector component

(xk)
2
j corresponding to node j in (29) sums over the number (Ar)jj of closed walks, starting and

ending at node j, of all possible lengths (expressed in number r of hops or links) up to N−1, weighted

by br (k) that determines how the number of closed walks influences any eigenvector components at

frequency λk. Thus, the appearance of (Ar)jj reflects5 the only dependence of (xk)
2
j on the node j,

while br (k) and c′A (λk) only change with frequency/eigenvalue λk.

Example When the hopcount of the shortest path in the graph between node i and j equals the

maximum possible Hij = N − 1, then (26) simplifies to

(xm)i (xm)j =

(
AN−1

)
ij
(−1)m−1

m−1∏
k=1

(λk − λm)
N∏

k=m+1

(λm − λk)

(30)

The product (xm)i (xm)j in (30) is always positive (negative) when m is odd (even)! The only possible

example of (30) occurs in the path graph. The eigenvalues [3, p. 203] of the path graph PN on N

nodes are λm (PN ) = 2 cos mπ
N+1 for 1 ≤ m ≤ N and the corresponding eigenvector component for node

j is (xm)j =
√

2
N+1 sin

(
πmj
N+1

)
. The unique longest shortest path is between node 1 and N so that(

AN−1
)
1N

= 1 and (30) leads to the (non-trivial) identity for any integer 1 ≤ m ≤ N ,

(−1)m−1 (N + 1)

2N sin
(

πm
N+1

)
sin
(
πmN
N+1

) =
m−1∏
k=1

(
cos

kπ

N + 1
− cos

mπ

N + 1

)
N∏

k=m+1

(
cos

mπ

N + 1
− cos

kπ

N + 1

)
4Invoking the normalization xT

k xk =
∑N

j=1 (xk)
2
j = 1 and Wr =

∑N
j=1 (A

r)jj , the total number of closed walks of

length r (with r hops), we obtain from (29) that

c′A (λk) = (−1)N
N−1∑
r=0

Wrbr (k)

Thus, (29) becomes

(xk)
2
j =

∑N−1
r=0 br (k) (A

r)jj∑N
j=1

∑N−1
r=0 br (k) (Ar)jj

5Perhaps the expression (29) may be related to Feynman diagrams that express all possible interactions of a particle

with others in some potential field.
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6 Stochastic matrix Ξ = X ◦X

The stochastic, asymmetric matrix Ξ = X ◦X, where ◦ denotes the Hadamard product [3, art. 274],

consists of the square of the components of the orthogonal matrix X

Ξ =



(x1)
2
1 (x2)

2
1 (x3)

2
1 · · · (xn)

2
1

(x1)
2
2 (x2)

2
2 (x3)

2
2 · · · (xn)

2
2

(x1)
2
3 (x2)

2
3 (x3)

2
3 · · · (xn)

2
3

...
...

...
. . .

...

(x1)
2
N (x2)

2
N (x3)

2
N · · · (xn)

2
N


(31)

and obeys Ξu = u and ΞTu = u, where u = (1, 1, . . . , 1) denotes the all-one vector. With (6), we have

Ξ =


det
(
A\{1} − λ1I

)
det
(
A\{1} − λ2I

)
· · · det

(
A\{1} − λNI

)
det
(
A\{2} − λ1I

)
det
(
A\{2} − λ2I

)
· · · det

(
A\{2} − λNI

)
...

...
. . .

...

det
(
A\{N} − λ1I

)
det
(
A\{N} − λ2I

)
· · · det

(
A\{N} − λNI

)

diag (χ)

where the vector χ =
(

−1
c′A(λ1)

, −1
c′A(λ2)

, . . . , −1
c′A(λN )

)
. In the sequel, we confine ourselves to the adjacency

matrix A of a simple, unweighted and undirected graph.

Due to Ξλ = 0 deduced in [3, art. 96] for an adjacency matrix A of a simple, unweighted and

undirected graph, the rank Ξ is at most N − 1 and thus det Ξ = 0. Equivalently, the stochastic

matrix Ξ has (at least) one zero6 eigenvalue ξ = 0. If rank(Ξ) = N − 1, then the eigenvalue vector

λ = (λ1, λ2, . . . , λN ) is the eigenvector belonging to eigenvalue ξ = 0. Thus, Ξλ = 0 translates, for

each 1 ≤ n ≤ N , to
N∑
k=1

λk

det
(
A\{n} − λkI

)
c′A (λk)

= 0

The property Ξλ = 0 suffices [8, Theorem 1] for the orthogonal matrix X alone to determine the

adjacency matrix A. Indeed, given the orthogonal matrix X, we can compute the matrix Ξ = X ◦X.

If rank(Ξ) = N − 1 or, equivalently, if there is a unique eigenvalue ξ = 0, then Ξλ = 0 has the

eigenvector λ as a unique solution for a zero-one matrix A, from which the diagonal matrix Λ =

diag(λ) follows. Finally, the spectral decomposition A = XΛXT allows us to construct the adjacency

matrix7 A of a graph G. The multiplicity of the zero eigenvalue of Ξ is important for the existence of

6In general, a doubly stochastic matrix does not possess a zero eigenvalue. For example, the doubly stochastic matrix 0.337 0.41375 0.24925

0.350787 0.318911 0.330301

0.312212 0.267339 0.420448


has eigenvalues 1., 0.114516,−0.0381555, while 0.46459 0.396328 0.139082

0.0875058 0.327341 0.585153

0.447904 0.276331 0.275765


has eigenvalues 1., 0.0338478 + 0.207248i, 0.0338478− 0.207248i.

7An eigenvector can be scaled by any non-zero number [3]. The proper scaling of the eigenvector λ of the matrix Ξ

(belonging to the zero eigenvalue) is found to produce zero-one elements of the adjacency matrix A.
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co-eigenvector graphs [8], which are graphs with the same orthogonal eigenvector matrix X but with a

different eigenvalue vector λ = (λ1, λ2, . . . , λN ). Hence, the orthogonal eigenvector matrix X contains

sufficient information to determine a non-empty graph precisely and contains information to find the

eigenvalue vector λ = (λ1, λ2, . . . , λN ).

Since the eigenvalues of diag(χ), i.e. its diagonal elements, can never be zero for finite N (because

c′A (λj) is always finite), the only zero eigenvalue – given that eigenvalues of A are simple – originates

from the matrix

Ξ′ =


det
(
A\{1} − λ1I

)
det
(
A\{1} − λ2I

)
· · · det

(
A\{1} − λNI

)
det
(
A\{2} − λ1I

)
det
(
A\{2} − λ2I

)
· · · det

(
A\{2} − λNI

)
...

...
. . .

...

det
(
A\{N} − λ1I

)
det
(
A\{N} − λ2I

)
· · · det

(
A\{N} − λNI

)

 (32)

Theorem 5 If eigenvalues of a symmetric matrix A are simple and the set of polynomials
{
cA\{n} (λ)

}
1≤n≤N

is linearly dependent, then the determinant det Ξ is zero.

Proof : A determinant is zero if a row (column) is a linear combination of some other rows

(columns). Row n in the matrix Ξ′ in (32) consists of N sampling points
{
λk,det

(
A\{n} − λkI

)}
1≤k≤N

of the polynomial det
(
A\{n} − λI

)
at λ = {λ1, λ2, . . . λN}. Since the polynomial det

(
A\{n} − λI

)
is

at most of order N − 1, the interpolating Lagrange polynomial through these N points completely

[3, art. 303] specifies det
(
A\{n} − λI

)
= cA\{n} (λ), which is the characteristic polynomial of the

graph G\{n} obtained from the original, undirected, possibly weighted graph G without self-loops

after removing node n and all its incident links. Finally, if det Ξ′ = 0, then it holds hold that

det Ξ = detΞ′ det (diag (χ)) = 0. □

Appendix E reformulates det Ξ′, unfortunately, without further insight.

