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Abstract

We propose a class of graphsG∗D(n1, n2, ..., nD+1), containing of a chain ofD+1 cliquesKn1 ,Kn2 , ...,KnD+1 ,

where neighboring cliques are fully-interconnected. The class of graphs has diameter D and size N =

1≤i≤D+1ni. We prove that this class of graphs can achieve the maximal number of links, the minimum

average hopcount, and more interestingly, the maximal of any Laplacian eigenvalue among all graphs with

N nodes and diameter D. The algebraic connectivity is the eigenvalue of the Laplacian that has been

studied most, because it features many interesting properties. We determine the graph with the largest

algebraic connectivity among graphs with N nodes and diameter D ≤ 4. For other diameters, numerically
searching for the maximum of any eigenvalue is feasible, because (a) the searching space within the class

G∗D(n1, n2, ..., nD+1) is much smaller than within all graphs with N nodes and diameter D; (b) we reduce

the calculation of the Laplacian spectrum from a N ×N to a (D + 1)× (D + 1) matrix.

The maximum of any Laplacian eigenvalue obtained either theoretically or by numerical searching is

applied to (1) investigate the topological features of graphs that maximize different Laplacian eigenvalues;

(2) study the correlation between the maximum algebraic connectivity amax(N,D) and N as well as D and

(3) evaluate two upper bounds of the algebraic connectivity that are proposed in the literature.
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1 Introduction

Let G be a graph and let N denote the set of nodes and L the set of links, with N = |N | nodes and L = |L|
links, respectively. The Laplacian matrix of G with N nodes is a N ×N matrix Q = ∆−A, where ∆ =diag(di)

and di is the degree of node i ∈ N and A is the adjacency matrix of G. The Laplacian eigenvalues are all real
and nonnegative [1]. The set of all N Laplacian eigenvalues μN = 0 ≤ μN−1 ≤ ... ≤ μ1 is called the Laplacian
spectrum of G.
The second smallest eigenvalue μN−1, also called after Fiedler’s seminal paper [2], the algebraic connectivity,

can be denoted as μN−1 = a(G) for simplicity. The algebraic connectivity a(G) is widely studied in the literature
due to (a) its importance for the connectivity, a basic measure for the robustness of a graph. The larger the
algebraic connectivity is, the larger the relative number of links required to be cut-away to generate a bipartition
[3]; (b) its correlation with properties of dynamic processes, such as synchronization of dynamic processes at the
nodes of a network and random walks on graphs which model e.g. the dispersion phenomena or exploring graph
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properties [3]. A network has a more robust synchronized state if the algebraic connectivity of the network is
large [4, 5]. Random walks move and disseminate efficiently in topologies with large algebraic connectivity.
The diameter D of a graph is the maximum distance in terms of the number of hops or links over all pairs

of nodes in G. The diameter is one of the graph metrics that is not only of theoretical interest but that also
has many practical applications. In communication networks, the diameter plays a key role in network design
when the network performance, such as the delay or signal degradation, is proportional to the number of links

that a packet traverses. Numerous applications include circuit design, data representation, and parallel and
distributive computing [6]. The complete graph has the maximal algebraic connectivity a(KN ) = N . However,
real-world networks are always far sparser and their diameters are mostly larger. In order to construct a certain
relative large diameter, links have to be removed, but this reduces the algebraic connectivity. It is essential to
understand how the maximum algebraic connectivity amax(N,D) decreases while increasing the diameter D, at
constant N .
In this work, we propose a class of graphs G∗D(n1, n2, ..., nD, nD+1) where D is the diameter and the variables

ni, with 1 ≤ i ≤ D + 1, are the sizes of the cliques contained in G∗D. This structure was employed by Van
Dam [7] to determine the graphs with the maximal spectral radius (largest eigenvalue of the adjacency matrix)

among those on N nodes and diameter D. Here, we claim that the maximum algebraic connectivity of the class
G∗D(n1 = 1, n2, ..., nD, nD+1 = 1) is also the maximum amax(N,D) over all graphs G(N,D) with N nodes and
diameter D. More generally, we prove that G∗D(n1 = 1, n2, ..., nD, nD+1 = 1) can achieve the maximum of any
Laplacian eigenvalue μi, 1 ≤ i ≤ N − 1, the maximum link density, the minimum average hopcount among all
graphs G(N,D).

For D ≤ 4, we determine rigorously the graph in the class G∗D(n1 = 1, n2, ..., nD, nD+1 = 1) that achieves the
maximum algebraic connectivity amax(N,D). For larger diameters, the maximum of any Laplacian eigenvalue
is searched numerically, which is feasible, because we search within the class G∗D(n1 = 1, n2, ..., nD, nD+1 = 1)
instead of all graphs G(N,D). And, we reduce the computation of the Laplacian eigenvalue from a N × N

to a (D + 1) × (D + 1) matrix. Numerical exhaustive searching is applied in this paper to (1) examine the

topological features of graphs that maximize different Laplacian eigenvalues; (2) investigate the maximum
algebraic connectivity amax(N,D) for various N and D and (3) Finally, we evaluate the upper bounds on the
algebraic connectivity that are proposed in the literature.

2 The class of graphs G∗D(n1, n2, ..., nD+1)

2.1 Definition

Definition 1 The class of graphs G∗D(n1, n2, ..., nD+1) is composed of D + 1 cliques1 Kn1 ,Kn2 , ...,KnD and
KnD+1 , where the variable ni ≥ 1 with 1 ≤ i ≤ D + 1 is the size or number of nodes of the i− th clique. Each
clique Kni is fully connected with its neighboring cliques Kni−1 and Kni+1 for 2 ≤ i ≤ D. Two graphs G1 and

G2 are fully connected if each node in G1 is connected to all the nodes in G2.

Two examples, G∗D=4(n1 = 3, n2 = 1, n3 = 2, n4 = 1, n5 = 2) and G∗D=4(n1 = 1, n2 = 3, n3 = 2, n4 = 2, n5 =

1), are shown in Figure 1. Obviously, the class of graphs G∗D(n1, n2, ..., nD+1) has diameter D, which equals
the distance between nodes in clique Kn1 and nodes in KnD+1 . The size of each clique must be larger than or
equal to one, i.e. ni ≥ 1 for 1 ≤ i ≤ D + 1. The degree of a node is the number of links that connects to the
node. The degree of any node in Kni is ni − 1 + ni+1 + ni−1 for 2 ≤ i ≤ D. The degree is n1 − 1 + n2 for any
node in Kn1 and is nD+1 − 1 + nD for nodes in clique KnD+1 .

1A clique is a subset of nodes that every two nodes in the subset are connected by a link.

2



(a)

(b)

3 2n = 4 1n = 5 2n =1 3n = 2 1n =

3 2n = 4 2n = 5 1n =1 1n = 2 3n =

(a)

(b)

3 2n = 4 1n = 5 2n =1 3n = 2 1n =

3 2n = 4 2n = 5 1n =1 1n = 2 3n =

Figure 1: The graph (a) G∗D=4(n1 = 3, n2 = 1, n3 = 2, n4 = 1, n5 = 2) and (b) G∗D=4(n1 = 1, n2 = 3, n3 =

2, n4 = 2, n5 = 1).

2.2 Properties

Each node in the class of graphs G∗D(n1, n2, ..., nD+1) is fully connected within the clique and with neighboring
cliques. We now define a node shifting action performed on a graph of the class G∗D(n1, n2, ..., nD+1). The
resultant graph also belongs to this class and differs from the initial graph in that one node is shifted to a
neighboring clique.

