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Abstract

Let Am×m denote a symmetric matrix. We present an order expansion (4) based on Lagrange series that
allows us to improve the classical bound 1

m

∑m
i=1
∑m

j=1 aij ! λmax(A).
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1. Introduction

Let λmin(A) ! λm−1 ! · · · ! λ2 ! λmax(A) denote the ordered, real eigenvalues of a sym-
metric m × m matrix A. The largest eigenvalue can be expressed [4, p. 549] as

λmax(A) = max
x /=0

xTAx

xTx
, (1)

where xTAx
xTx

is called the Rayleigh quotient. The maximum in (1) is only attained if x is the
eigenvector belonging to λmax(A). Hence, for any other vector y that is not the corresponding
eigenvector, it holds that

yTAy

yTy
! λmax(A)
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from which the commonly used lower bound,

uTAu

m
= 1

m

m∑

i=1

m∑

j=1

aij ! λmax(A) (2)

follows for the choice y = u, where u =
[
1 1 · · · 1

]T is the m × 1 all-one vector.
The main result of this article is

Theorem 1.1. Consider a symmetric matrix Am×m and define T = 1√
m

max1!j!m(ajj +
∑m

i=1;i /=j |aij |). For any real number t " T and λ0 = t
√

m, the largest eigenvalue of A can
be bounded from below by

N1

m
+ 2

(
N3

2m
− N1N2

m2 + N3
1

2m3

)

λ−2
0 + O(t−4) ! λmax(A), (3)

where Nk = uTAku =∑m
i=1
∑m

j=1(A
k)ij and N0 = m.

Although the theorem is stated with order term O(t−4), the method of Appendix B allows us
to sharpen the classical bound to any desired order O(t−2j ), where j is a positive integer. If the
λ−2

0 term and the order term are ignored, we find the classical bound (2).
In the theory on the spectra of graphs, numerous lower and upper bounds for the largest

eigenvalue λmax(A) of the adjacency matrix A of a graph G exist (see e.g. [6, Appendix B]). In
a graph, Nk is the total number of walks of length k [6, Appendix B] and the degree of node k is
dk(A) =∑m

j=1(A)kj . Then, the first few Nk are N1 = 2LA, where LA is the number of links in
G and N2 = DA =∑m

k=1 d2
k (A). For graphs, we show in Section 3 that (3) can be rephrased as

2LA

m
+ 2

(
N3

2m
− 2LADA

m2 + 4L3
A

m3

)

λ−2
0 + O(N−2) ! λmax(A) (4)

for any N " 2m and where λ0 = √
(N − m)m. Equality in the classical bound (2) is attained in

regular graphs where each node has the same degree r and where λmax(A) = 2LA
m = r . Thus, for

regular graphs, the coefficient of the λ−2
0 term in (4) is precisely zero.

In Section 2, Theorem 1.1 is proved. Section 3 discusses the applications to graphs, while
Section 4 revisits Theorem 1.1 from the viewpoint of perturbation theory.

2. Proof of Theorem 1.1

The ingredients of the proof of Theorem 1.1 rely on the possibility to compute the largest
eigenvalue λmax(At ) and the smallest eigenvalue λmin(At ) of the symmetric matrix

At =
[

Am×m t.um×1
t.(uT)1×m 0

]
,

where t ∈ R and on Lemma A.1 that yields

λmax(At ) + λmin(At ) ! λmax(A). (5)

The sequel is devoted to the computation of λmax(At ) and λmin(At ). Lemma A.1 restricts the
validity of the analysis to symmetric matrices.
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The characteristic polynomial of At is

det(At − λI )(m+1)×(m+1) =
[
(A − λI )m×m t.um×1

t.(uT)1×m −λ

]
.

The general relation (15) gives

det(At − λI ) = det(A − λI )m×m det(−λ − t2(uT)1×m((A − λI )m×m)−1um×1).