7 The squared eigenvector component (xk)
2
j as a graph metric

1. Induced centrality metric. Everett and Borgatti [13] have defined the induced centrality Cf (j) of

node j for a graph function f , which is also called the vitality index in [14, Definition 3.6.1], by

Cf (j) = f (G)− f
(
G\{j}

)
(33)

Many known metrics can be formulated as induced centralities. For example, if the graph function f

is the total number of links in the graph, then the induced centrality Cf (j) is simply the degree dj of

node j. Since the eigenvalue λk of the adjacency matrix A is a zero of the characteristic polynomial,

cA (λk) = det (A− λkI) = 0, we can rewrite the square of the j-th component of eigenvector xk of A

belonging to eigenvalue λk (with multiplicity 1) in (6) as

(xk)
2
j =

det (AG − λkI)− det
(
AG\{j} − λkI

)
c′A (λk)

Choosing f (G) = det (AG − λkI), the definition (33) hints that c′A (λk) (xk)
2
j is an induced centrality,

but the eigenvalue λk = λk (AG) belongs to the graph G, but not necessarily to G\{j}.
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If we extend the definition (33) towards the λ-induced centrality metric,

Cf (j;λ) = f (G;λ)− f
(
G\{j};λ

)
where λ ∈ C is a complex parameter, then the choice f (G;λ) = det (AG − λI) produces the λ-induced

centrality metric

Cdet(AG−λI) (j;λ) = det (AG − λI)− det
(
AG\{j} − λI

)
= ξ (j;λ)

d

dλ
det (AG − λI)

If the parameter λ tends to the k-th eigenvalue λk of the adjacency matrix of the graph G (with

multiplicity 1), then

lim
λ→λk

Cdet(AG−λI) (j;λ) = −det
(
AG\{j} − λkI

)
= ξ (j;λk) c

′
A (λk)

and (6) shows that ξ (j;λk) = (xk)
2
j . Hence, the square of the j-th component of eigenvector xk of A

belonging to eigenvalue λk with multiplicity mk = 1 can be regarded as a centrality metric for node j,

(xk)
2
j =

Cdet(AG−λkI) (j;λk)

c′A (λk)

The eigenvector component (xk)j in either (4), (5) or (8) cannot be written in the form (33) of an

induced centrality. The latter observation makes sense, because if (xk)j were an induced centrality of

the node j, then any possible N × 1 vector would be an induced centrality, because any N × 1 vector

can be written as a linear combination of the N orthogonal eigenvectors x1, x2, . . . , xN of a symmetric

matrix A.

2. Amplitude. The magnitude of (xk)
2
j for node j in (6) depends on the characteristic polynomial

cA\{j} (λ) of the symmetric matrix A\{j} at the frequency λ = λk. As illustrated in Fig. 1, the

characteristic polynomials cA (x) and cA\{j} (x) oscillate around zero in the interval x ∈ [λN , λ1], that

contains all their real zeros. We coin the deviations in cA\{j} (x) from zero at λk the amplitude. Just as

in quantum mechanics (see e.g. [15, 16]), where the wave function can be complex, while its modulus

is interpreted as a probability, the eigenvector components (xk)j should be used in computations,

but we suggest, based on (6), to interpret (xk)
2
j as centrality metrics in a graph. Hence, for a graph

G, the importance or centrality of node j for property Pk embedded in the adjacency matrix A at

eigenfrequency λk is proportional to the amplitude of the characteristic polynomial at λk of the graph

in which that node j is removed. Thus, the centrality (xk)
2
j measures a kind of “robustness” or

“resilience”, in the sense of how important is the removal of node j from the graph G, determined

by the amplitude at frequency λk. In network robustness analyses, the removal of links or nodes

challenges the functioning of the network, measured via certain network metrics [17, 18]. The relative

impact or effect of the removal of a high degree node at the largest eigenfrequency λ1 is larger than

the removal of a low degree node [19]. However, at other eigenfrequencies, the reverse must hold due

to double orthogonality
∑N

k=1 (xk)
2
j = 1.

Equation (6) indicates that the addition (or removal) of a link to node j does not change (xk)j ,

because G\{j} means that, besides the node j itself, also all incident links to node j are removed from

the graph. However, a link addition/removal may change the eigenfrequencies {λk}1≤k≤N .
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Example For a connected Erdős-Rényi graph with link density p = 0.2, N = 10 nodes and the

degree vector d = (3, 3, 1, 4, 2, 2, 1, 2, 2, 2), Fig. 1 shows all 10 characteristic polynomials8 cA\{j} (λ)

and cA (λ), as well as its adjacency matrix A. At the vertical lines, that indicate the positions of

the eigenvalues of A, all values cA\{j} (λk) for 1 ≤ j ≤ 10 have a same sign, in agreement with (10).

The amplitude cA\{j} (λk) is a relative measure for (xk)
2
j and indicates the importance of node j at

frequency λk.

3. An ideal set of graph or centrality metrics. There exists a large number of proposed graph metrics

(see e.g. [20], [21, Section 15.6]). Nearly all graph metrics are non-negative real numbers that allow

to normalize them into the interval [0, 1]. Graph metrics that specify a property of a node are called

centrality metrics (e.g. the degree di of node i), while non-centrality metrics measure a global property

(e.g. connectivity or path lengths of a graph G). However, many graph metrics are strongly correlated,

which has led to an effort to cluster and combine correlated graph metrics [22, 23]. In practice, it is

desirable to have a set of m graph or centrality metrics that are as uncorrelated as possible, while their

number m is sufficient to characterize the graph well enough. Such a close-to-ideal set would enable

to compare graphs and to construct design rules for networks that possess the desired properties,

given by minimum or maximum values of the m graph metrics. For example, we can still not design

“robust/resilient” networks in mathematically precise way, mainly because “robust/resilient” is hard

to map to a set of m graph metrics.

Since both row vectors and column vectors (i.e. eigenvectors of the adjacency matrix A) of the

orthogonal matrix X are orthogonal (thus independent), and span the N -dimensional space (thus are

complete), one would expect that either the rows or columns of the matrix Ξ = X ◦X forms an ideal

set of centrality metrics. We have shown that (xk)
2
j can be regarded as a centrality metric. Section 6

indicates that the stochastic matrix Ξ of the adjacency matrix A of an undirected, possibly weighted

graph possesses a zero eigenvalue, which implies for any adjacency matrix A that rank(Ξ) < N and

that at least one row (or column) in Ξ is a linear combination of all the other rows (columns). Hence,

the set of centrality metrics {(rowΞ)i}1≤i≤N =
{
(x1)

2
i , (x2)

2
i , . . . , (xN )2i

}
1≤i≤N

for each node i is not

independent for the adjacency matrix, indicating that the set of centrality metrics belonging to node

i can be written in terms of the centrality metrics of some others nodes in G. There are only rΞ =