Definition 2 Node shifting within the class G∗D(n1, ..., ni−1, ni, ni+1, ..., nD+1): Any node in clique Kni for
2 ≤ i ≤ D can be shifted to its neighboring clique Kni+1 (or Kni−1) by removing links between this node and all
the nodes in clique Kni−1 (or Kni+1) and by adding links between this node and all the nodes in clique Kni+2

(Kni−2), if ni > 1. The resultant graph after one of such node shifting actions is G
∗
D(n1, ..., ni−1, ni− 1, ni+1+

1, ..., nD+1) or G∗D(n1, n2, ..., ni−1 + 1, ni − 1, ni+1, ..., nD+1). A node in clique Kn1 (or KnD+1) can only be
shifted to clique Kn2 (or KnD) by adding links between it and all nodes in clique Kn3 (or KnD−1), which results
in G∗D(n1 − 1, n2 + 1, ..., nD−1, nD, nD+1) (or G∗D(n1, n2, ..., nD−1, nD + 1, nD+1 − 1)).

Figure 2 illustrates an example of node shifting. From (a) G∗D=4(n1 = 3, n2 = 1, n3 = 2, n4 = 1, n5 = 2)

to (b) G∗D=4(n1 = 3, n2 = 1, n3 = 1, n4 = 2, n5 = 2), a node (red) in Kn3 is shifted to Kn4 by removing the
link (marked with cross) between that node and nodes in clique Kn2 and by adding links (the blue dotted line)
between the node and all nodes in Kn5 . In fact, any two graphs in the class G

∗
D(n1, n2, ..., nD, nD+1) with

the same number N of nodes can be transformed from one to the other by a set of node shifting actions. For
example, Figure 1(b) can be obtained from Figure 1(a) by shifting two nodes from Kn1 to Kn2 and one node

from Kn5 to Kn4 . When a node in clique Kni , where 2 ≤ i ≤ D and ni > 1, is shifted to clique Kni+1 , ni−1
links are removed and ni+2 links are added. Hence, if we shift m < ni nodes from clique Kni to clique Kni+1 ,
ni−1 ·m links are removed and ni+2 ·m links are added. This node shifting operation will be frequently used to
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(b)
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5 2n =
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Figure 2: The graph (a) G∗D=4(n1 = 3, n2 = 1, n3 = 2, n4 = 1, n5 = 2) and (b) G∗D=4(n1 = 3, n2 = 1, n3 =

1, n4 = 2, n5 = 2). The line with cross mark is to be removed and the dotted blue links are added.

prove several interesting properties of the class G∗D(n1, n2, ..., nD, nD+1).
Based on the sizes of the first and last clique, the class of graphs G∗D(n1, n2, ..., nD, nD+1) can be divided

into two sets: 1) n1 = nD+1 = 1, e.g. Figure 1(b), and 2) at least one of n1, nD+1 is larger than 1, e.g. Figure
1(a). The set 1 is generally denser than the set 2, in the sense that

Lemma 3 A graph G∗D(n1, n2, ..., nD, nD+1), where at least one of n1 and nD+1 is larger than one, is a subgraph
of G∗D(1, n1 − 1 + n2, ..., nD−1, nD + nD+1 − 1, 1).

Proof. According to the definition of node shifting, links are only added and not removed, when a node is
shifted from Kn1 to Kn2 or from KnD+1 to KnD . G

∗
D(1, n1−1+n2, ..., nD−1, nD+nD+1−1, 1) can be obtained

from G∗D(n1, n2, ..., nD−1, nD, nD+1) by shifting n1 − 1 nodes from Kn1 to Kn2 and by shifting nD+1 − 1
nodes from KnD+1 to KnD by purely adding links. Hence, G∗D(n1, n2, ..., nD−1, nD, nD+1) is a subgraph of
G∗D(1, n1 − 1 + n2, ..., nD−1, nD + nD+1 − 1, 1), when either n1 or nD+1 is larger than one.
Figure 1 gives an example of Lemma 3, i.e. G∗D=4(n1 = 3, n2 = 1, n3 = 2, n4 = 1, n5 = 2) is a subgraph

of G∗D=4(n1 = 1, n2 = 3, n3 = 2, n4 = 2, n5 = 1). Both graphs contain the same set of nodes, while the latter
consists of more links, the blue dotted ones.
The motivation to study the set of graphs G∗D(n1 = 1, n2, ..., nD, nD+1 = 1) lies in the following properties.

Theorem 4 Any graph G(N,D) with N nodes and diameter D is a subgraph of at least one graph in the class
G∗D(n1 = 1, n2, ..., nD, nD+1 = 1) with N =

PD+1
i=1 ni.

Proof. There is at least one node pair in G(N,D) that is D hops away from each other, because the diameter
of G(N,D) is D. We select a node s from one such node pair and denote it as cluster C1 = s. We define the
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set of clusters Ci (2 ≤ i ≤ D + 1) as the set of |Ci| nodes that is i hops away from s or cluster C1. There can
be more than one node that is D hops away from s, when |CD+1| ≥ 1. First, G(N,D) is a subgraph of the
graph G∗D(n1 = 1, n2, ..., nD, nD+1) when ni = |Ci| for 1 ≤ i ≤ D + 1, because of two reasons: (a) Within each
cluster Ci of G(N,D), for 1 ≤ i ≤ D + 1, these |Ci| nodes are at best fully connected as in the corresponding
clique Kni with size ni = |Ci| in G∗D(n1 = 1, n2, ..., nD, nD+1). (b) in G(N,D), nodes in cluster Ci (2 ≤ i ≤ D)
can not be connected to nodes in other clusters except for Ci−1 and Ci+1, or else, the distance between C1 = s

and nodes in CD+1 is smaller than D. Similarly, each clique Kni is only but fully connected to its neighboring
cliques Kni−1 and Kni+1 in G∗D(n1 = 1, n2, ..., nD, nD+1).

Based on Lemma 3, G∗D(n1 = 1, n2, ..., nD, nD+1) is a subgraph of G∗D(1, n2, ..., nD−1, nD + nD+1 − 1, 1).
Hence, any graph G(N,D) with N nodes and diameter D is a subgraph of at least one graph in the class
G∗D(n1 = 1, n2, ..., nD, nD+1 = 1).

Since
XD+1

i=1
ni = N and n1 = nD+1 = 1 always hold, the graph G∗D(n1 = 1, n2, ..., nD, nD+1 = 1) contains

D − 2 variables: the sizes of the cliques and ni > 0 for 1 ≤ i ≤ D + 1.
Fiedler [2] showed that, if G1 is a subgraph of G with the same size, then a(G1) ≤ a(G). Hence, by virtue

of Theorem 4, we have:

Corollary 5 The maximum algebraic connectivity of the graphs in the class G∗D(n1 = 1, n2, ..., nD, nD+1 =

1) is also the maximum among all the graphs with the same size N and diameter D, i.e. amax(G
∗
D(n1 =

1, n2, ..., nD, nD+1 = 1)) = amax(N,D).

However, given size N and diameter D, the graph that has the maximum algebraic connectivity amax(N,D)

may not be unique. For example, the graph in G∗D(n1 = 1, n2, ..., nD, nD+1 = 1) maximizing the algebraic
connectivity amax(N,D) may possess the same algebraic connectivity after a set of links is deleted. In other
words, different graphs may have the same algebraic connectivity amax(N,D).

Theorem 6 The maximum of any eigenvalue μi(G1), i ∈ [1, N ] achieved in the class G∗D(n1 = 1, n2, ..., nD, nD+1 =
1) is also the maximum among all the graphs with N nodes and diameter D.