For any matrix X, the sum of all its elements is sX = uTXu =∑n
i=1
∑n

j=1 xij . Let us denote by
sλ the sum of all elements of the resolvent (A − λI )−1, then

det(At − λI ) = −(λ + t2sλ) det(A − λI )m×m. (6)

An explicit expression for sλ is given in (24).
Consider the expansion of the resolvent of A,

(A − λI )−1 = 1
−λ

(
I − A

λ

)−1

= −1
λ

∞∑

k=0

Ak

λk
= −1

λ

(
I + A

λ
+ A2

λ2 + · · ·
)

(7)

such that

sλ = −1
λ

m∑

i=1

m∑

j=1

∞∑

k=0

(Ak)ij

λk
= −1

λ

∞∑

k=0

1
λk

m∑

i=1

m∑

j=1

(Ak)ij = −1
λ

∞∑

k=0

Nk

λk
.

Introduced into the equation λ + sλt
2 = 0, gives

λ + sλt
2 = λ − t2

λ

(

m +
∞∑

k=1

Nk

λk

)

= 0 (8)

or,

λ = ±t

√√√√m

(

1 +
∞∑

k=1

Nk

mλk

)

. (9)

If t is large and m fixed, (9) reveals that the first order expression, λ0 = ±t
√

m is accurate up
to O(1). Gerschgorin’s Theorem [7, p. 71] shows that each eigenvalue of the (symmetric) matrix
A lies in at least one of the 1 ! j ! m intervals

(
ajj −∑m

i=1;i /=j |aij |, ajj +∑m
i=1;i /=j |aij |

)
.

Hence, if t > T = 1√
m

max1!j!m

(
ajj +∑m

i=1;i /=j |aij |
)

, then relation (9) further shows that the

largest eigenvalues of At in absolute value are the roots of λ + sλt
2 = 0. This observation leads

to a lower bound for t " T .

2.1. Lagrange series for the zero of (8)

We solve the equation f (λ) = λ + sλt
2 & λ − t2

(
m
λ + N1

λ2 + N2
λ3

)
= 0 by Langrange expan-

sion first1 up to O(t−2) while the general method is outlined in Appendix B. The zero ζ(λ0) of
f (λ) around λ0 = t

√
m can be written as a Lagrange series [3, II, pp. 88]. Since f (λ) is known

up to order O(t−2), only three terms in the general Lagrange series are needed,

1 The same result can be obtained by two iterations in Newton-Raphson’s method.
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ζ(λ0) ≈ λ0 − f (λ0)

f ′(λ0)
− f ′′(λ0)

2f ′(λ0)

(
f (λ0)

f ′(λ0)

)2

(10)

to guarantee that the zero is also accurate up to order O(t−2). Indeed,

f (λ0) = −N1

m
− N2

mt
√

m
+ O(t−2),

f ′(λ0) = 2 + 2N1

mt
√

m
+ O(t−2),

f ′′(λ0) = − 2
t
√

m
+ O(t−2)

andf ′′′(λ0) = O(t−2). After substitution in (10) and some reorganization, the extreme eigenvalues
of At are, accurate up to order O(t−2) for large t ,

λmax(At ) = t
√

m + N1

2m
+
(

N2

2m
− 3N2

1

8m2

)
1

t
√

m
+ O(t−2) (11)

and

λmin(At ) = −t
√

m + N1

2m
−
(

N2

2m
− 3N2

1

8m2

)
1

t
√

m
+ O(t−2), (12)

where the last expression is obtained analogously from (10) for λ0 = −t
√

m. The method pre-
sented in Appendix B allows us to compute ζ(λ0) to any desired order in t , although the amount
of computations rapidly becomes impressive. Computed up to O(t−3), we find

ζ(λ0) = λ0 + N1

2m
+
(

N2

2m
− 3N2

1

8m2

)
1
λ0

+
(

N3

2m
− N1N2

m2 + N3
1

2m3

)
1

λ2
0

+ O(t−3), (13)

where λmax(At ) and λmin(At ) follow for λ0 = t
√

m and λ0 = −t
√

m, respectively.
Finally, our Theorem 1.1, in particular the bound (3), is proved by combining the bound (5)

and equation (13).

