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This paper studies an interesting graph measure that we call the ef-
fective graph resistance. The notion of effective graph resistance is
derived from the field of electric circuit analysis where it is defined
as the accumulated effective resistance between all pairs of vertices.
The objective of the paper is twofold. First, we survey known formu-
lae of the effective graph resistance and derive other representations
as well. The derivation of new expressions is based on the analysis
of the associated random walk on the graph and applies tools from
Markov chain theory. This approach results in a new method to ap-
proximate the effective graph resistance.
A second objective of this paper concerns the optimisation of the

effective graph resistance for graphs with given number of vertices
and diameter, and for optimal edge addition. A set of analytical re-
sults is described, as well as results obtained by exhaustive search.
One of the foremost applications of the effective graph resistancewe
have in mind, is the analysis of robustness-related problems. How-
ever, with our discussion of this informative graphmeasurewe hope
to open up a wealth of possibilities of applying the effective graph
resistance to all kinds of networks problems.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Over the past several years a variety of graphmeasures have been proposedwith the aim of quanti-
fying the relevant structural attributes of a graph. In this context of graph theory and network analysis
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wepropose the effective graph resistance, a graphmeasure in our opinion highly valuable in the analy-
sis of various network problems. The choice of this measure is inspired by the excellent paper of Klein
and Randić [6]. The main contribution of their paper is the proof that the effective graph resistance
can be written in terms of Laplacian eigenvalues. It is interesting to notice that the effective graph
resistance is also called Kirchhoff index, named after Kirchhoff’s circuit laws fromwhich the notion of
the effective resistance was initially derived.

The formal definition of the effective graph resistance is the sum of the effective resistances over all
pairs of vertices.More informally, the effective resistance between two vertices of a network, assuming
that a network is seen as an electrical circuit, can be calculated by the well-known series and parallel
manipulations. Two edges, corresponding to resistors with resistance r1 and r2 Ohm, in series can
be replaced by one edge with effective resistance r1 + r2. If the two edges are connected in parallel,

then they can be replaced by an edge with effective resistance
(
r−1
1 + r−1

2

)−1
. From these series and

parallel manipulations it follows that the effective graph resistance takes both the number of (not
necessarily disjoint) paths between two vertices and their length into account, intuitively measuring
the presence and quality of back-up possibilities.

The contribution of this paper is twofold. First, we survey known results of the effective graph
resistance and give new representations based on the associated random walk on the graph, leading
to a new method for approximating the effective graph resistance. Second, we optimise the effective
graph resistance for graphs with a given number of vertices and diameter, and we consider optimal
edge addition. In addition to these main contributions, we discuss a possible application related to
network robustness. Overall, this paper establishes a path towards the identification of the set of
graph measures that will serve in future analysis of various network problems.

The paper is organised as follows. Section 2 gives an overview of the preliminaries, the formal
definition and somebasic results on the effective graph resistance. Section 2 also gives a representation
of the effective graph resistance based on the analysis of the associated randomwalk on the graph. In
addition to the above, this section contains some examples giving an idea of the values the effective
graph resistance can take and the reasoning behind the introduction of the effective graph resistance
as a quantifier of robustness. Section 3 contains a set of results on the optimisation of the effective
graph resistance: for a graphwith given number of vertices and diameter in Sections 3.1 to 3.5, and for
edge addition in Section 3.6. Section 4 summarises our main results on the effective graph resistance
and states several interesting problems for further research.

2. Effective resistance

2.1. Preliminaries: Laplacian eigenvalues

Since the effective graph resistance is a function of the Laplacian eigenvalues of the graph, as shown
in Section 2.2, this section provides a short introduction on the Laplacian and its eigenvalues. For a
simple undirected graph G = (V, E) the Laplacian Q is defined as the difference ! − A of the degree
matrix ! and the adjacency matrix A, i.e.