Proof. Our proof is based on the well-known interlacing property (see e.g. [8]): Let G be a general graph of N
nodes. Let G+ e be the graph obtained by adding a link e between two nodes that are not directly connected
in G. Then, the eigenvalues of G interlace with those of G+ e, that is,

μN (G) ≤ μN (G+ e) ≤ μN−1(G) ≤ μN−1(G+ e)

≤ μN−2(G)... ≤ μ1 ≤ μ1(G+ e)

Therefore, if G1 is a subgraph of G with the same size N, μi(G1) ≤ μi(G), for i ∈ [1,N ]. Together with Theorem
4, the proof can be completed.

Theorem 7 The maximum number of links in a graph with given size N and diameter D is Lmax(N,D) =¡
N−D+2

2

¢
+D − 3, which can only be obtained by either G∗D(1, ..., 1, nj = N −D, 1, ..., 1) with j ∈ [2,D], where

only one clique has size larger than one, or by G∗D(1, ..., 1, nj > 1, nj+1 > 1, 1, ..., 1) with j ∈ [2,D − 1] where
only two cliques have size larger than one and they are next to each other.

Proof. First, according to Theorem 4, the maximum number of links Lmax(N,D) can only be achieved within
the class G∗D(n1 = 1, n2, ..., nD, nD+1 = 1). Second, any other graph G∗D(n1 = 1, n2, ..., nD, nD+1 = 1), where
more than one clique has size larger than one, can be transformed into G∗D(1, ..., 1, nj = N − D, 1, ..., 1) by
a set of node shifting operations. (a) When progressing from clique Kn2 to clique KnD−1 , we label the first
encountered clique that has size larger than one as Knr such that ni = 1 for i < r. (b) We shift all but
one (i.e. nr − 1) nodes in clique Knr to clique Knr+1 by deleting (nr − 1) · nr−1 = (nr − 1) links and by
adding (nr − 1) · nr+2 links. The process (a and b) is repeated until there is only one clique having size
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larger than 1. Since ni ≥ 1 for i ∈ [1,D + 1] according to the definition of the class G∗D(n1, n2, ..., nD, nD+1),
(nr − 1) · nr+2 ≥ nr − 1. The inequality holds when nr+2 > 1, which happens at least one time during the
recursive node shifting except for G∗D(1, ..., 1, nj > 1, nj+1 > 1, 1, ..., 1), j ∈ [1,D − 2] where only two cliques
have size larger than one and they are next to each other. Hence, G∗D(1, ..., 1, nj = N−D, 1, ..., 1), j ∈ [2,D] and
G∗D(1, ..., 1, nj > 1, nj+1 > 1, 1, ..., 1), j ∈ [2,D−1] possess the maximum number of links among graphs of size N
and diameter D. The maximum number of links is Lmax(N,D) =

¡
N−D
2

¢
+2(N−D)+D−2 =

¡
N−D+2

2

¢
+D−3.

Theorem 8 The minimum average hopcount in graphs with given size N and diameter D can be only obtained
by G∗D(1, ..., 1, nD

2 +1
= N−D, 1, ..., 1) when D is even, or when D is odd, by G∗D(1, ..., 1, nbD2 c+1 ≥ 1, ndD2 e+1 ≥

1, 1, ..., 1), where only the two cliques in the middle can have size larger than one. The minimum average hopcount
is

min
G∈G(N,D)

E[H(G)] =

⎧⎪⎪⎨⎪⎪⎩
N−D−1
N(N−1)

³
D2

2 +N
´
+

PD
i=1i(D−i+1)
(N2 )

, when D is even

N−D−1
N(N−1)

³
2
¥
D
2

¦2
+N +D

´
+

PD
i=1i(D−i+1)
(N2 )

, when D is odd

Proof. See Section B.1.
In summary, the class G∗D(n1 = 1, n2, ..., nD, nD+1 = 1) can achieve the maximum of any Laplacian eigen-

value μi, 1 ≤ i ≤ N − 1, the maximum link density, the minimum average hopcount among all graphs with

given size N and diameter D. The graphs that possess the maximum link density and the minimum average
hopcount are rigorously determined in Theorem 7 and 8. In the sequel, we focus on the Laplacian spectrum of
the class G∗D(n1 = 1, n2, ..., nD, nD+1 = 1).

3 Eigenvalues of the Laplacian of G∗D(n1, n2, ..., nD, nD+1)

The spectrum of both the Laplacian and adjacency matrix of G∗D is computed in [9].

Theorem 9 The characteristic polynomial of the Laplacian QG∗D
= ∆G∗D

−AG∗D
of G∗D(n1, n2, ..., nD−1, nD, nD+1)

equals
det

¡
QG∗D

− μI
¢
= pD (μ)

QD+1
j=1 (dj + 1− μ)nj−1 (1)

where dj denotes the degree of a node in clique j. The polynomial pD (μ) =
QD+1

j=1 θj is of degree D+1 in μ and
the function θj = θj (D;μ) obeys the recursion

θj = (dj + 1− μ)−
µ
nj−1
θj−1

+ 1

¶
nj (2)

with initial condition θ0 = 1 and with the convention that n0 = nD+2 = 0.

Proof. See [9].
Theorem 9 shows that the Laplacian QG∗D

has eigenvalues at nj−1 + nj + nj+1 = dj + 1 with multiplicity
nj − 1 for 1 ≤ j ≤ D + 1, with the convention that n0 = nD+2 = 0. The less trivial zeros are solutions of the
polynomial pD (μ) =

QD+1
j=1 θj , where θj is recursively defined via (2). Since all the explicit Laplacian eigenvalues

μj = dj +1 of G∗D in (1) are larger than zero and since μ = 0 is an eigenvalue of any Laplacian, the polynomial
pD (μ) must have a zero at μ = 0. Thus, the polynomial of interest is

pD (μ) =
QD+1

j=1 θj (D;μ) =
D+1X
k=0

ck (D)μ
k =

D+1Y
k=1

(zk − μ) (3)

where the dependence of θj on the diameter D and on μ is explicitly written and where the product with the
zeros 0 = zD+1 ≤ zD ≤ · · · ≤ z1 follows from the definition of the eigenvalue equation (see [10, p. 435-436]).
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The general lower bound [11] for the algebraic connectivity in any graph is a ≤ dmin where dmin is the
minimal degree of a graph. Hence, a = zD, the algebraic connectivity is always a non-trivial eigenvalue of QG∗D

,
i.e. the second smallest zero of the polynomial pD (μ) . The largest Laplacian eigenvalue follows

μ1 ≥ dmax + 1

the same as presented in [11, 12, 13]. Brouwer and Haemers [13] further show that the equality holds if and

only if there is a node connecting to all the other nodes in the graph. Hence, when the diameter D > 2, the
largest eigenvalue is always a nontrivial eigenvalue, i.e. μ1 = z1. When D = 2, the zeros of

pD (μ) = μ
¡
μ2 − (N + n2)μ+Nn2

¢
= μ (μ−N) (μ− n2)

are z3 = 0, z2 = n2 and z1 = N . Since the largest eigenvalue μ1 ∈ [0, N ] , μ1 = z1.
Furthermore, pD (μ) is shown in [9] to belong to a set of orthogonal polynomials. All the non-trivial

eigenvalues of QG∗D
are also eigenvalues of the (much simpler and smaller) Jacobian matrix -fM , where

fM =

⎡⎢⎢⎢⎢⎢⎢⎣
−n2

√
n1n2√

n1n2 − (n1 + n3)
√
n2n3

. . .
. . .