3. Application to the spectra of graphs

Since At is not an adjacency matrix for t /= 1, we consider the adjacency matrix of the G-
connected m star topology with N nodes,

AmstarG =
[

Am×m Jm×(N−m)

J(N−m)×m O(N−m)×(N−m)

]
,

where J is the all-one matrix and Am×m is the adjacency matrix of an arbitrary graph G that
connects m nodes. Each of those m nodes is connected to each of the N − m other nodes in the
topology called mstarG. We note that the bi-partite structure of AmstarG is crucial. Similarly as
above, we find

det(AmstarG − λI ) = det(A − λI )m×m(−1)N−mλN−m−1(λ + sλ(N − m)),

where t2 = N − m. Hence, by modifying the size of the matrix AmstarG, the zeros of the same
function f (λ) = λ + sλ(N − m) are the maximum and minimum eigenvalue of AmstarG. More-
over, since the largest eigenvalue of A (for any graph) is smaller than the maximum degree
dmax(A) ! m − 1, a tighter bound for N compared to t is found, N " 2m. The general result is
then given in (4).
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Example. The spectrum of a m-fully meshed star topology where A = J − I can be computed
exactly as

(λmax)mstar =
√

m(N − m) +
(

m − 1
2

)2

+ m − 1
2

,

(λmin)mstar = −
√

m(N − m) +
(

m − 1
2

)2

+ m − 1
2

and with an eigenvalue at −1 with multiplicity m − 1 and at 0 with multiplicity N − m − 1.
Comparing (13) with the exact result of a m-fully meshed star topology,

(λmax)mstar =
√

m(N − m) +
(

m − 1
2

)2

+ m − 1
2

=
√

(N − m)m + m − 1
2

+ 1
2

(
m − 1

2

)2 1√
(N − m)m

+ O(N−3/2)

shows, indeed, that (13) is correct, since N1 = m(m−1)
2 , N2 = m(m − 1)2 and N3 = m(m − 1)3

for the complete graph Km.

4. Perturbation theory

Consider the symmetrix matrix

B =
[

Om×m um×1
(uT)1×m 0

]

that represents the adjacency matrix of the bi-partite graph Km,1 or the star topology, a central
node that connects m other, not interconnected nodes. The eigenvalues of B are well-known:
−√

m,
√

m and 0 with multiplicity m − 1. The corresponding eigenvectors to the eigenvalue
√

m

and −√
m are v = [u1×m

√
m]T and w = [u1×m −√

m]T, respectively. Hence, apart from
the zero eigenvalues, the eigenvalues of tB are precisely λ0 = ±t

√
m.

Further, we can write

At = tB + A0 = t

(
B + 1

t
A0

)

which implies that the eigenvalues of At are equal to those of B + 1
t A0 multiplied by t . Since

we known the eigenvalues of B exactly, and if t is sufficiently large, perturbation theory [2,7]
can be applied. Since B + zA0 is analytic in z, real symmetric on the real axis, all eigenvalues of
B + zA0 are analytic functions of z in the neighborhood of the real axis (Imz = 0). Hence, there
exists a real number R > 0, for which B + zA0 has two, simple eigenvalues λ+(z) and λ−(z)

with Taylor expansion around
√

m and −√
m,

λ+(z) = √
m +

∞∑

k=1

αkz
k |z| < R,

λ−(z) = −√
m +

∞∑

k=1

βkz
k |z| < R,
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where all coefficients αk and βk are real. Perturbation theory [7, p. 69] gives explicitly the first
order coefficients as

α1 = vTAv

vTv
= uTAu

2m
and β1 = wTAw

wTw
= uTAu

2m
.

Thus,

α1 = β1 = N1

2m
.