8The explicit expressions are

cA (x) = − 4 + 4x+ 27x2 − 10x3 − 52x4 + 8x5 + 38x6 − 2x7 − 11x8 + x 10

cA\{1} (x) = −2− 5x+ 6x2 + 17x3 − 6x4 − 19x5 + 2x6 + 8x7 − x 9

cA\{2} (x) = −4x+ 16x3 − 19x5 + 8x7 − x9

cA\{3} (x) = −8x+ 4x2 + 29x3 − 6x4 − 29x5 + 2x6 + 10x7 − x9

cA\{4} (x) = −4x+ 14x3 − 16x5 + 7x7 − x9

cA\{5} (x) = −2− 5x+ 8x2 + 20x3 − 8x4 − 23x5 + 2x6 + 9x7 − x 9

cA\{6} (x) = 2− 7x− 4x2 + 25x3 + 2x4 − 25x5 + 9x7 − x9

cA\{7} (x) = −2− 9x+ 6x2 + 30x3 − 6x4 − 29x5 + 2x6 + 10x7 − x 9

cA\{8} (x) = −4x+ 2x2 + 18x3 − 4x4 − 22x5 + 2x6 + 9x7 − x9

cA\{9} (x) = −4x+ 4x2 + 20x3 − 6x4 − 23x5 + 2x6 + 9x7 − x9

cA\{10} (x) = −4x+ 4x2 + 19x3 − 6x4 − 23x5 + 2x6 + 9x7 − x9
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Figure 1: The characteristic polynomials cA\{n} (λ) for 1 ≤ n ≤ N in red and cA (λ) in black for an

Erdős-Rényi graph G0.2 (10), whose adjacency matrix is also shown. The blue vertical lines denote

the eigenvalues of A (zeros of cA (λ)). All characteristic polynomials cA\{n} (λ) have the same sign at

a zero of cA (λ), as follows from (10).

rank(Ξ) ≤ N − 1 independent row vectors, implying that only rΞ centrality vectors of nodes in the

graph G have independent characteristics or properties. If rΞ = N−j and if there exist k ≤ j different

graphs with a different eigenvalue vector, but same orthogonal matrix X, then those k co-eigenvector

graphs [8] would have precisely the same sets centrality metrics. Moreover, we know that the rank(Ξ)

can be small and that a graph can have several different orthogonal matrices X with different rank(Ξ),

e.g. in the complete graph as shown in [8]. These considerations question whether {(rowΞ)i}1≤i≤N

can be regarded as a close-to-ideal set of centrality metrics.

8 Summary

Several computations of eigenvector components (xk)j of a symmetric matrix have been derived and

compared. The elegant formula (6) for (xk)
2
j , extended to higher multiplicity eigenvalues in Section

4, motivates to regard the set
{
(x1)

2
j , (x2)

2
j , . . . , (xN )2j

}
as centrality metrics for node j. We have

interpreted (xk)
2
j as an amplitude of a graph property of node j at eigenfrequency λk, which is still

unsatisfactory, because graph property here is vague and humans desire a precise or physical meaning.

So far, the challenge to understand the meaning of (xk)
2
j or (xk)j for any graph has defeated us.
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Therefore, we would like to place that challenge on the agenda for further study. However, even

if (xk)
2
j were physically understood, the study of the matrix Ξ = X ◦ X, revealing that a graph

G has only rΞ = rank(Ξ) ≤ N − 1 independent sets {(rowΞ)i}1≤i≤rΞ
, questions whether the set{

(x1)
2
j , (x2)

2
j , . . . , (xN )2j

}
is suitable as a set of centrality metrics.

In summary, the challenge to find a “best possible” set of non-negative centrality or graph metrics

is still an unsolved mathematical problem.
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A Proofs of Theorems

A.1 Proof of Theorem 1

Without loss of generality, we first replace the N -th equation in (A− λkI)xk = 0 by bTxk = βk and

the resulting set of linear equations becomes[
(A− λkI)\ rowN

bT

]
xk =

[
0(N−1)×1

βk

]

where (A− λkI)\ rowN is the (N − 1) × N matrix obtained from (A− λkI) by removing row N .

Cramer’s solution [3, art. 220] yields

(xk)j =

∣∣∣∣∣ (A− λkI)\ rowN

bT

∣∣∣∣∣
col j=

 0(N−1)×1

βk

∣∣∣∣∣ (A− λkI)\ rowN

bT

∣∣∣∣∣
=

(−1)N+j βk det (A− λkI)\ rowN\ col j

det (A− λkI)rowN=b

The j-th component of the k-th eigenvector xk can be written as9

(xk)j = αm (k) (−1)j det (A− λkI)\ rowm\ col j (34)

9Remark that the adjacency matrix AG\ rowm\ col i represents a directed graph in which the out-going links of node

m and the in-coming links to node i are removed; everywhere else, the in-coming and out-going links are the same

(bidirectional). Thus, AG\ rowm\ col i is not necessarily symmetric and it has |m− i| non-zero diagonal elements, ak+1,k

for m ≤ k < i.
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where we have now deleted row 1 ≤ m ≤ N , instead of row N as before, and where the scaling factor

is

αm (k) =
(−1)m βk

det (A− λkI)rowm=b

(35)

Combining (34) with (35) for m = j leads to (4).

We now impose the orthogonality equation xTk xk = 1. It follows from (34) that

(xk)
2
j = α2

m (k)
(
det (A− λkI)\ rowm\ col j

)2
Invoking the identity(

det
(
A\ rowm\ col j − λI

))2
= det

(
A\{m} − λI

)
det
(
A\{j} − λI

)
− det

(
A\{m,j} − λI

)
det (A− λI)

(36)

which can be deduced from Jacobi’s famous theorem of 1833 (see e.g. [24, p. 25]), yields

α−2
m (k) (xk)

2
j = lim

λ→λk

det
(
A\{m} − λI

)
det
(
A\{j} − λI

)
− det

(
A\{m,j} − λI

)
det (A− λI)

= det
(
A\{m} − λkI

)
det
(
A\{j} − λkI

)
(37)

The condition xTk xk =
∑N

n=1 (xk)
2
n = 1 specifies αm (k) as

α−2
m (k) = det

(
A\{m} − λkI

) N∑
n=1

det
(
A\{n} − λkI

)
(38)

We observe that there is a degree of freedom via the choice of m. Thus, for m = j in (34), we obtain

from (37) and (38)

(xk)
2
j =

det
(
A\{j} − λkI

)∑N
n=1 det

(
A\{n} − λkI

) (39)

that is independent of the choice of the vector b. Since [25],[3, art. 213],

N∑
n=1

det
(
A\{n} − λI

)
= − d

dλ
det (A− λI) = −c′A (λ) (40)

we arrive at (6). Combining (4) and (6) yields10 (5). □

A.2 Second proof of (6)

We start from the resolvent [3, art. 215, 262] of a symmetric matrix A

(A− zI)−1
jj =

det
(
A\{j} − zI

)
det (A− zI)

=

N∑
m=1

(xm)2j
λm − z

from which, using cA (λ) = det (A− λI) =
∏N

j=1 (λj − λ) and assuming that λk is simple,

det
(
A\{j} − λkI

)
=

N∑
m=1

(xm)2j lim
z→λk

∏N
j=1 (λj − z)

λm − z
= (xk)

2
j

N∏
j=1;j ̸=k

(λj − λk)

Invoking (3) yields (6). □

10We remark that taking the derivative of both sides of (5) with respect to bm results in (4).