. . .
√
nD−1nD − (nD−1 + nD+1)

√
nDnD+1√

nDnD+1 −nD

⎤⎥⎥⎥⎥⎥⎥⎦
Therefore, exhaustively numerical searching for the maximum of any Laplacian eigenvalue is feasible because of
two reasons: (a) the searching space within G∗D(n1 = 1, n2, ..., nD, nD+1 = 1) is much smaller than the searching
within all graphs with N nodes and diameter D. (b) the calculation of the Laplacian spectrum is reduced from
a N ×N matrix to a (D + 1)× (D + 1) tri-diagonal matrix.

4 The maximum of any Laplacian eigenvalue

Theorem 6 shows that the maximum of any eigenvalue among all graphs with size N and diameter D can be
achieved within the class G∗D(n1 = 1, n2, ..., nD, nD+1 = 1). What is the topological implication when different
eigenvalues are optimized? Table 1 presents the different topologies with D = 6 that optimize the i-th largest
Laplacian eigenvalue μi and the spacing μi − μi+1, for i ∈ [N − 1, N − 7].
The graph in the class G∗D(n1 = 1, n2, ..., nD, nD+1 = 1) that optimizes μi for i ≤ N − 5 possesses the

maximal number of links, i.e. only one or two adjacent cliques have size larger than one, according to Theorem
7. In fact, μi for i = N − 6, N − 7 can be optimized by any graph in the class G∗D(n1 = 1, n2, ..., nD, nD+1 = 1)
that has the maximal number of links, not only the graph listed in the table. Theorem 9 shows that the
Laplacian QG∗D

has eigenvalues at nj−1 + nj + nj+1 = dj + 1 with multiplicity nj − 1 for 1 ≤ j ≤ D + 1.

Graphs that maximize the number of links have the maximal trivial eigenvalue N −D + 2 with the maximal
multiplicity N−D−1. Hence, a large set of eigenvalues, but not the largest one2 μ1, can be optimized by graphs
possessing the maximal number of links. Graph that optimizes the eigenvalue μi, at the same time, maximizes
the corresponding spacing μi − μi+1, for i ≥ N − 5. However, when i < N − 5, the graph that optimizes the
eigenvalue μi, has spacing μi − μi+1 = 0, which is far from the maximal spacing.
The graph that maximizes the algebraic connectivity μN−1, has larger sizes for cliques in the middle. It is

dense in the core and sparse at borders. Such structure is robust for information transportation in the sense
that traffic is more uniformly distributed, when traffic is injected between each node pair. Contrary, graphs
that maximize other eigenvalues or spacing, have cliques with small size (nj = 1) around the middle, which

2The largest eigenvalue μ1 is always a nontrivial one according to Theorem 9. Hence, a lower bound for the maximal possible
μ1 follows μ1max ≥ N −D + 2.
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Table 1: Graphs with D = 6 that optimize the i-th largest Laplacian eigenvalue μi or the spacing μi − μi+1.

N = 50 N = 100

value to optimize n2 n3 n4 n5 n6 value to optimize n2 n3 n4 n5 n6

μN−1 = μN−1 − μN 6 11 14 11 6 μN−1 = μN−1 − μN 13 22 28 22 13

μN−2 16 15 1 1 15 μN−2 32 32 1 1 32

μN−2 − μN−1 16 15 1 1 15 μN−2 − μN−1 32 32 1 1 32

μN−3 1 22 1 1 23 μN−3 1 47 1 1 48

μN−3 − μN−2 1 22 1 1 23 μN−3 − μN−2 1 47 1 1 48

μN−4 1 22 1 23 1 μN−4 1 48 1 47 1

μN−4 − μN−3 1 22 1 23 1 μN−4 − μN−3 1 48 1 47 1

μN−5 1 1 44 1 1 μN−5 1 1 94 1 1

μN−5 − μN−4 1 1 44 1 1 μN−5 − μN−4 1 1 94 1 1

μN−6 1 1 1 30 15 μN−6 1 1 34 61 1

μN−6 − μN−5 1 1 43 1 2 μN−6 − μN−5 2 1 93 1 1

μN−7 1 1 1 35 10 μN−7 1 1 1 38 57

μN−7 − μN−6 2 1 42 1 2 μN−7 − μN−6 2 1 92 1 2

have to carry much more traffic and become the bottleneck for transportation. Graphs with many cliques of
size one are vulnerable, because removal of such clique - which is in fact a node - disconnects the rest of the
graph. Hence, the comparison of topologies in table 1 provides us with an extra motivation to study the graphs

maximizing the algebraic connectivity. Since G∗D(n1, n2, ..., nD, nD+1) has L =
XD

i=2

¡
ni
2

¢
+
XD

i=1
nini+1 links,

the number of links in the graph that maximizes the algebraic connectivity is far smaller than the maximum
for D > 3 according to Theorem 7. Therefore, graphs that maximize the algebraic connectivity are robust for
transportation, while, at the same time, efficient in the number of links.

5 The maximum algebraic connectivity amax(N,D)

5.1 Exact computation of amax (N,D) for diameter D = 2, 3, 4

Before we start the D = 2, 3 cases, it should be mentioned that the graph G(N,D = N − 1) with N nodes
and diameter N − 1 is unique: a path graph. The algebraic connectivity of a path graph [14] is well-known:
amax(N,D = N − 1) = 2

¡
1− cos π

N

¢
.

The complete Laplacian spectrum of G∗D=2(n1, n2, n3) follows from Theorem 9 and the polynomial pD (μ), as
the zeros at μ1 = n1+n2 with multiplicity n1−1, μ2 = n1+n2+n3 = N with multiplicity n2−1, μ3 = n2+n3

with multiplicity n3 − 1 and the simple zeros of

pD (μ) = μ
¡
μ2 − (N + n2)μ+Nn2

¢
= μ (μ−N) (μ− n2)

which are z3 = 0, z2 = n2 and z1 = N . Clearly, since n1+n2+n3 = N , the largest possible algebraic connectivity
amax(N,D = 2) = n2 is N − 2.
This result is more directly found from Corollary 5. The maximum algebraic connectivity in graphs with

N nodes and diameter D can be achieved in the class G∗D(n1 = 1, n2, ..., nD, nD+1 = 1), which is unique, i.e.
G∗D=2(n1 = 1, n2 = N − 2, n3 = 1) for D = 2. Hence, the graph G∗D=2(n1 = 1, n2 = N − 2, n3 = 1), a clique of
size N without one link KN − {(i, j)}, has the maximum algebraic connectivity N − 2 among graphs with N

nodes and diameter D = 2, i.e. amax(N,D = 2) = N − 2.

Theorem 10 For graphs with N nodes and diameter D = 3, the graph G∗D=3
¡
1,
¥
N−2
2

¦
, N − 2−

¥
N−2
2

¦
, 1
¢

has the maximum algebraic connectivity with
¥
N−2
2

¦
− 1 ≤ amax(N,D = 3) ≤

¥
N−2
2

¦
.

8



Proof. See Section B.2.
We will give the solution for the case D = 4 through a number of theorems.

Theorem 11 Among the graphs G∗D=4 (1,m,N − 2m− 2,m, 1), the algebraic connectivity is maximal when
m =

¥
N
3 −

5
9 −

1
18

√
6N − 8

¦
or m =

§
N
3 −

5
9 −

1
18

√
6N − 8

¨
and

amax(N,D = 4) = N−1−m
2 − 1

2

√
N2 − 2N − 6Nm+ 1 + 10m+ 9m2.

Proof. See Section B.3.

Theorem 12 The graph G∗D=4 (1,m+ a,N − 2m− 2,m− a, 1), where 0 < a ≤ m − 1, has algebraic connec-
tivity smaller than the graph G∗D=4 (1,m,N − 2m− 2,m, 1).