For sufficiently small z, λ+(z) and λ−(z) are the maximum and minimum eigenvalue of B + zA0.
Hence, with (5), we obtain

λmax(A) " t

(
λ+

(
1
t

)
+ λ−

(
1
t

))
=

∞∑

k=1

(αk + βk) t1−k

= N1

m
+ (α2 + β2)

t
+ (α3 + β3)

t2 +
∞∑

k=4

(αk + βk) t1−k.

The specific (bi-partite) structure of At enables us to write the characteristic polynomial (6)
explicitly, from which we deduce, for sufficiently large t , that both tλ+(t−1) and tλ−(t−1) are
zeros of the function f (λ) = λ + sλt

2. If y(t) is a zero of λ + sλt
2 = 0, which is even in t ,

then also y(−t) is a zero, which shows that tλ+(t−1) = −tλ−(−t−1). The zeros of f (λ) can be
expanded in a Lagrange series around λ0 = ±t

√
m. By also expanding the coefficients of this

Lagrange series into a power series expansion in λ0 as shown in Appendix B, all coefficients αk

can be computed and we indeed find that λ+(t−1) = −λ−(−t−1). Hence,

t

(
λ+

(
1
t

)
+ λ−

(
1
t

))
= 2

∞∑

k=0

α2k+1t
−2k

= N1

m
+ 2α3

t2 + 2
∞∑

k=2

α2k+1t
−2k.

Ifα3 = N3
2m − N1N2

m2 + N3
1

2m3 > 0, a tighter lower bound forλmax(A) than the classicalλmax(A) " N1
m

is obtained.
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Appendix A. Results from linear algebra

From the Schur identity
[
A B

C D

]
=
[

I O

CA−1 I

] [
A B

O D − CA−1B

]
(14)

we find that

det
[
A B

C D

]
= det A det(D − CA−1B) (15)

and D − CA−1B is called the Schur complement of A.
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Lemma A.1. If

X =
[

A C

CT B

]

is a real symmetric matrix, where A and B are square, and consequently symmetric, matrices,
then

λmax(X) + λmin(X) ! λmax(A) + λmax(B) (16)

Proof. See e.g. [1, p. 56]. #

Appendix B. Characteristic coefficients of a complex function

If f (z) has a Taylor series around z0,

f (z) =
∞∑

k=0

fk(z0)(z − z0)
k with fk(z0) = 1

k!
dkf (z)

dzk

∣∣∣∣
z=z0

then the general relation where G(z) is analytic around f (z0) is

G(f (z)) = G(f (z0)) +
∞∑

m=1

(
m∑

k=1

1
k!

dkG(p)

dpk

∣∣∣∣
p=f (z0)

s[k, m]f (z)(z0)

)

(z − z0)
m, (17)

where the characteristic coefficient [5] of a complex function f (z) is

s[k, m]f (z)(z0) =
∑

∑k
i=1 ji=m;ji>0

k∏

i=1

fji (z0)

which obeys the recursion relation

s[1, m]f (z)(z0)=fm(z0),

s[k, m]f (z)(z0)=
m−k+1∑

j=1

fj (z0)s[k − 1, m − j ]f (z)(z0) (k > 1). (18)

The zero ζ(z0) of f (z) closest to z0 is given [5] in terms of the coefficients fk(z0) of the series
expansion of f (z) around z0 as

ζ(z0) = f −1(0) = z0 − f0(z0)

f1(z0)

+
∞∑

n=2




n−1∑

k=1

(−1)k
(

n + k − 1
k − 1

)

k(f1(z0))k
s∗[k, n − 1](z0)





(
−f0(z0)

f1(z0)

)n

,

(19)

where s∗[k, m] = s[k, m]|fm→fm+1 denotes that the index of all Taylor coefficients appearing in
(18) is augmented by 1. Explicitly summing the first five terms (n ! 5),
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ζ(z0) ≈ z0 − f0(z0)

f1(z0)
− f2(z0)

f1(z0)