22



A.3 Two proofs of Theorem 2

First Proof : The eigenvalue equation Axk = λkxk is equivalent to (A− λkI)xk = 0, which is

explicitly written as a set of linear equations

N∑
j=1

(arj − λkδrj) (xk)j = 0 for 1 ≤ r ≤ N

Since rank(A− λkI) = N − 1, we can delete an arbitrary equation or row, say i, in and obtain

(A− λkI)\ row i xk = 0. The set (A− λkI)\ row i xk = 0, consisting of N − 1 linear equations in N

unknowns, can be rewritten in terms of one unknown, the component (xk)m = η,

N∑
j=1;j ̸=m

(arj − λkδrj) (xk)j = − (arm − λkδrm) (xk)m for 1 ≤ r ≤ N and r ̸= i

and in matrix form,

(A− λkI)\ row i\ colm (xk)\ rowm = g

where the (N − 1)× 1 vector

g = −η
[
(a1m − λkδ1m) · · ·

(
a(i−1)m − λkδ(i−1)m

) (
a(i+1)m − λkδ(i+1)m

)
· · · (aNm − λkδNm)

]T
The vector g simplifies most if we choose i = m, because then the vector g does not depend upon the

eigenvalue λk anymore. With the choice i = m, we arrive at

(A− λkI)\{i} (xk)\ row i = −η
[
a1i · · · a(i−1)i a(i+1)i · · · aNi

]T
Cramer’s solution [3, art. 220] yields

(
(xk)\ row i

)
q
=

∣∣∣(A− λkI)\{i}

∣∣∣
col q=g

det
(
A\{i} − λkI

)
where the determinant

∣∣∣(A− λkI)\{i}

∣∣∣
col q=g

equals, denoting bjj = ajj − λk,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b11 · · · a1(i−1) a1(i+1) · · · a1(q−1) −ηa1i a1(q+1) · · · a1N
...

. . .
...

...
...

...
...

...

a(i−1)1 · · · b(i−1)(i−1) · · · · · · a(i−1)(q−1) −ηa(i−1)i a(i−1)(q+1) · · · a(i−1)N

a(i+1)1 · · · · · · b(i+1)(i+1) · · · a(i+1)(q−1) −ηa(i+1)i a(i+1)(q+1) · · · a(i+1)N
...

...
...

. . .
...

...
...

· · · b(q−1)(q−1) −ηa(q−1)i a(q−1)(q+1) · · · a(q−1)N

· · · aq(q−1) −ηaqi aq(q+1) · · · aqN

· · · a(q+1)(q−1) −ηa(q+1)i b(q+1)(q+1) · · · a(q+1)N
...

...
...

. . .
...

aN1 · · · aN(i−1) aN(i+1) · · · aN(q−1) −ηaNi aN(q+1) · · · bNN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Multiplying a row or column in a determinant by a same scalar is the same as multiplying the deter-

minant by that scalar [3, p. 321] and
∣∣∣(A− λkI)\{i}

∣∣∣
col q=g

= −η×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b11 · · · a1(i−1) a1(i+1) · · · a1(q−1) a1i a1(q+1) · · · a1N
...

. . .
...

...
...

...
...

...

a(i−1)1 · · · b(i−1)(i−1) · · · · · · a(i−1)(q−1) a(i−1)i a(i−1)(q+1) · · · a(i−1)N

a(i+1)1 · · · · · · b(i+1)(i+1) · · · a(i+1)(q−1) a(i+1)i a(i+1)(q+1) · · · a(i+1)N
...

...
...

. . .
...

...
...

· · · b(q−1)(q−1) a(q−1)i a(q−1)(q+1) · · · a(q−1)N

· · · aq(q−1) aqi aq(q+1) · · · aqN

· · · a(q+1)(q−1) a(q+1)i b(q+1)(q+1) · · · a(q+1)N
...

...
...

. . .
...

aN1 · · · aN(i−1) aN(i+1) · · · aN(q−1) aNi aN(q+1) · · · bNN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Thus, Cramer’s solution becomes

(
(xk)\ row i

)
q
= −η

∣∣∣(A− λkI)\{i}

∣∣∣
col q=(A\ row i)col i

det
(
A\{i} − λkI

)
After interchanging column q and column q− 1, then column q− 1 and column q− 2, then column

q − 2 and column q − 3, and so on until the l-th interchange where q − l = i, then column q, that

contains the vector ai = Acol i, is placed on column i, while column q− 1 is placed on column q. After

l = q − i interchanges of columns,
∣∣∣(A− λkI)\{i}

∣∣∣
col q=(A\ row i)col i

becomes

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b11 · · · a1(i−1) a1i a1(i+1) · · · a1(q−1) a1(q+1) · · · a1N
...

. . .
...

...
...

...
...

...

a(i−1)1 · · · b(i−1)(i−1) a(i−1)i · · · · · · a(i−1)(q−1) a(i−1)(q+1) · · · a(i−1)N

a(i+1)1 · · · · · · a(i+1)i b(i+1)(i+1) · · · a(i+1)(q−1) a(i+1)(q+1) · · · a(i+1)N
...

...
...

. . .
...

...
...

a(q−1)i · · · b(q−1)(q−1) a(q−1)(q+1) · · · a(q−1)N

aqi · · · aq(q−1) aq(q+1) · · · aqN

a(q+1)i · · · a(q+1)(q−1) b(q+1)(q+1) · · · a(q+1)N
...

...
...

. . .
...

aN1 · · · aN(i−1) aNi aN(i+1) · · · aN(q−1) aN(q+1) · · · bNN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
but this determinant is difficult to evaluate, because not all elements bjj = ajj−λk are on the diagonal.

Thus, it is instructive to choose i equal to N . If i = N , then we observe that∣∣∣(A− λkI)\{N}

∣∣∣
col q=(A\ rowN)colN

= −η (−1)q−N det
(
(A− λkI)\ rowN\ col q

)
Hence, Cramer’s solution simplifies to

(
(xk)\ rowN

)
q
= −η (−1)q−N

det
(
(A− λkI)\ rowN\ col q

)
det
(
A\{N} − λkI

)
24



Normalization xTk xk = 1 then yields

1 = η2 +

N−1∑
q=1

(
(xk)\ rowN

)2
q
= η2

1 +

N−1∑
q=1

det2
(
(A− λkI)\ rowN\ col q

)
det2

(
A\{N} − λkI

)


so that

η2 =
det2

(
A\{N} − λkI

)
∑N

q=1 det
2
(
(A− λkI)\ rowN\ col q

)
After choosing the minus sign in η =

−(A\{N}−λkI)√∑N
q=1 det

2((A−λkI)\ rowN\ col q)
, the entire eigenvector xk becomes,

for all 1 ≤ q ≤ N ,

(xk)q = (−1)q−N
det
(
(A− λkI)\ rowN\ col q

)
√∑N

j=1 det
2
(
(A− λkI)\ rowN\ col j

)
But the choice of N was arbitrary. Hence, the above holds for any node m instead of just node N .

After replacing q by j, we arrive at (7).

Jacobi’s identity (36) reduces for eigenvalues λ = λk to(
det
(
A\ rowm\ col j − λkI

))2
= det

(
A\{m} − λkI

)
det
(
A\{j} − λkI

)
which we apply the denominator in (7)

N∑
l=1

(
det (A− λkI)\ rowm\ col l

)2
= det

(
A\{m} − λkI

) N∑
l=1

det
(
A\{l} − λkI

)
(41)

With
∑N

l=1 det
(
A\{l} − λI

)
= −c′A (λ) in (40), we obtain (8). After squaring (8) and again using

Jacobi’s identity (36) for λ = λk, we obtain (6).