Proof. See Section B.4.

Corollary 13 For graphs with N nodes and diameter D = 4, if we consider the graphs
G∗D=4 (1, n2, N − n2 − n4 − 2, n4, 1), where n2 and n4 are real numbers, then the maximum algebraic connectivity
is achieved for n2 = n4 =

N
3 −

5
9 −

1
18

√
6N − 8 and amax(N,D = 4) = N

3 −
2
9 −

2
9

√
6N − 8.

Proof. The corollary follows directly from the proofs of Theorem 11 and 12.

Theorem 14 For graphs with N nodes and diameter D = 4, among the graphs
G∗D=4 (1, n2, N − n2 − n4 − 2, n4, 1), where n2 and n4 are integers, the maximum algebraic connectivity is achieved
for either (n2, n4) = (bmc , bmc), (n2, n4) = (dme , dme) or (n2, n4) = (bmc , dme), where m = N

3 −
5
9 −

1
18

√
6N − 8. Furthermore, amax(N,D = 4) ≤ N

3 −
2
9 −

2
9

√
6N − 8.

Proof. See Section B.5.
The D = 4 case deserves more discussions. In Section A we report the results of a numerical search

for graphs that maximize the algebraic connectivity for various values of the diameter D. In the considered
examples (N = 26, 50, 100, 122) the graph with maximum algebraic connectivity is each time unique and sym-
metric, namely G∗D=4 (1,m,N − 2m− 2,m, 1), where m is obtained by rounding N

3 −
5
9 −

1
18

√
6N − 8 to an

integer. However, we also found a number of examples where the maximum algebraic connectivity is realized

for three different graphs, including the non-symmetric case mentioned in Theorem 14. For instance, the max-
imum algebraic connectivity for graphs on N = 48 nodes with diameter 4, is realized by G∗D=4 (1, 14, 18, 14, 1),
G∗D=4 (1, 15, 16, 15, 1) and by G∗D=4 (1, 15, 17, 14, 1). The algebraic connectivity for these graphs is an integer,
namely 12. In fact, it is straightforward to prove that the maximum algebraic connectivity for graphs on N =

4 + 10s+ 6s2 nodes (where s ∈ N) with diameter 4, is realized by G∗D=4
¡
1, 2s2 + 3s, 2s2 + 4s+ 2, 2s2 + 3s, 1

¢
,

G∗D=4
¡
1, 2s2 + 3s+ 1, 2s2 + 4s, 2s2 + 3s+ 1, 1

¢
and by G∗D=4

¡
1, 2s2 + 3s+ 1, 2s2 + 4s+ 1, 2s2 + 3s, 1

¢
, with as

algebraic connectivity is the integer 2s2 + 2s. Note that the case N = 48 corresponds with s = 2. Whether or
not there exists a case where the non-symmetric graph G∗D=4 (1, dme , N − dme− bmc− 2, bmc , 1) is the unique
graph that realizes the maximum algebraic connectivity remains an interesting open problem.

5.2 amax(N,D) in relation to N and D

The maximum algebraic connectivity amax(N,D) used in this section is obtained via exhaustive searching in
G∗D(n1 = 1, n2, ..., nD, nD+1 = 1) for D ≥ 4. We study first the amax(N,D) in relation to N .
As shown in Figure 3, the maximal algebraic connectivity seems linear inN for constantD, i.e. amax(N,D) ∼=

α+β ·N . The slope β decreases fast from β = 1 to β = 0.12 when the diameter increases from D = 2 to D = 6.

When D = 2, amax(N,D = 2) = N − 2, which is determined in Section 5.1. When D = 3, we have that β = 0.5,
which follows from Theorem 10, i.e.

¥
N−2
2

¦
− 1 ≤ amax(N,D = 3) ≤

¥
N−2
2

¦
. Moreover, we have proved in

[9, Section 3.3] that, for large N , the highest possible achievable algebraic connectivity amax(N,D) is a linear

function of N , provided the diameter D is independent from N .
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Figure 3: The amax(N,D) (marker) for 2 ≤ D ≤ 6 and the corresponding linear fitting (dotted line)

We start the investigation of the relation between amax(N,D) and diameter D by examining, in general,
μimax(G(N,D)), i ∈ [1, N ], the maximum of the i− th largest Laplacian eigenvalue among all graphs G(N,D)

with N nodes and diameter D. Later we will prove that the μimax(G(N,D)), i ∈ [1, N ] is non-increasing as the
diameter D increases based on the following clique merging operation.

Definition 15 Clique merging: In any graph with diameter D of the class G∗D(n1, n2, ..., ni, ni+1, ..., nD+1),
any two adjacent cliques Kniand Kni+1 can be merged into one clique, resulting into a graph with diameter

D − 1, i.e. G∗D−1(n1, n2, ..., ni + ni+1, ..., nD+1). The merging of clique Kniand Kni+1 is obtained by adding
nini+2 links such that clique Kni is fully meshed with clique Kni+2 (if i+ 2 ≤ D + 1) and by adding ni−1ni+1
links such that the clique Kni+1 is fully meshed with clique Kni−1 (if 1 ≤ i− 1).

Figure 4 presents an example of clique merging. Clique Kn3 and Kn4 in Figure 4(a) G
∗
D=4(n1 = 3, n2 =

1, n3 = 2, n4 = 1, n5 = 2) are merged into one clique, which results in Figure 4(b)G∗D=3(n1 = 3, n2 = 1, n3+n4 =
3, n5 = 2). The clique merging consists of purely adding links (the blue dotted line).

Theorem 16 Given the network size N , the maximum of any eigenvalue μimax(G(N,D)), i ∈ [1, N ] is non-
increasing as the diameter D increases, i.e. μimax(G(N,D + 1)) ≤ μimax(G(N,D)).

Proof. Assume that the graph G∗D+1(n
0
1 = 1, n

0
2, ..., n

0
i, ..., n

0
D+1, n

0
D+2 = 1) possesses the maximum eigenvalue

μimax(G(N,D+1)), i ∈ [1, N ] among all graphs with size N and diameterD+1. Any two adjacent cliques can be
merged by only adding links, which results in G∗D(n

0
1 = 1, n

0
2, ..., n

0
i+n

0
i+1, ..., n

0
D+1, n

0
D+2 = 1). Hence, the graph

G∗D+1(n
0
1 = 1, n

0
2, ..., n

0
i, ..., n

0
D+1, n

0
D+2 = 1) is a subgraph of G

∗
D(n

0
1 = 1, n

0
2, ..., n

0
i + n0i+1, ..., n

0
D+1, n

0
D+2 = 1).

According to the interlacing property in the proof of Theorem 6, we have μimax(G(N,D + 1)) ≤ μi(G
∗
D(n

0
1 =

1, n02, ..., n
0
i+n

0
i+1, ..., n

0
D+1, n

0
D+2 = 1)). Furthermore, G

∗
D(n

0
1 = 1, n

0
2, ..., n

0
i+n

0
i+1, ..., n

0
D+1, n

0
D+2 = 1) does not

necessarily possess the maximum eigenvalue μimax(G(N,D)), i.e. μi(G∗D(n
0
1 = 1, n

0
2, ..., n

0
i+n

0
i+1, ..., n

0
D+1, n

0
D+2 =

1)) ≤ μimax(G(N,D)). Thus, μimax(G(N,D + 1)) ≤ μimax(G(N,D)).