(
f0(z0)

f1(z0)

)2

+
[

−2
(

f2(z0)

f1(z0)

)2

+ f3(z0)

f1(z0)

](
f0(z0)

f1(z0)

)3

+
[

−5
(

f2(z0)

f1(z0)

)3

+ 5
f3(z0)

f1(z0)

f2(z0)

f1(z0)
− f4(z0)

f1(z0)

](
f0(z0)

f1(z0)

)4

+
[

−14
(

f2(z0)

f1(z0)

)4

+ 21
f3(z0)

f1(z0)

(
f2(z0)

f1(z0)

)2

− 3
(

f3(z0)

f1(z0)

)2

− 6
f4(z0)

f1(z0)

f2(z0)

f1(z0)
+ f5(z0)

f1(z0)

](
f0(z0)

f1(z0)

)5

. (20)

Appendix B.1. Lagrange expansion

The zero of f (λ) = λ + sλt
2 = 0 will be computed using the Lagrange series which can be

efficiently computed to any order with characteristic coefficients [5]. The Lagrange expansion (19)
in terms of characteristic coefficients needs the Taylor coefficients of f (λ) around λ0 = ±t

√
m,

fn(λ0) = 1
n!

dn

dλn

(

λ − t2
∞∑

k=0

Nk

λk+1

)∣∣∣∣∣
λ=λ0

.

For n = 0,

f0(λ0) = λ0 − t2
∞∑

k=0

Nk

λk+1
0

= −t2
∞∑

k=1

Nk

λk+1
0

because λ0 − t2m
λ0

= 0 and,

f0(λ0) = − 1
m

∞∑

k=0

Nk+1

λk
0

. (21)

Similarly, for n = 1,

f1(λ0) = 1 + t2
∞∑

k=0

(k + 1)Nk

λk+2
0

= 2 + 1
m

∞∑

k=1

(k + 1)Nk

λk
0

(22)

and, for all n > 1,

fn(λ0) = (−1)n+1t2

λn+1
0

∞∑

k=0

(
n + k

k

)
Nk

λk
0

, (23)

We now confine ourselves to computing the zero ζ(λ0) of f (λ) accurate up to order O(t−2q),
where q is fixed, but specified later. Sinceλ0 = O(t), for fn(λ0) to be accurate up to order O(t−2q),
we need to take in the computation k = 2(q − 1) − n terms in the k-sums. Also, it follows that
2(q − 1) > n derivatives or Taylor coefficients in the Lagrange series are needed. The Lagrange

expansion (19) indicates that we need order expansions for (f1(λ0))
−k and

(
f0(z0)
f1(z0)

)n
. Both of

these expansions can be given in terms of characteristic coefficients. Applying

g−k(z) = g−k
0 +

∞∑

m=1

(
m∑

n=1

(−1)n
(

n + k − 1
n

)
g−k−n

0 s[n, m]
)

zm
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to (22), we have, with z = λ−1
0 and g0 = 2 and gn = (n+1)

m Nn for n > 0, that

(f1(λ0))
−k = 2−k +

∞∑

m=1

(
m∑

n=1

(−1)n
(

n + k − 1
n

)
s[n, m]|g(z)

2k+n

)

λ−m
0 .

Similarly, applying

hn(z) = hn
0 +

∞∑

m=1

(
m∑

k=1

(
n

k

)
hn−k

0 s[k, m]
)

zm

to (21), we obtain, with z = λ−1
0 and with hn = −Nn+1

m for n " 0, that

(f0(λ0))
n = (−1)nNn

1

mn

(

1 +
∞∑

m=1

(
m∑

k=1

(
n

k

)
(−m)ks[k, m]|h(z)

Nk
1

)

λ−m
0

)

.