Qij =






δi if i = j

−1 if (i, j) ∈ E

0 otherwise

,

whereδi is thedegreeof vertex i. For a graphwithnon-negative edgeweightswij , theweighted Laplacian

is LW = S − W, with W the matrix of weights W = (wij) and S the diagonal matrix of strengths

(Sii = ∑N
j=1 wij).

Because the Laplacian is symmetric, positive semidefinite and the rows sum up to 0, its eigenvalues
are real, non-negative and the smallest one is zero. Hence, we can order the eigenvalues and denote
them as µi for i = 1, . . . ,N = |V | such that 0 = µ1 ! µ2 ! · · · ! µN . The second smallest
eigenvalue µ2 of the Laplacian is called the algebraic connectivity.
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For a complete graph KN , we have µ1 = 0, µ2 = · · · = µN = N, because the vectors uj with a
one at the first position, a minus one at position j #= 1, and zeroes everywhere else, are N − 1 linearly
independent eigenvectors corresponding to the eigenvalue N.

For more information we refer to [14] and to [7], in which Mohar gives a clear survey on the
Laplacian, its properties, and its applications. In Appendix B.8 of [3] Cvetković gives an extensive
review of publications on the Laplacian of graphs.

2.2. Definition of effective resistance and basic results

Wewill start by stating formal definitions of thepairwise effective resistance and theeffective graph
resistance together with some important theorems. The simple, undirected and connected graph is
regarded as an electrical circuit, where an edge (i, j) corresponds to a resistor of rij = 1 Ohm. All
definitions and results in this section carry over to weighted graphs when the edge resistance is
defined as rij = 1/wij . For the proofs of the theorems in the weighted case see [4].

For each pair of vertices the effective resistance between these vertices — the resistance of the total
system when a voltage is connected across them — can be calculated by Kirchhoff’s circuit laws. Let a
voltage be connected between vertices a and b and let I > 0 be the net current out of source a and
into sink b, Kirchhoff’s current law states that the current yij between vertices i and j (where yij = −yji)
must satisfy

∑

j∈N(i)

yij =





I if y = a

−I if y = b

0 otherwise,

(1)

withN(i) the neighbourhoodof i, that is, the set of vertices adjacent to vertex i. This first lawmeans that
the total flow into a vertex equals the total flow out of it. The second of Kirchhoff’s laws is equivalent
to saying that a potential v may be associated with any vertex i, such that for all edges (i, j)

yijrij = vi − vj. (2)

This is called Ohm’s law.

Definition 2.1. The effective resistance Rab between vertices a and b is defined as

Rab = va − vb

I
.

The next theorem shows that Rab exists and is uniquely defined. It is not known who first proved
the theorem, but a continuous version was already known to Gauss.

Theorem 2.1. The effective resistance Rab between vertices a and b satisfies

Rab = (ea − eb)
T Q−1(ea − eb),

whereQ−1 is anymatrix that on (span{1})⊥ (the subspace perpendicular to the all-one vector) corresponds
to an inverse of the Laplacian Q and on span{1} to the zero map. The vector ei has a one at position i and
zeroes elsewhere.

This theorem will be used in Section 2.4 to derive an approximation formula for the computation
of the effective graph resistance. We will now define the effective graph resistance.

Definition 2.2. The effective graph resistance RG is the sum of the effective resistances over all pairs of
vertices in the graph G:

RG =
∑

1!i<j!N

Rij.
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In the literature the effective graph resistance is also called total effective resistance or Kirchhoff
index. Klein and Randić [6] have proved that it can be written as a function of the non-zero Laplacian
eigenvalues.

Theorem 2.2. The effective graph resistance RG satisfies

RG = N
N∑

i=2

1

µi

.

The next corollary specifies the relation between the algebraic connectivity and the effective graph
resistance.

Corollary 2.3. The effective graph resistance RG can be bounded by functions of µ2 in the following way

N

µ2

< RG ! N(N − 1)

µ2

.