In view of the linear relation between amax(N,D) and N , we present in Figure 5 the scaled maximal algebraic
connectivity amax(G(N,D))/N in relation with the diameter D, when 10 ≤ N ≤ 122. The maximal algebraic
connectivity amax(G(N,D)) is presented for all possible diameters, i.e. 1 ≤ D ≤ N − 1 when 10 ≤ N ≤ 35 and
for D < 10 when N is large. The decrease of amax(G(N,D))/N as a function of D is always slower than an
exponential c exp(−γN) and close to (but faster than) a power law cN−γ . For large N , the scaled algebraic
connectivity amax(G(N,D))/N is expected to follow a universal function of diameter D.
The corresponding clique sizes of G∗D(n1 = 1, n2, ..., nD, nD+1 = 1) that maximizes the algebraic connectivity

are partially given in Appendix A and completely documented in [15]. A symmetric clique size (n1, n2, ..., nD+1)
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(a)

(b)

3 2n = 4 1n = 5 2n =1 3n = 2 1n =

3 4 3n n+ = 5 2n =1 3n = 2 1n =

(a)

(b)

3 2n = 4 1n = 5 2n =1 3n = 2 1n =

3 4 3n n+ = 5 2n =1 3n = 2 1n =

Figure 4: (b) G∗D=4(n1 = 3, n2 = 1, n3 + n4 = 3, n5 = 2) is obtained by merging clique Kn3 and Kn4 in (a)
G∗D=3(n1 = 3, n2 = 1, n3 = 2, n4 = 1, n5 = 2) via adding the blue dotted links.

or a symmetric structure seems to be necessary to maximize the algebraic connectivity amax(N,D). The graphs
that achieve the maximum algebraic connectivity in G∗D(n1 = 1, n2, ..., nD, nD+1 = 1) have relative large sizes
for cliques close to the middle.

5.3 Two proposed upper bounds for a(N,D)

Here, we discuss two upper bounds that are proposed in the literature [16][17]. Based on the upper bound

D ≤

⎢⎢⎢⎣ cosh−1(N − 1)
cosh−1

³
μ1+a
μ1−a

´
⎥⎥⎥⎦+ 1

given by Chung [6], where μ1 is the largest eigenvalue of the Laplacian Q and a is the algebraic connectivity,
Lin and Zhan [16] obtain an upper bound on a

μ1

a

μ1
≤
cosh

³
cosh−1(N−1)

D−1

´
− 1

cosh
³
cosh−1(N−1)

D−1

´
+ 1

Combining a simple upper bound on μ1

μ1 ≤ N (4)
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Figure 5: The scaled maximal algebraic connectivity amax(G(N,D))/N (marker) as a function of the diameter
D in log-log scale.

Lin and Zhan [16] arrive at an upper bound of the algebraic connectivity in relation to D and N

a(G(N,D)) ≤ aup(N,D) = N
cosh

³
cosh−1(N−1)

D−1

´
− 1

cosh
³
cosh−1(N−1)

D−1

´
+ 1

(5)

For D = 2, amax(N,D = 2) = N − 2, which is equal to the upper bound (5).
Figure 6 illustrates that aup(N,D) loosely bounds the largest possible algebraic connectivity amax(N,D).

The upper bound aup(N,D) increases approximately linearly with N for 3 ≤ D ≤ 6 and the corresponding slope
is much higher than that of amax(N,D). When D = 3, each node in clique Kn2 and Kn3 of G

∗
D=3(1, n2, n3, 1)

possesses the maximum degree dmax = N − 2. When D = 4, the maximum degree of G∗D=4(1, n2, n3, n4, 1) is
dmax = N − 3, which corresponds to a node in clique Kn3 . Since, μ1 ≥ dmax + 1 [12, 11], the class G∗D(n1 =
1, n2, ..., nD, nD+1 = 1) has μ1 ≈ N, for D = 3, 4. Therefore, the relative loose bound of (5) is not introduced
by the μ1 ≈ N approximation of (4), when D = 3, 4.

Alon and Milman [17] present another upper bound of the algebraic connectivity in relation to diameter D
and the maximum degree dmax

a(G) ≤ 2dmax
D2

¡
log2N

2
¢2

(6)

Hence,
G∗D=3(1, n2, n3, 1) ≤

2(N−2)
9

¡
log2N

2
¢2

G∗D=4(1, n2, n3, n4, 1) ≤
2(N−3)
16

¡
log2N

2
¢2

which bounds the amax(N,D) even loser, especially for large N .

However, we should mention that the two upper bounds (5) and (6) may be tight in other cases. In
view of the relative loose upper bounds, at least for smaller diameter D ≤ 6, the largest possible algebraic
connectivity amax(N,D) or its approximations derived from data fitting is of great interest. We refer to [15],
where amax(N,D) as well as its the corresponding topology are presented for a wide range of diameter D and
size N.
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Figure 6: Comparison of amax(N,D) and the upper bound of a(N,D) when 3 ≤ D ≤ 6.

6 Conclusion

We propose a class of graphs G∗D(n1 = 1, n2, ..., nD, nD+1 = 1), within which the largest number of links,
the minimum average hopcount, and more interestingly, the maximum of any Laplacian eigenvalue among all
graphs with N nodes and diameter D can be achieved. The largest possible algebraic connectivity amax (N,D)

is rigorously determined for diameter D = 2, 3, 4 and D = N − 1. For other diameters, the maximum of any
Laplacian eigenvalue can be searched within G∗D(n1 = 1, n2, ..., nD, nD+1 = 1), which is feasible due to the
reduction in size of the Laplacian from a N ×N to a (D + 1)× (D + 1) matrix.
Combining both the theoretical and numerical results, we have (1) illustrated the different topological

features of graphs that maximize different Laplacian eigenvalues, which provides an extra motivation to in-
vestigate graphs maximizing the algebraic connectivity; (2) presented the relation between the maximum al-
gebraic connectivity amax(N,D) and the size N as well as the diameter D; (3) compared two upper bounds
of the algebraic connectivity proposed in literature with the largest possible amax(N,D) for small diameter.
This is a first step to explore the application of these maximal possible Laplacian eigenvalues via the class

G∗D(n1 = 1, n2, ..., nD, nD+1 = 1). Rich mathematical results related to the characteristic polynomial of both
the Laplacian and adjacency matrix are documented in [9], which is, however, still far from being able to ana-
lytically determine the graph optimizing a given eigenvalue. More numerical results about the amax(N,D) as
well as the corresponding graph are being collected and updated in [15].
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A The graph that maximizes the algebraic connectivity

amax(G(N = 26,D)) n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

D = 2 24 1 24 1

D = 3 11.1345 1 12 12 1

D = 4 5.6834 1 7 10 7 1

D = 5 3.1264 1 5 7 7 5 1

D = 6 1.8566 1 3 6 6 6 3 1

D = 7 1.1555 1 2 5 5 5 5 2 1

D = 8 0.781781 1 2 3 5 4 5 3 2 1

D = 9 0.517162 1 1 3 4 4 4 4 3 1 1
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amax(G(N = 50,D)) n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