Second proof : We derive Theorem 2 from Theorem 1. After expanding det (A− λkI)row j=b

along row j,

det (A− λkI)row j=b =

N∑
n=1

bn (−1)j−n det (A− λkI)\ row j\ coln (42)

and rewriting (4) with βk =
∑N

j=1 bj (xk)j

(xk)j det (A− λkI)row j=b = βk det
(
A\{j} − λkI

)
= det

(
A\{j} − λkI

) N∑
n=1

bn (xk)n

yields

(xk)j

N∑
n=1

bn (−1)j−n det (A− λkI)\ row j\ coln = det
(
A\{j} − λkI

) N∑
n=1

bn (xk)n

which holds for any vector b. Equating corresponding components bn leads, for all 1 ≤ n ≤ N , to

(xk)n = (xk)j
(−1)j−n det (A− λkI)\ row j\ coln

det
(
A\{j} − λkI

) (43)
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Normalization xTk xk = 1 shows that

1 =
N∑

n=1

(xk)
2
n =

(xk)
2
j

det2
(
A\{j} − λkI

) N∑
n=1

(
det (A− λkI)\ row j\ coln

)2
and

(xk)
2
j =

det2
(
A\{j} − λkI

)
∑N

n=1

(
det (A− λkI)\ row j\ coln

)2
which equals (6), after substituting (41). Taking the (positive) squareroot and substituting into (43)

results in

(xk)n =
(−1)j−n det (A− λkI)\ row j\ coln√∑N

n=1

(
det (A− λkI)\ row j\ coln

)2
which equals (7) and proves Theorem 2. □

B Operator form of the eigenvalue equation

Let xk be an eigenvector of an N ×N matrix A belonging to the eigenvalue λk, then the eigenvalue

equation Axk = λkxk is written as

Axk = λjxk + (λk − λj)xk

where the eigenvalue λj is possibly another eigenvalue of the matrix A. Clearly, if λk = λj , then the

last term vanishes and we return to the original eigenvalue equation. In summary, it holds for any

pair of integers k and j with 1 ≤ k, j ≤ N that

(A− λjI)xk = (λk − λj)xk (44)

Multiplying both sides by (A− λmI),

(A− λmI) (A− λjI)xk = (λk − λj) (A− λmI)xk

invoking (44) at the right-hand side

(A− λmI) (A− λjI)xk = (λk − λj) (λk − λm)xk

yields, after iteration for any positive integer n,∏n
j=1 (A− λjI)xk =

∏n
j=1 (λk − λj)xk (45)

If n = N , the dimension of the matrix A, the index j in the right-hand side product runs of over

all eigenvalues λ1, λ2, . . . , λN of the matrix A and the product thus also contains the factor where

λj = λk leading to
∏N

j=1 (A− λjI)xk = 0. Since any eigenvector must be different from the zero

vector, we conclude that the matrix
∏N

j=1 (A− λjI) = cA (A) = O, which is nothing else than the

famous Caley-Hamilton theorem.
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B.1 The matrix product
∏n

j=1 (A− λjI)

The construction that led to (45) indicates that all matrices in the product commute. Commutativity

allows us to treat the real matrix A as ordinary real numbers. For example, for n = 2 and n = 3, we

obtain ∏2
j=1 (A− λjI) = (A− λ1I) (A− λ2I) = A2 − (λ1 + λ2)A+ λ1λ2∏3
j=1 (A− λjI) = (A− λ3I)

∏2
j=1 (A− λjI) = (A− λ3I)

(
A2 − (λ1 + λ2)A+ λ1λ2

)
= A3 − (λ1 + λ2 + λ3)A

2 + (λ1λ2 + λ1λ3 + λ2λ3)A− λ1λ2λ3

Continuing to higher values of n eventually will lead to Vieta’s theorem, where the coefficients of

powers of A are elementary symmetrical polynomials [3, art. 296-297]. If n = N , then the definition

of the characteristic polynomial (1) indicates that
∏N

j=1 (A− λjI) = (−1)N
∑N

k=0 ckA
k, which vanishes

as shown above.

Substitution of the eigenvector expansion of the symmetric matrix A =
∑N

k=0 λkxkx
T
k ,

A− λjI =
N∑
k=1

λkxkx
T
k − λj

N∑
k=1

xkx
T
k =

N∑
k=1;k ̸=j

λkxkx
T
k

shows that the matrixA−λjI transforms anN×1 vector y to the vector (A− λjI) y =
∑N

k=1;k ̸=j λk

(
xTk y

)
xk

with zero coordinate along the xj-vector. In other words, the matrix
∏n

j=1 (A− λjI) projects a vector

y into the N − n-dimensional Euclidean subspace that is orthogonal to the subspace spanned by the

eigenvectors {x1, x2, . . . , xn}. In the eigenvector coordinate axis frame, the coordinates of the vector

y are
(
yTx1, y

Tx2, . . . , y
TxN

)
, while the coordinates of the vector

∏n
j=1 (A− λjI) y contains n zeros

in the first n positions.

B.2 Eigenvalue λk with multiplicity mk = 1

If λk is single or simple or an eigenvalue with multiplicity one, then it follows from (45) that∏N
j=1;j ̸=k (A− λjI)xk =

∏N
j=1;j ̸=k (λk − λj)xk

which we can write in terms of the characteristic polynomials cA (λ) in (3) as11

xk =
(−1)N

c′A (λk)

∏N
j=1;j ̸=k (A− λjI)xk =

1

−c′A (λk)

∏N
j=1;j ̸=k (λjI −A)xk

In order to define an eigenvector uniquely, we impose the normalization condition xTk xk = 1. Applied

to xk = (−1)N

c′A(λk)

∏N
j=1;j ̸=k (A− λjI)xk and using the symmetry of A yields

xTk xk = xTk

(
(−1)N

c′A (λk)

∏N
j=1;j ̸=k (A− λjI)

)2

xk = 1

11Caley-Hamilton’s relation
∏N

j=1 (A− λjI)xk = 0, written as

(A− λkI)
{∏N

j=1;j ̸=k (A− λjI)xk

}
= 0

show, by comparing with (44), that xk = α
∏N

j=1;j ̸=k (A− λjI)xk for each non-zero α.
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We define the matrix Uk =
(

(−1)N

c′A(λk)

∏N
j=1;j ̸=k (A− λjI)

)2
, written in the eigenspace of the matrix A

as Uk =
∑N

l=1 βlxlx
T
l . The matrix Uk must obey xTkUkxk = 1, implying by the orthogonality of

eigenvectors xTk xm = δkm that βk = 1, but all other coefficients βl can be chosen at will. The simplest

choice is βl = δlk and Uk = xkx
T
k . Since U

2
k = xkx

T
k xkx

T
k = Uk, we find for a simple eigenvalue λk that

xkx
T
k =

(−1)N

c′A (λk)

∏N
j=1;j ̸=k (A− λjI)

which equals (14), but differently proved than in [3, art. 234].

B.3 Eigenvalue λk with multiplicity mk > 1

The spectral decomposition is generally more complicated if eigenvalues have a multiplicity larger

than one. If the eigenvalue λk of a symmetric matrix A has multiplicity mk > 1, then more than one

eigenvector xκ with κ = k, k+1, . . . , k+mk − 1 is associated to that same eigenvalue λk, obeying the

eigenvalue equation Axκ = λkxκ. For example, if mk = 2 and λk = λk+1, then the two orthogonal

eigenvectors xk and xk+1 satisfy Axk = λkxk and Axk+1 = λkxk+1, which implies that any linear

combination yk = α1xk + α2xk+1 also satisfies the eigenvalue equation Ayk = λkyk. Generally, if

the eigenvalue λk of a symmetric matrix A has multiplicity mk > 1, then any linear combination

vector yk =
∑k+mk−1

κ=k ακxκ is also an eigenvector. Thus, the eigenspace belonging to eigenvalue λk

has dimension mk and is spanned by the orthogonal vectors xκ with κ = k, k + 1, . . . , k + mk − 1.