Tighter bounds forRG are presented in [14]. The effective graph resistance has been called resistance
distance by Klein and Randić [6]. They have proved that it is indeed a distance function (metric). We
will give some more (probably previously known) results from [6].

Theorem 2.4. For the effective resistance and the ordinary distance d we have for any pair of vertices i, j:

(1) Rij = dij, if there is only one path between i and j;
(2) Rij < dij, otherwise.

Corollary 2.5. The effective resistance and the ordinary distance correspond on a tree, that is, for every
pair of vertices i, j in a tree we have:

Rij = dij.

As a result of the Interlacing Theorem [14,10] the pairwise effective resistance is a non-increasing
function of the edge weights. The result is generally referred to as Rayleigh’s monotonicity law.

Theorem 2.6. The pairwise effective resistance does not increase when edges are added or weights are
increased.

The effective graph resistance is even strictly decreasing in the edge weights.

Theorem 2.7. The effective graph resistance strictly decreases when edges are added or weights are in-
creased.

Proof. Suppose edgeweightwij is increased or edge (i, j) is added. It is enough to show that Rij strictly
decreases, since effective resistances between other pairs do not increase because of Theorem 2.6. The
fact that Rij strictly increases is a direct consequence of thewell-known rule for resistors in parallel. "

2.3. An analogy with random walks

Let a random walk on the simple, undirected and connected graph G = (V, E) be given by the
transition probabilities pij = aij/δi, where aij = 1 if (i, j) ∈ E and aij = 0 otherwise. We will consider
the expected commute time between two vertices a and b in this random walk. This is the expected
number of transitions needed to go from a to b and back. The following theorem from Chandra et al.
[2] gives a relation between the average commute time and the effective resistance in the same graph.
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Theorem 2.8. Let a graph G = (V, E) be given. First, define an electrical circuit as before. Secondly, define

a random walk on G by the transition probabilities pij = aij
δi
. Let Tab be the time (number of transitions) to

reach vertex b starting in a. It holds that

Rab = 1

2L
(E(Tab) + E(Tba)),

with L = |E|.

The pairwise effective resistance is proportional to the expected commute time, which implies that
the effective graph resistance is proportional to the expected commute time averaged over all pairs of
vertices.

Corollary 2.9. We have

RG = 1

2L

N∑

i=1

N∑

j=1

E(Tij).

The number of visits to vertex v in a random walk starting in a, going to b, and back to a, is also
related to the expected commute time. This relation is given in the following lemma, which is easy to
prove, but has not been found in the literature.

Theorem 2.10. Let Bavb be the number of visits to vertex v strictly in between the start of the randomwalk
in a and the stop in b. The expression

E(Bavb) + E(Bbva) = πv (E(Tab) + E(Tba))

holds true. Here πv = δv/2L denotes the stationary probability of vertex v, that is, the probability of being
in vertex v in steady-state.

Proof. The theorem is clearly true for a = b. Suppose now that a #= b. Lemma 9 in Chapter 2, Section
2 of [1] says

E(Bavb) = πv (E(Tab) + E(Tbv) − E(Tav)) .

Adding E(Bavb) and E(Bbva) directly leads to the desired result. "

This theorem provides us an easy alternative way to prove that network criticality — proposed as
a robustness measure by Tizghadam and Leon-Garcia [11] — is equal to two times the effective graph
resistance. They define the random walk betweenness of vertex v as

Bv =
N∑

i=1

N∑

j=1

E(Bivj)

and the network criticality as

τ = 2
Bv

δv
,

which turns out to be independent of the vertex v.

Theorem 2.11. The network criticality τ satisfies

τ = 2R.
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Proof. We use Corollary 2.9 and Theorem 2.10 to find

1

2
τ = Bv

δv
= 1

δv

∑

1!i<j!N

(E(Bivj) + E(Bjvi)) = 1

δv

∑

1!i<j!N

πv

(
E(Tij) + E(Tji)

)

= 1

2L

∑

1!i<j!N

(
E(Tij) + E(Tji)

) = R. "

Most of the results of this section can be found in [1]. All proofs not given in this section are available
in [4]. For the sakeof presentationwehave restrictedourselves to randomwalksonunweightedgraphs,
although all results are valid also for weighted graphs.