The quotient
(

f0(z0)
f1(z0)

)n
follows by Cauchy’s product rule for series,

(
f0(z0)

f1(z0)

)n

= (−1)nNn
1

mn2n

(
1 − n

m

(−mN2

N1
+ N1

)
λ−1

0

+ (−1)nNn
1

mn2n

∞∑

r=2

(
r∑

k=1

(
n

k

)
(−m)ks[k, r]|h(z)

Nk
1

+
r∑

j=1

(−1)j
(

j + n − 1
j

)
s[j, r]|g(z)

2j

+
r−1∑

q=1




r−q∑

j=1

(−1)j
(

j + n − 1
j

)
s[j, r − q]|g(z)

2j





×
(

q∑

k=1

(
n

k

)
(−m)ks[k, q]|h(z)

Nk
1

))

λ−r
0 .

Explicitly up to order O(t−3),
(

f0(z0)

f1(z0)

)n

= (−1)nNn
1

mn2n

(
1 + n

m

(
mN2

N1
− N1

))
λ−1

0

+ (−1)nNn
1

mn2n

(
nN3

N1
+ n(n − 1)N2

2

2N2
1

− (3n + 2n2)N2

2m
+ n(n + 1)N2

1

2m2

)

λ−2
0 .

Let us compute the zero of f (λ) = λ + sλt
2 = 0 up to O(t−3). For q = 3/2, we need for each

derivative n < 4, only k = 4 − n terms. The corresponding Lagrange series is

ζ(λ0) = λ0 − f0(λ0)

f1(λ0)
− f2(λ0)

f1(λ0)

(
f0(λ0)

f1(λ0)

)2

+
[

−2
(

f2(λ0)

f1(λ0)

)2

+ f3(λ0)

f1(λ0)

](
f0(λ0)

f1(λ0)

)3

+ O(t−3).
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We list the separate terms,

f0(z0)

f1(z0)
= −N1

2m

(

1 + 1
m

(
mN2

N1
− N1

)
λ−1

0 +
(

N3

N1
− 5N2

2m
+ N2

1

m2

)

λ−2
0

)

,

(
f0(λ0)

f1(λ0)

)2

= N2
1

4m2

(
1 + 2

m

(
mN2

N1
− N1

)
λ−1

0 + O(λ−2
0 )

)
,

(
f0(z0)

f1(z0)

)3

= −N3
1

8m3 (1 + O(λ−1
0 ))

and

f2(λ0)

f1(λ0)
= −

(
1
2

− N1

2m
λ−1

0 +
(

N2
1

2m2 − 3N2

2m

)

λ−2
0

)(
1
λ0

+ 3N1

mλ2
0

)

= −
(

1
2
λ−1

0 + N1

m
λ−2

0

)
,

(
f2(λ0)

f1(λ0)

)2

= 1
4
λ−2

0

and

f3(λ0)

f1(λ0)
=
(

2−1 − N1

2m
λ−1

0 +
(

N2
1

2m2 − 3N2

2m

)

λ−2
0

)

λ−2
0 = 1

2
λ−2

0 .

Combined yields the final result (13).

Appendix C. A finite sum expression for sλ

Since A is symmetrix, Ak = Xdiag(λk
j )X

T where the colums of the orthogonal matrix X

consists of eigenvectors xj of A,

(A − λI )−1 = −1
λ

X

(

diag

( ∞∑

k=0

λk
j

λk

))

XT = −Xdiag
(

1
λ − λj

)
XT.

Then,

sλ = u(A − λI )−1uT = −
m∑

j=1

(∑m
k=1 xj ;k

)2

λ − λj
. (24)

Unless the all-one vector u is an eigenvector of A, (
∑m

k=1 xj ;k)2 /= 0. Hence, in that case

det(At − λI ) = − det(A − λI )m×m



λ − t2
m∑

j=1

(∑m
k=1 xj ;k

)2

λ − λj





and no eigenvalue of A is a zero of f (λ) = λ − t2∑m
j=1

(
∑m

k=1 xj ;k)2

λ−λj
.
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