That ensemble {xκ}κ=k,k+1,...,k+mk−1 of eigenvectors belonging to the same eigenvalue λk acts as a

whole and, as we will see, appears together in formulae. Clearly, if the multiplicity is mk = 1, then

the eigenspace of dimension one is a line.

If λk has multiplicity mk > 1 implying that λk = λk+1 = · · · = λk+mk−1, then (45) shows that

xκ =

∏N
j=1;j ̸={k,k+1,...,k+mk−1} (A− λjI)xκ∏N
j=1;;j ̸={k,k+1,...,k+mk−1} (λk − λj)

for κ = k, k + 1, . . . , k +mk − 1

where xκ for k ≤ κ ≤ k +mk − 1 is the set of mk eigenvectors all belonging to the same eigenvalue

λk. The characteristic polynomial (1) becomes cA (λ) = (λk − λ)mk
∏N

j=1;j ̸={k,k+1,...,k+mk−1} (λj − λ),

whose n-th derivative, given by Cauchy’s contour integral [26], is

1

n!

dncA (λ)

dλn

∣∣∣∣
λ=x

=
1

2πi

∫
C(x)

cA (w)

(w − x)n+1dw

where the closed contour in the complex w-plane encloses the point x. Choosing x = λk,

1

n!

dncA (λ)

dλn

∣∣∣∣
λ=λk

=
(−1)mk

2πi

∫
C(λk)

∏N
j=1;j ̸={k,k+1,...,k+mk−1} (λj − w)

(w − λk)
n−mk+1 dw

= (−1)mk
1

(n−mk)!

dn−mk

dλn−mk

N∏
j=1;j ̸={k,k+1,...,k+mk−1}

(λj − w)

∣∣∣∣∣∣
λ=λk

indicates for n = mk that

∏N
j=1;j ̸={k,k+1,...,k+mk−1} (λk − λj) =

(−1)N

(mk)!

dmkcA (λ)

dλmk

∣∣∣∣
λ=λk
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which is an alternative form of (21). For n < mk, the contour C (λk) encloses an analytic region of

the integrand and Cauchy’s integral theorem [26] states that 1
n!

dncA(λ)
dλn

∣∣∣
λ=λk

= 0 for n < mk.

Similarly as in Section B.2, we define the matrix

Uκ =

 (−1)N (mk)!
dmk cA(λ)

dλmk

∣∣∣
λ=λk

∏N
j=1;j ̸={k,k+1,...,k+mk−1} (A− λjI)


2

and the normalization xTκxκ = 1, for κ = k, k + 1, . . . , k + mk − 1, requires that xTκUκxκ = 1 for

k, k + 1, . . . , k +mk − 1, which leads to

Uκ =

mk−1∑
κ=k

xκx
T
κ

Since U2
κ =

∑mk−1
κ=k

∑mk−1
l=k xκ

(
xTκxl

)
xTl =

∑mk−1
κ=k xκx

T
κ = Uκ by orthogonality xTκxl = δκl, we arrive

at
mk−1∑
κ=k

xκx
T
κ =

(−1)N (mk)!
dmk cA(λ)

dλmk

∣∣∣
λ=λk

∏N
j=1;j ̸={k,k+1,...,k+mk−1} (A− λjI) (46)

Taking the j-th diagonal element of (46) leads to (19) in Theorem 3.

B.4 Proof of (22) and (23) in Theorem 3

We extend the proof in Appendix A.2. If the eigenvalue λk has multiplicity mk and λk = λk+1 =

· · · = λk+mk−1, then the resolvent is

det
(
A\{j} − zI

)
det (A− zI)

=
N∑

m=k−1

(xm)2j
λm − z

+

∑k+mk−1
κ=k (xκ)

2
j

(λk − z)
+

N∑
m=k+mk

(xm)2j
λm − z

from which we deduce that

k+mk−1∑
κ=k

(xκ)
2
j = lim

z→λk

(λk − z) det
(
A\{j} − zI

)
det (A− zI)

With det (A− zI) = (λk − z)mk
∏N

j=1;j ̸={k,k+1,...,k+mk−1} (λj − z), it holds that

k+mk−1∑
κ=k

(xκ)
2
j = lim

z→λk

(λk − z)1−mk det
(
A\{j} − zI

)∏N
j=1;j ̸={k,k+1,...,k+mk−1} (λj − z)

=
1∏N

j=1;j ̸={k,k+1,...,k+mk−1} (λj − λk)
lim
z→λk

det
(
A\{j} − zI

)
(λk − z)mk−1

The Interlacing Theorem [3, art. 263] shows that the polynomial det
(
A\{j} − zI

)
has a zero at λk of

multiplicity mk−1, which means, by the de l’Hospital’s rule [27, art. 154] that mk−1 differentiations

in numerator and denominator lead to a finite value of the limit. In other words,

lim
z→λk

det
(
A\{j} − zI

)
(λk − z)mk−1 = lim

z→λk

dmk−1

dzmk−1 det
(
A\{j} − zI

)
dmk−1

dzmk−1 (λk − z)mk−1
=

1

(mk − 1)!

dmk−1

dzmk−1
det
(
A\{j} − zI

)∣∣∣∣
z=λk
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where dkzb

dzk
= b!

(b−k)!z
b−k, valid for any complex b by replacing b! = Γ (b+ 1), has been used. It

remains to iteratively invoke the formula (40) for the derivative of a determinant, d
dλ det (A− λI) =

−
∑N

n=1 det
(
A\{n} − λI

)
. We thus find the sequence

d

dz
det
(
A\{j} − zI

)
= −

N−1∑
n1=1

det
(
A\{j,n1} − zI

)
d2

dz2
det
(
A\{j} − zI

)
= −

N−1∑
n1=1

d

dz
det
(
A\{j,n1} − zI

)
=

N−1∑
n=1

N−2∑
n2=1

det
(
A\{j,n1,n2} − zI

)
and, iterating further to an integer m,

dm

dzm
det
(
A\{j} − zI

)
= (−1)m

N−1∑
n=1

N−2∑
n2=1

· · ·
N−m∑
nm=1

det
(
A\{j,n1,n2,...,nm} − zI

)
Applied for m = mk − 1 gives

lim
z→λk

det
(
A\{j} − zI

)
(λk − z)mk−1 =

(−1)mk−1

(mk − 1)!

N−1∑
n=1

N−2∑
n2=1

· · ·
N−mk−1∑
nmk−1=1

det
(
A\{j,n1,n2,...,nmk−1} − λkI

)
Combining all, finally leads to (22). Substituting (21) in (22) gives (23).