2.4. More alternative expressions and a computational method

In this section we will develop a method to approximate the effective graph resistance. In order
to do so, we derive alternative expressions for our measure, using the analogy with random walks
considered in Section 2.3.

The method that we will discuss here, proposes a way to approximate the pseudo inverse on
(span{1})⊥. To this end, we consider the randomwalk on the simple, undirected and connected graph
G with N vertices defined in Section 2.3. The associated transition matrix is equal to P = !−1A. The
random walk is an irreducible Markov chain.

Let y ⊥ 1 be given. Clearly,Qx = y is equivalent to (I−P)x = !−1y. In other words, x is a solution
of Qx = y if and only if

x = !−1y + Px. (3)

This is precisely the so-called Poisson equation for Markov chains, which has a unique solution up to a
constant vector. A typical method for solving this equation is to substract a specially chosen constant
vector from both sides of (3), such that the resulting equation has a unique solution.

Let us be more precise. Fix any node k and choose xk1 to be the constant vector to substract:

x − xk1 = !−1y + P(x − xk1). (4)

Since x − xk1 has k-th component equal to 0, we may replace the k-th column of P by zeroes. In other
words, we delete the transitions to node k. The resulting matrix is the so-called taboo matrix with

taboo set {k}, and is denoted by kP. The t-th iterate is denoted by kP(t), with kP(0) = I. The elements

of kP(t) are denoted kp
(t)
ij . Eq. (4) then becomes

x − xk1 = !−1y + kP(x − xk1). (5)

Since the taboomatrix kP is the transitionmatrix of a transientMarkov chain, I− kP is invertible with
inverse

∑∞
t=0 kP(t). This well-known fact follows e.g. from [9], using the fact that λ = 1 is the unique

maximum eigenvalue in absolute value of an irreducible stochastic matrix.

As a consequence x − xk1 = ∑∞
t=0 kP(t)!−1y. We can now describe the solution space of (3) in

terms of the taboo matrix.

Lemma 2.12. For any vector y ⊥ 1 the solution space of (3) is given by
{

x | x =
∞∑

t=0

kP(t)!−1y + c1, c ∈ R
}

. (6)
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Proof. Let x be a solution of (3). From the above discussion it follows that

x =
∞∑

t=0

kP(t)!−1y + xk1.

Vice versa, let x = ∑∞
t=0 kP(t)!−1y+c1. In otherwords x−c1 = !−1y+ kP(x−c1). By the Renewal

Reward Theorem ([8] Theorem 3.16) (x − c1)k = ∑
j πjyj/δjπk = ∑

j yi/δk = 0 and so x − c1 is a
solution of (3). But then x is a solution of (3) as well. "

UsingLemma2.12onemaynowcompute theeffective resistancebyfilling inQ−1 =∑∞
t=1 kP(t)!−1

in Theorem 2.1. For any k we find

Rij =
∞∑

t=0

kp
(t)
ii

1

δi
+

∞∑

t=0

kp
(t)
jj

1

δj
−

∞∑

t=0

kp
(t)
ij

1

δj
−

∞∑

t=0

kp
(t)
ji

1

δi
. (7)

The unknown constant of Lemma 2.12 cancels out because of the pre-multiplication by the vector
ei − ej .

Taking taboo state i in (7) yields a simple characterisation of the effective resistance between nodes
i and j. For its formulation we also need the taboo matrix k,lP with taboo set {k, l}: it is obtained from
P by deleting the transitions to nodes k and l, or, equivalently, by replacing the k-th and l-th columns

by zeroes. The elements of the t-th iterate are denoted by k,lp
(t)
ij .