D = 2 48 1 48 1

D = 3 23.074278 1 24 24 1

D = 4 12.641101 1 15 18 15 1

D = 5 7.080889 1 9 15 15 9 1

D = 6 4.290025 1 6 11 14 11 6 1

D = 7 2.764758 1 5 8 11 11 8 5 1

D = 8 1.859022 1 3 7 9 10 9 7 3 1

D = 9 1.320825 1 3 5 7 9 9 7 5 3 1

amax(G(N = 100,D)) n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

D = 2 98 1 98 1

D = 3 48.0385 1 49 49 1

D = 4 27.6754 1 31 36 31 1

D = 5 15.8799 1 19 30 30 19 1

D = 6 9.7886 1 13 22 28 22 13 1

D = 7 6.3833 1 9 17 23 23 17 9 1

D = 8 4.358863 1 7 13 19 20 19 13 7 1

D = 9 3.098801 1 5 10 16 18 18 16 10 5 1

amax(G(N = 122,D)) n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

D = 2 120 1 120 1

D = 3 59.031762 1 60 60 1

D = 4 34.442561 1 39 42 39 1

D = 5 19.858188 1 24 36 36 24 1

D = 6 12.266200 1 16 27 34 27 16 1

D = 7 8.021537 1 11 20 29 28 21 11 1

D = 8 5.499296 1 8 16 23 26 23 16 8 1

D = 9 3.910465 1 6 13 18 23 22 19 13 6 1

B Proofs

B.1 Proof of Theorem 8

First, according to Theorem 4 and the fact that adding links can always reduce the average hopcount, the
minimum average hopcount in graphs with given size N and diameter D can be only be achieved within the
class G∗D(n1 = 1, n2, ..., nD, nD+1 = 1). Second, within the set G

∗
D(n1 = 1, n2, ..., nD, nD+1 = 1), any graph can

be transformed into G∗D(1, ..., 1, nD
2 +1

= N −D, 1, ..., 1) for even D, or into G∗D(1, ..., 1, nbD2 c+1 ≥ 1, ndD2 e+1 ≥
1, 1, ..., 1) for odd D via the following node shifting, where the average hopcount can always be reduced. We
consider first the case that D is odd. We repeat the node shifting process (a) and (b) in the proof of Theorem 7
for r ≤

¥
D
2

¦
, until ni = 1 for i <

¥
D
2

¦
+1 and all the remaining nodes are shifted into clique

¥
D
2

¦
+1. When a node

is shifted fromKnr toKnr+1 , its distance to any node in clique i < r is increased by one, while its distance to any
node in clique i > r+1 is reduced by one. Hence, via such a node shifting operation, the sum of the hopcounts

between all nodes pairs is reduced by
PD+1

j=r+2nj −
Pr−1

j=1nj ≥
PD+1

j=dD2 e+1nj −
PbD2 c−1

j=1 1 > 0, because r ≤
¥
D
2

¦
and nj ≥ 1 for j ∈ [1,D + 1]. Similarly, from clique KnD to clique KdD2 e+2, we denote the first encountered
clique that has size larger than one as Knr . The nr − 1 nodes in clique Knr are shifted to clique Knr−1. This
shifting process is recursively carried out until ni = 1 for i >

§
D
2

¨
+1 and all other nodes are shifted to the clique

KdD2 e+1. Shifting one node from clique Knr to clique Knr−1 , where
§
D
2

¨
+ 1 < r ≤ D, reduces the sum of the
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hopcounts between all node pairs by
Pr−2

j=1nj−
PD+1

j=r+1nj ≥
PdD2 e

j=1 nj−
PD+1

j=dD2 e+21 > 0. The average hopcount
can always be reduced as long as a node is shifted. Therefore, G∗D(1, ..., 1, nbD2 c+1 ≥ 1, ndD2 e+1 ≥ 1, 1, ..., 1) has
the minimum average hopcount. The size of clique

¥
D
2

¦
+ 1 and clique

§
D
2

¨
+ 1 have no effect on the average

hopcount due to the symmetry of G∗D. Taking nbD2 c+1 = N −D and ndD2 e+1 = 1, we have

min
G∈G(N,D)

E[H(G)] =
(N −D − 1)

µPbD2 c
i=1 i+

PdD2 e
i=1 i

¶
+
¡
N−D
2

¢
+
PD

i=1i(D − i+ 1)¡
N
2

¢
=

N −D − 1
N(N − 1)

Ã
2

¹
D

2

º2
+N +D

!
+

PD
i=1i(D − i+ 1)¡

N
2

¢
When D is even, the clique KbD2 c+1 = KdD2 e+1 are the same. Similarly, any other graph G

∗
D(n1 = 1, n2, ..., nD,

nD+1 = 1) can be transformed into G∗D(1, ..., 1, nD
2 +1

= N − D, 1, ..., 1) by nodes shifting, which can only
decrease the average hopcount. When D is even, we have

min
G∈G(N,D)

E[H(G)] =
2 (N −D − 1)

PD
2
i=1i+

¡
N−D
2

¢
+
PD

i=1i(D − i+ 1)¡
N
2

¢
=

N −D − 1
N(N − 1)

µ
D2

2
+N

¶
+

PD
i=1i(D − i+ 1)¡

N
2

¢
B.2 Proof of Theorem 10

Theorem 9 shows that the characteristic polynomial of the corresponding Laplacian matrix of G∗D=3(n1 =
1, n2, n3, n4 = 1) satisfies (1). The algebraic connectivity of G∗D=3(n1 = 1, n2, n3, n4 = 1) is the smallest zero
z3 of the polynomial,

q3 (μ) = p3 (μ) /μ = μ3−(2N − n1 − n4)μ
2+
¡
n22 + n23 + n1n2 + n1n3 + n1n4 + 3n2n3 + n2n4 + n3n4

¢
μ−Nn2n3

that, here with n1 = n4 = 1, n2 = m and n3 = N − 2−m reduces to

q3 (μ) = μ3 − 2(N − 1)μ2 + ((N − 2)(N + 1) + (m− 1)(N −m− 3))μ−Nm(N −m− 2) (7)

Second, we only need to consider the case m ≤
¥
N−2
2

¦
because the m >

¥
N−2
2

¦
can be reduced to the case

m ≤
¥
N−2
2

¦
by swapping the clique Kn1 and Kn4 . We will now show that, for m ≤

¥
N−2
2

¦
, the smallest zero

z3 of (7) satisfies m− 1 < z3 < m.
All zeros of the orthogonal polynomial pD (μ) are simple and non-negative. The sign of q3 (μ) for μ = m,

μ = N − 1 and for μ = N follows from

q3(m) = −m < 0 (8)

q3(N − 1) = m(N − 2−m) > 0 (9)

q3(N) = −N < 0 (10)

Likewise, we find that
q3(m− 1) = −2m+ 2m2 − 3Nm+N2 (11)

which obtains, as a function of m, a minimum at m0 =
2+3N
4 . Thus, for 0 ≤ m ≤ m0, the function q3(m− 1)

is decreasing in m. Because m ≤
¥
N−2
2

¦
, it follows m ≤ N−2

2 = m∗ and that q3(m∗ − 1) = 4. Finally, because
m ≤ m∗ < m0 it follows that

q3(m− 1) > 0 (12)

From (8), (12), (9) and (10), it follows that q3(μ) has simple zeros z3 < z2 < z1 satisfying m− 1 < z3 < m,
m < z2 < N−1 and N−1 < z1 < N . Hence, among the class G∗D(1, n2, n3, 1), the largest algebraic connectivity

can be obtained by G∗D=3
¡
1,
¥
N−2
2

¦
,N − 2−

¥
N−2
2

¦
, 1
¢
,where m is maximized.

16



Finally, according to Corollary 5, the algebraic connectivity of G∗D=3
¡
1,
¥
N−2
2

¦
, N − 2−

¥
N−2
2

¦
, 1
¢
is also

the maximum amax(N,D = 3) of all the graphs withN nodes and diameterD = 3, and
¥
N−2
2

¦
−1 ≤ amax(N,D =

3) ≤
¥
N−2
2

¦
.