C Extension first proof of Theorem 2 to multiplicity mk = 2

The eigenvalue equation Axk = λkxk is equivalent to (A− λkI)xk = 0, which is explicitly written as

a set of linear equations

N∑
j=1

(arj − λkδrj) (xk)j = 0 for 1 ≤ r ≤ N

If the multiplicity of the eigenvalue λk is mk = 2, then rank(A− λkI) = N − 2, we can delete two

arbitrary equations or rows. We choose row N − 1 and row N (inspired by the computations in

Section A.3). Since there are now two eigenvectors xk and xk+1 belonging to the eigenvalue λk, we

obtain (A− λkI)\ rowN−1,N y = 0 satisfied for both eigenvectors y = xk and y = xk+1. The set

(A− λkI)rowN−1,N y = 0, consisting of N − 2 linear equations in N unknowns, can be rewritten in

terms of two unknowns, the components yN−1 = η and yN = ζ,

N−2∑
j=1

(arj − λkδrj) yj = − (ar,N−1 − λkδr,N−1) yN−1 − (arN − λkδrN ) yN for 1 ≤ r ≤ N − 2

= −ar,N−1yN−1 − arNyN

and in matrix form, (
A\{N−1,N} − λkI

)
y\ rowN−1,N = g

where the (N − 2)× 1 vector

g = −η
[
a1N−1 · · · aN−2,N−1

]T
− ζ

[
a1N · · · aN−2,N

]T
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Cramer’s solution [3, art. 220] yields for 1 ≤ q ≤ N − 2,

yq =

∣∣∣(A− λkI)\{N−1,N}

∣∣∣
col q=g

det
(
A\{N−1,N} − λkI

)
where the determinant

∣∣∣(A− λkI)\{N−1,N}

∣∣∣
col q=g

is split-up into two determinants (similarly to Section

A.3). Thus, Cramer’s solution becomes

yq = −η

∣∣∣(A− λkI)\{N−1,N}

∣∣∣
col q=(A\ row{N−1,N})colN−1

det
(
A\{N−1,N} − λkI

) − ζ

∣∣∣(A− λkI)\{N−1,N}

∣∣∣
col q=(A\ row{N−1,N})colN

det
(
A\{N−1,N} − λkI

)
After interchanging column q iteratively (precisely as in Section A.3) to the last column N − 2, we

obtain

yq = −η
(−1)q−N−1 det

(
(A− λkI)\ rowN−1,N\ col q,N

)
det
(
A\{N−1,N} − λkI

) − ζ
(−1)q−N−1 det

(
(A− λkI)\ rowN−1,N\ col q,N−1

)
det
(
A\{N−1,N} − λkI

)
= η

(−1)q−N det
((

A\{N} − λkI
)
\ rowN−1\ col q

)
det
(
A\{N−1,N} − λkI

) + ζ
(−1)q−N det

((
A\{N−1} − λkI

)
\ rowN\ col q

)
det
(
A\{N−1,N} − λkI

)
Hence, for the eigenvector xk, we find, for 1 ≤ q ≤ N − 2

(−1)q−N (xk)q = η
det
((

A\{N} − λkI
)
\ rowN−1\ col q

)
det
(
A\{N−1,N} − λkI

) + ζ
det
((

A\{N−1} − λkI
)
\ rowN\ col q

)
det
(
A\{N−1,N} − λkI

)
and, similarly for the eigenvector xk+1,

(−1)q−N (xk+1)q = ξ
det
((

A\{N} − λkI
)
\ rowN−1\ col q

)
det
(
A\{N−1,N} − λkI

) + θ
det
((

A\{N−1} − λkI
)
\ rowN\ col q

)
det
(
A\{N−1,N} − λkI

)
where the unknown eigenvector components (xk)N−1 = η, (xk+1)N−1 = ξ, (xk)N = ζ and (xk+1)N = θ

are arbitrary real numbers.

C.1 Orthogonalization conditions

The three normalization conditions

xTk xk = 1 xTk+1xk+1 = 1 xTk xk+1 = 0

will specify three of the unknowns, leaving one of them open to choice. First, xTk xk = 1 then yields

1 = η2 + ζ2 +

N−2∑
q=1

(xk)
2
q

= η2 + ζ2 +
N−2∑
q=1

(
η det

((
A\{N} − λkI

)
\ rowN−1\ col q

)
+ ζ det

((
A\{N−1} − λkI

)
\ rowN\ col q

))2
det2

(
A\{N−1,N} − λkI

)
= η2 + ζ2 + η2

N−2∑
q=1

det2
((

A\{N} − λkI
)
\ rowN−1\ col q

)
det2

(
A\{N−1,N} − λkI

) + ζ2
N−1∑
q=1

det2
((

A\{N−1} − λkI
)
\ rowN\ col q

)
det2

(
A\{N−1,N} − λkI

)
+ 2ηζ

N−1∑
q=1

det
((

A\{N} − λkI
)
\ rowN−1\ col q

)
det
((

A\{N−1} − λkI
)
\ rowN\ col q

)
det2

(
A\{N−1,N} − λkI

)
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With S = 1 +
∑N−2

q=1

det2
(
(A\{N}−λkI)\ rowN−1\ col q

)
det2(A\{N−1,N}−λkI)

, R = 1 +
∑N−2

q=1

det2
(
(A\{N−1}−λkI)\ rowN\ col q

)
det2(A\{N−1,N}−λkI)

and

V =
∑N−2

q=1

det
(
(A\{N}−λkI)\ rowN−1\ col q

)
det

(
(A\{N−1}−λkI)\ rowN\ col q

)
det2(A\{N−1,N}−λkI)

, the condition xTk xk = 1 becomes

1 = η2S + ζ2R+ 2ηζV

Similarly, the condition xTk+1xk+1 = 1 leads to

1 = ξ2S + θ2R+ 2ξθV

The final orthogonality condition xTk xk+1 is

0 =

N∑
q=1

(xk)q (xk+1)q = ηξ + ζθ +

N−2∑
q=1

(xk)q (xk+1)q

= ηξ + ζθ +
N−2∑
q=1

η
det
((

A\{N} − λkI
)
\ rowN−1\ col q

)
det
(
A\{N−1,N} − λkI

) + ζ
det
((

A\{N−1} − λkI
)
\ rowN\ col q

)
det
(
A\{N−1,N} − λkI

)


×

ξ
det
((

A\{N} − λkI
)
\ rowN−1\ col q

)
det
(
A\{N−1,N} − λkI

) + θ
det
((

A\{N−1} − λkI
)
\ rowN\ col q

)
det
(
A\{N−1,N} − λkI

)


= ηξ + ζθ + ηξ

N−2∑
q=1

det2
((

A\{N} − λkI
)
\ rowN−1\ col q

)
det2

(
A\{N−1,N} − λkI

)
+ (ηθ + ζξ)

N−2∑
q=1

det
((

A\{N} − λkI
)
\ rowN−1\ col q

)
det
((

A\{N−1} − λkI
)
\ rowN\ col q

)
det2

(
A\{N−1,N} − λkI

)
+ ζθ

N−2∑
q=1

det2
((

A\{N−1} − λkI
)
\ rowN\ col q

)
det2

(
A\{N−1,N} − λkI

)
Hence,

0 = ηξS + ζθR+ (ηθ + ζξ)V

We need to solve η, ζ, ξ and θ from the quadratic set
η2S + ζ2R+ 2ηζV = 1

ξ2S + θ2R+ 2ξθV = 1

ηξS + ζθR+ (ηθ + ζξ)V = 0

From the first two equations, we first solve

η =
−ζV ±

√
(ζV )2 − S (ζ2R− 1)

S

ξ =
−θV ±

√
(θV )2 − S (θ2R− 1)

S
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Substituted into the last equation,

0 =

(
−ζV ±

√
(ζV )2 − S (ζ2R− 1)

)(
−θV ±

√
(θV )2 − S (θ2R− 1)

)
S

+ ζθR

+

(
−2ζθV ± θ

√
(ζV )2 − S (ζ2R− 1)± ζ

√
(θV )2 − S (θ2R− 1)