Theorem 2.13. It holds that

Rij =
∞∑

t=0

ip
(t)
jj

1

δj
= 1

δigij
, for i #= j, (8)

where gij = ∑∞
t=0

∑N
k=1 i,jp

(t)
ik pkj is the probability that the random walk starting at i reaches j before

returning to i.

The expression
∑∞

t=0 ip
(t)
jj has the interpretation of the expected number of visits of j, before re-

turning to i, of the random walk starting at j.

Proof. Taking k = i in (7) leads to

Rij =
1

δi

∞∑

t=0

ip
(t)
ii + 1

δj

∞∑

t=0

ip
(t)
jj − 1

δj

∞∑

t=0

ip
(t)
ij − 1

δi

∞∑

t=0

ip
(t)
ji

= 1

δi
+

∞∑

t=0

ip
(t)
jj

1

δj
− 1

δi
− 0 =

∞∑

t=0

ip
(t)
jj

1

δj
.

Wehave used the two following relations. The first is δj = δi
∑∞

t=0 ip
(t)
ij , which follows from [1, Chapter

2, Proposition 3], with stopping time S equal to the first return time to state i. The second relation is
∑∞

t=0 ip
(t)
ij = gij

∑∞
t=0 ip

(t)
jj . The validity of this expression can be argued as follows:

∑
k i,jp

(t)
ik pkj is

the probability that the random walk starting at node i visits node j for the first time at time t + 1,
without passing node i in between. The event that the random walk starting at node i visits node j at
all, without passing node i in between, is the disjoint union of events of the above type. "

A consequence of Theorem 2.13 is computable upper and lower bounds for R. Indeed, since the
involved probabilities are always non-negative, for each pair of indices T1, T2

1

δj

T1∑

t=0

ip
(t)
jj ! Rij ! 1

δi
∑T2

t=0

∑N
k=1 i,jp

(t)
ik pkj

, for i #= j. (9)
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For any ε > 0, choose T1 and T2 such that the difference between upper and lower bound in (9) is less
than 2ε. An approximation of the pairwise effective resistance Rij up to ε precision is given by

Rij ≈ 1

2



 1

δj

T1∑

t=0

ip
(t)
jj + 1

δi
∑T2

t=0

∑N
k=1 i,jp

(t)
ik pkj



 .

2.5. Some examples

As a consequence of Theorem 2.7, for graphs with a given number of vertices N the minimum
effective graph resistance is reached by the complete graph KN . By Theorem 2.2 and the eigenvalues
of KN given in Section 2.1 we have

RKN = N − 1.

The effective graph resistance cannot be calculated for unconnected graphs. For these graphs it
is said to be infinity. Corollary 2.5 and Theorem 2.7 show that the connected graph with maximum
effective graph resistance is the treewithmaximumaveragedistance. Thepath graph PN hasmaximum
average distance of all trees with N vertices and effective graph resistance

RPN =
∑

1!i<j!N

dij =
N−1∑

i=1

N−i∑

j=1

j = 1

6
(N − 1)N(N + 1).

The tree with minimum effective graph resistance, that is with minimum average distance, is the
star graph SN . Its effective graph resistance is

RSN =
∑

1!i<j!N

dij = (N − 1) · 1 + 1

2
(N − 1)(N − 2) · 2 = (N − 1)2.

Fig. 1 gives examples of the graphs mentioned in this section.
Fig. 2 shows that different graphs with the same number of vertices and edges may have the same

effective graph resistance [16].

Fig. 1. Examples of graphs with four vertices.

Fig. 2. Two graphs with the same total effective resistance.
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2.6. Effective graph resistance as a robustness measure

Webelieve that the effective graph resistance is a goodmeasure for network robustness; the smaller
the effective graph resistance the more robust the network. We have several arguments.

First, the effective graph resistance is the sum of pairwise effective resistances, which measure the
robustness of the connection between two vertices, because pairwise effective resistance takes both
the number of paths between two vertices and their length into account, therefore the number of
back-up paths as well as their quality is considered.