B.3 Proof of Theorem 11

Note that the graph G∗D=4 (1,m,N − 2m− 2,m, 1) represents the symmetric case n2 = n4 = m, where m

satisfies m ≤ N−3
2 , which follows from the assumption that n3 ≥ 1. If follows from Theorem 9 that the

algebraic connectivity of G∗D=4 (1,m,N − 2m− 2,m, 1) corresponds to the smallest zero z4 of the following
polynomial:

q4 (μ) = (μ
2 + (1 +m−N)μ+Nm− 2m2 − 2m)(μ2 + (1−m−N)μ+Nm).

A straightforward calculation reveals that z4 is the smallest root of the first quadratic factor in q4(μ), i.e.

z4 =
N − 1−m

2
− 1
2

p
N2 − 2N − 6Nm+ 1 + 10m+ 9m2.

.

In addition, it is easy to verify that z4 is maximized form = N
3 −

5
9−

1
18

√
6N − 8. Finally, because z4 is a con-

cave function ofm, it follows that, for integer values ofm, z4 is maximized for eitherm =
¥
N
3 −

5
9 −

1
18

√
6N − 8

¦
or m =

§
N
3 −

5
9 −

1
18

√
6N − 8

¨
.

Because q4 (0) = Nm2(N − 2 − 2m) > 0 and q4 (m) = −m2, the following inequality, which will be used
later on, holds

z4 < m. (13)

B.4 Proof of Theorem 12

Note that the graph G∗D=4 (1,m+ a,N − 2m− 2,m− a, 1) represents the non-symmetric case n2 = m+a, n4 =

m − a, where m satisfies m ≤ N−3
2 . For the time being we will treat both m and a as real numbers. We can

restrict ourselves to the case a > 0 because the case a < 0 can be changed to the case a > 0 by swapping the
order of the 5 cliques.
If follows from Theorem 9 that the algebraic connectivity of G∗D=4 (1,m+ a,N − 2m− 2,m− a, 1) corre-

sponds to the smallest zero w4 of the following polynomial:

pa (μ) = μ4 − (2N − 2)μ3 + (1 +N2 − a2 − 2N + 2Nm− 2m− 3m2)μ2+

(2m3 + 2Nm2 − 2N2m− 4a2 + 2Na2 − 2ma2 + 4Nm− 2m)μ+N(m2 − a2)(N − 2− 2m).

For a = 0 the polynomial p0(μ) reduces to q4(μ) which has smallest root
z4 =

N−1−m
2 − 1

2

√
N2 − 2N − 6Nm+ 1 + 10m+ 9m2 according to Theorem 11. We will now show that for

0 < a ≤ m− 1, the inequality pa(z4) < 0 holds.
Plugging μ = z4 into pa(μ) we obtain

pa(z4) = −
1

2
a2(N2 − 4Nm+ 3m2 − 3 + (N −m− 3)

p
N2 − 2N − 6Nm+ 1 + 10m+ 9m2).

Because N ≥ 2m+ 3 it follows that N −m− 3 > 0. Therefore, if N2 − 4Nm+ 3m2 − 3 ≥ 0 then if follows
directly that pa(z4) < 0 for a > 0. Next we consider the case N2−4Nm+3m2−3 < 0. Note that this condition
implies that N < 4m. Let us first rewrite pa(z4) as follows:
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p4(z4; a) = −
1

2
a2(r1 + r2

√
r3),

with r1 = N2 − 4Nm + 3m2 − 3 < 0, r2 = N −m − 3 > 0 and r3 = N2 − 2N − 6Nm + 1 + 10m+ 9m2 > 0.

Then it readily can be verified that

pa(z4)(−r1 + r2
√
r3) =

1

2
a2(r21 − r22r3) = 2a

2(2N − 2m− 3)(N − 2m− 2)(N − 4m) < 0.

Therefore, also for the case N2−4Nm+3m2−3 < 0 it follows that pa(z4) < 0 for a > 0. Because pa(0) > 0
it follows from pa(z4) < 0 that the smallest root w4 of pa(μ) always satisfies w4 < z4. This completes the proof
of Theorem 12.

B.5 Proof of Theorem 14

We only need to consider the case n2 ≥ n4 because the n2 ≤ n4 can be reduced to the case n2 ≥ n4 by swapping
the order of the 5 cliques. First consider the points (n2, n4) = (bmc + k, bmc − k), with k = 1.. bmc − 1.
Then the algebraic connectivity of the corresponding graph G∗D=4 (1, n2,N − n2 − n4 − 2, n4, 1) is smaller than
that of G∗D=4 (1, bmc ,N − 2 bmc− 2, bmc , 1) according to Theorem 12 with a = k. Note that the points
(n2, n4) = (bmc + k, bmc − k), with k = 1.. bmc − 1 are situated on the line n2 + n4 = 2 bmc . All grid
points (n2, n4) situated below this line also have a corresponding graph G∗D=4 (1, n2, N − n2 − n4 − 2, n4, 1) with
algebraic connectivity smaller than that of G∗D=4 (1, bmc ,N − 2 bmc− 2, bmc , 1). This follows from applying
Theorem 12 and 11.
The same reasoning holds for the points (n2, n4) = (dme+k, dme−k), with k = 1.. dme− 1, and grid points

above the line that contains these points. The only points on the grid that we have not covered yet are those
satisfying Γ : (n2, n4) = (dme + k, bmc − k), with k = 0.. bmc − 1. We will now show that among the graphs
G∗D=4 (1, n2, N − n2 − n4 − 2, n4, 1), where (n2, n4) belongs to Γ, the highest algebraic connectivity is achieved
for k = 0.
According to Theorem 12 the algebraic connectivity of the graph G∗D=4 (1,m+ a,N − 2m− 2,m− a, 1)

corresponds to the smallest root of pa (μ).

Then pa+1 (z4) < pa (z4) < 0 because pa+1 (z4) − pa (z4) =
2a+1
a2 pa (z4) < 0, where the latter inequality

follows from the proof of Theorem 12. In the same manner we can show that 0 < pa+1 (0) < pa (0). Denote the
smallest root of pa (μ) by μa and the smallest root of pa+1 (μ) by μa+1. Assume that μa+1 > μa, then pa (μ) and
pa+1 (μ) intersect at least twice on the interval [0, z4]. This implies that the function h (μ) = pa (μ)− pa+1 (μ)

has at least two zeros on the interval [0, z4]. Because h (μ) = (1 + 2a)(μ2 − 2(N −m− 2)μ+N(N − 2m− 2)
it follows that the zeros of h (μ) will be situated around μ∗ = N −m− 2. However, because N ≥ 2m+ 3 and
z4 < m (according to (13) ) it follows μ∗ > m > z4. Therefore only one zero of h (μ) could be situated in [0, z4].
Therefore we conclude that μa+1 ≤ μa.
The possibility that μa+1 = μa can be excluded in the same way. Therefore it follows that μa+1 < μa.
This implies that the algebraic connectivity of G∗D=4 (1, dme ,N − dme− bmc− 2, bmc , 1) is larger than

that of G∗D=4 (1, dme+ 1,N − dme− bmc− 2, bmc− 1, 1), which itself has a larger algebraic connectivity than
G∗D=4 (1, dme+ 2, N − dme− bmc− 2, bmc− 2, 1). Repeating this argument, until the graph
G∗D=4 (1, dme+ bmc− 1, N − dme− bmc− 2, 1, 1), shows that for (n2, n4) in Γ, the highest algebraic connec-
tivity is achieved for G∗D=4 (1, dme , N − dme− bmc− 2, bmc , 1).
This completes the proof of the first part of the theorem. The used argumentation is visualized in Figure 7.

The upperbound on amax(N,D = 4) follows from Corollary 13.
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Figure 7: Sketch of the Proof of Theorem 14.
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