)
V

S

which is

0 =

√(
(ζV )2 − S (ζ2R− 1)

)(
(θV )2 − S (θ2R− 1)

)
+ ζθ

(
RS − V 2

)
and √

V 2 − SR+
S

θ2
=

V 2 −RS√
V 2 − SR+ S

ζ2

Squaring

V 2 − SR+
S

θ2
=

(
V 2 −RS

)2
V 2 − SR+ S

ζ2

and simplifying yields

θ2 + ζ2 =
S

RS − V 2

The Cauchy-Schwarz inequality [3, (A.72) on p. 333] confirms that RS > V 2. Hence, the point (θ, ζ)

lies on a circle with center at the origin of the θ-ζ plane and with radius equal to
√

S
RS−V 2 . By

choosing the positive root, we express θ as a function of ζ,

θ =

√
S

RS − V 2
− ζ2

After substitution into ξ =
−θV±

√
S−θ2(RS−V 2)

S , we express θ, ξ and η as functions of ζ as

θ =

√
S − ζ2 (RS − V 2)√

RS − V 2

η =
−ζV ±

√
S − ζ2 (RS − V 2)

S

ξ =
−V

√
S − ζ2 (RS − V 2)

S
√
(RS − V 2)

±
ζ
√
(RS − V 2)

S

Choosing (xk)N = ζ = 0 and positive signs before squareroot, leads to the simplest expressions,

θ =
√
S√

RS−V 2
η = 1√

S
ξ = −V√

S
√

(RS−V 2)

Finally, for the eigenvector xk, we find (xk)N = 0 and for 1 ≤ q ≤ N − 1

(xk)q =
(−1)q−N det

((
A\{N} − λkI

)
\ rowN−1\ col q

)
√∑N

j=1 det
2
((

A\{N} − λkI
)
\ rowN−1\ col j

)
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which is the same as (7) ifmk = 1 and for the eigenvector xk+1, it holds that (xk+1)N−1 =
−V√

S
√

(RS−V 2)
,

(xk+1)N =
√
S√

RS−V 2
and for 1 ≤ q ≤ N − 2

(−1)q−N (xk+1)q =
−V√

S
√
RS − V 2

det
((

A\{N} − λkI
)
\ rowN−1\ col q

)
det
(
A\{N−1,N} − λkI

)
+

√
S√

RS − V 2

det
((

A\{N−1} − λkI
)
\ rowN\ col q

)
det
(
A\{N−1,N} − λkI

)
The close-form, after substitution of R,S and V , does not seem to simplify so nicely as for the eigen-

vector xk, mainly due to RS − V 2. However, Theorem 3 on the square of the eigenvector components

presents rather elegant formulae, that suggest that further simplification may exist. Nevertheless, we

omit here further efforts.

D Additions to Theorem 1

Another way to rewrite the determinant in (35) is

det (A− λkI)rowN=b = det

[ (
A\{N} − λkI

)
(aN )\N

bT\N bN

]

where the (N − 1)×1 vector w\m = (w1, . . . , wm−1, wm+1, . . . , wN ) is obtained from the N×1 vector w

after removing the m-th component. Invoking Schur’s block determinant relation [3, art. 217] yields12

det

[ (
A\{N} − λkI

)
(aN )\N

bT\N bN

]
= det

(
A\{N} − λkI

) (
bN − bT\N

(
A\{N} − λkI

)−1
(aN )\N

)
Instead of row N , we can delete row m so that

det (A− λkI)rowm=b = det
(
A\{m} − λkI

) (
bm − bT\m

(
A\{m} − λkI

)−1
(am)\m

)
(47)

where (am)\m = (a1m, . . . , am−1;m, am+1,m, . . . , aNm) and (A− λI)−1 is the resolvent [3, art. 215].

Using (47) in (35) transforms (34) to

(xk)j =
βk

bj − bT\j
(
A\{j} − λkI

)−1
(aj)\j

(48)

which illustrates the seemingly dependence of (xk)j on the arbitrary vector b.

12We remark that, in case b = u, then

det
(
AGcone(N)

− λI
)
= det

[ (
AG\{N} − λI

)
u

uT −λ

]
where Gcone(j) is the “cone at node j” of the original graph G, which is the graph where only node j has now links to all

other nodes in G. In other words, the node j is the cone of the graph G\ {j}. Thus, even if aN = u, det (A− λI)rowN=u

is not equal to det
(
AGcone(N)

− λI
)
, unless λ = −1.
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If b = em, the basic vector with all zero components, except that the m-th component is 1, then

(48) reduces with βk = bTxk = (xk)m, for j ̸= m, to

(xk)j = −
(xk)m((

A\{j} − λkI
)−1

(aj)\j

)
m

else, for j = m, we find from (48) an identity, because b\m = 0. Interchanging m and j, the ratio
(xk)j
(xk)m

, expressed in two ways, leads to((
A\{m} − λkI

)−1
(aj)\m

)
j
=

1((
A\{j} − λkI

)−1
(aj)\j

)
m

When the vector b equals a row vector in A, it can be shown (see e.g. [28],[3, art. 259]) that

(xk)
2
j =

1

1 + (aj)
T
\j
(
A\{j} − λkI

)−2
(aj)\j

Indeed, let b = (A− λkI)row=N , then

det

[ (
A\{N} − λkI

)
(aN )\N

(aN )T\N aNN − λk

]
= det

(
A\{N} − λkI

) (
aNN − λk − aT\N

(
A\{N} − λkI

)−1
(aN )\N

)

Since det (A− λkI) = det

[ (
A\{N} − λkI

)
aN

(aN )T\N aNN − λk

]
= 0, we deduce that

λk = aNN − aT\N
(
A\{N} − λkI

)−1
(aN )\N

which is equation in [3, top on p. 370], derived differently.

E About the determinant det Ξ

Adding all rows in Ξ′ in (32) to the last row and using (40) yields

det Ξ′ =

∣∣∣∣∣∣∣∣∣∣
det
(
AG\{1} − λ1I

)
det
(
AG\{1} − λ2I

)
· · · det

(
AG\{1} − λNI

)
det
(
AG\{2} − λ1I

)
det
(
AG\{2} − λ2I

)
· · · det

(
AG\{2} − λNI

)
...

...
. . .

...

−c′A (λ1) −c′A (λ2) · · · −c′A (λN )

∣∣∣∣∣∣∣∣∣∣
In contrast to adding all rows to the last row and invoking

∑N
n=1 det

(
A\{n} − λI

)
= −c′A (λ) in (40),

adding all the columns to the last column results, with (2) and (15),

N∑
k=1

det
(
AG\{q} − λkI

)
=

 N∑
k=1

N∏
l=1;l ̸=k

(λlI −A)


qq

= −
(
c′A (A)

)
qq

= −
N∑
k=1

kck

(
Ak−1

)
qq

in

det Ξ′ =

∣∣∣∣∣∣∣∣∣∣
det
(
AG\{1} − λ1I

)
det
(
AG\{1} − λ2I

)
· · · − (c′A (A))11

det
(
AG\{2} − λ1I

)
det
(
AG\{2} − λ2I

)
· · · − (c′A (A))22

...
...

. . .
...

−c′A (λ1) −c′A (λ2) · · · −
∑N

k=1 c
′
A (λk)

∣∣∣∣∣∣∣∣∣∣
Given that λk is a simple eigenvalue, it remains to find conditions on the graph G for det Ξ′ to be

zero.
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