A second indication is given by the fact that the effective graph resistance can be approximated
by the algebraic connectivity (Corollary 2.3). Algebraic connectivity is used as a measure for network
robustness [5].

Third, Theorem2.7 states that effective graph resistance strictly decreaseswhen edges are added or
edgeweights are increased. Algebraic connectivity for example does not show this strictmonotonicity.
Moreover, for the simple examples in Section 2.5 the effective graph resistance gives the same evalua-
tion of robustness as does our intuition. Complete graphs are most robust, unconnected graphs least,
trees are the least robust connected graphs, star graphs are the most robust trees, and path graphs the
least robust trees.

The fourth reason is the analogy with random walks; the smaller the effective resistance between
vertices a and b, the smaller the expected duration of a randomwalk from a to b and back (see Theorem
2.8). Short randomwalks suffer little from vertex or edge failures, and thus indicate a robust network.

In addition, the randomwalk analogy shows that the robustnessmeasure defined in [11] is equal to
two times the effective graph resistance (Theorem 2.11). Since both measures have been proposed in-
dependently and by different reasonings, it gives a strong indication that the effective graph resistance
is indeed a useful robustness measure.

3. Optimising the effective graph resistance

3.1. Optimal graphs for fixed number of vertices and diameter: clique chains

Sections 3.1–3.5 treat the minimisation of the effective graph resistance for graphs with a given
number of vertices and diameter. In this section (Section 3.1) we will first characterise the class of
graphs,wherein the optimal graphmust lie. In Section 3.2 the effective graph resistance of these graphs
is calculated, in Section 3.3 wewill compute analytically the optimal graphs for diameterD ! 3, while
in Section 3.4 we will find the optimal graphs for larger diameters by exhaustive search. Section 3.5
considers the question how many eigenvalues are needed in order to find the same optimal graph as
for the effective graph resistance. The topic of the last Section 3.6 is the optimal addition of an edge.

Definition 3.1. The graph G∗
D(n1, n2, ..., nD+1) is a graph obtained from the path graph PD+1 by re-

placing the i-th vertex by a clique (subset of vertices which are fully interconnected by edges) of size
ni, such that vertices in distinct cliques are adjacent if and only if the corresponding original vertices
in the path graph are adjacent.

In [12] Van Dam has shown that, for fixed number of vertices N and a fixed diameter D, the class

of graphs G∗
D (n1 = 1, n2, . . . , nD, nD+1 = 1) with N = ∑D+1

i=1 ni contains a graph with maximum
spectral radius (largest eigenvalue of the adjacency matrix). In [15] it has been shown that, for fixed
N and D, also graphs with largest algebraic connectivity, maximum number of edges and smallest
average distance are obtained within this class. For fixed N and D, the same class contains graphs with
maximum vertex or edge connectivity and smallest average vertex or edge betweenness as well. We
will show that the same holds for the effective graph resistance.

The following theorem [15] is the key to the proof of the statements above.

Theorem 3.1. Any graph with N vertices and diameter D is a subgraph of at least one graph in the class

G∗
D (n1 = 1, n2, . . . , nD, nD+1 = 1) with N = ∑D+1

i=1 ni.
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Using this theorem and Theorem 2.7 we find the next corollary.

Corollary 3.2. The minimum effective graph resistance for fixed N and D is equal to the minimum ef-
fective graph resistance achieved in the class of the graphs G∗

D (n1 = 1, n2, . . . , nD, nD+1 = 1) with

N = ∑D+1
i=1 ni.

3.2. The effective graph resistance of a clique chain

Theorem 3.3. The characteristic polynomial of the Laplacian QG∗
D
of G∗

D(n1, n2, ..., nD+1) equals

det
(
QG∗

D
− µI

)
= pD (µ)

D+1∏

j=1

(
dj + 1 − µ

)nj−1 , (10)

wheredj = nj−1+nj+nj+1−1denotes thedegreeof a vertex in clique j. Thepolynomial pD (µ) = ∏D+1
j=1 θj

is of degree D + 1 in µ and the function θj = θj (D; µ) obeys the recursion

θj = (
dj + 1 − µ

) −
(
nj−1

θj−1

+ 1

)

nj, (11)

with initial condition θ0 = 1 and with the convention that n0 = nD+2 = 0.

Applying Theorem 3.3, which is proven in [13], to the effective graph resistance (Theorem 2.2) of
G∗
D(n1, n2, ..., nD+1) yields

RG∗
D

= N
D∑

k=1

1

zk
+ N

D+1∑

j=1

nj − 1

dj + 1
, (12)

where {zk}1!k!D+1 with zD+1 = 0 are the zeroes of the non-trivial polynomial

pD (µ) = µ
D∑

k=0

ck+1 (D) µk.

We invoke Newton’s relation [14], valid for any polynomial p (x) = ∑n
k=0 akx

k = an
n∏

k=1
(x − zk),

n∑

k=1

1

zk
= −a1

a0

to the polynomial
pD(µ)

µ = ∑D
k=0 ck+1 (D) µk , because all the coefficients ck (D) of pD(µ)

µ are explicitly

computed in [13]. From this we find that

D∑

k=1

1

zk
= − c2 (D)

c1 (D)
= 1

N

D+1∑

q=2

(
N − ∑q−1

k=1 nk

)

nq−1nq

q−1∑

k=1

nk.

Substituted into (12) this leads to the explicit expression of the effective graph resistance of
G∗
D(n1, n2, ..., nD+1)

RG∗
D

=
D+1∑

q=2

(
N − ∑q−1

k=1 nk

)

nq−1nq

q−1∑

k=1

nk + N
D+1∑

j=1

nj − 1

nj−1 + nj + nj+1

(13)

subject to N = ∑D+1
m=1 nm. For example, the extreme case of the path graph Pn belongs to the class

G∗
D(n1, n2, ..., nD+1) with N = D + 1 and all nk = 1. We can verify that (13) for the line topology

reduces to RPN = 1
6
(N − 1)N(N + 1), which was found earlier in Section 2.5.
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3.3. The minimum effective graph resistance for diameter D = 2, 3

Before we start the D = 2, 3 cases, it should be mentioned that the graph G∗
D=1(n1, n2) with N

vertices and diameter 1 is unique: the complete graph. The effective graph resistance of a complete
graph was already computed in Section 2.5 as RKN = N − 1.

Theorem 3.4. For graphs with N vertices and diameter D = 2, the graph G∗
D=2 (1,N − 2, 1) has the

minimum effective graph resistance RG∗
D=2(1,N−2,1) = N − 1 + 2

N−2
.

Proof. The theorem follows directly from (13) for n1 = n3 = 1, n2 = N − 2 and D = 2. "

It is interesting to remark that RG∗
D=2(1,N−2,1) = RKN + 2

N−2
.

Theorem 3.5. For graphs with N vertices and diameter D = 3, the graph

G∗
D=3

(
1,

⌊
N

2
− 1

⌋
,

⌈
N

2
− 1

⌉
, 1

)

has the minimum effective graph resistance

R
G∗
D=3

(
1,

⌊
N
2
−1

⌋
,
⌈
N
2
−1

⌉
,1

) = N − 1
⌊
N
2

− 1
⌋+

(⌈
N
2

− 1
⌉

+ 1
) (⌊

N
2

− 1
⌋

+ 1
)

⌊
N
2

− 1
⌋ ⌈

N
2

− 1
⌉ + N − 1

⌈
N
2

− 1
⌉+N(N − 4)

N − 1
.

Proof. It follows from Corollary 3.2 that the graph with minimal effective graph resistance for D = 3

has the form G∗
D=3 (1,m,N − m − 2, 1). It can be assumed that m !

⌊
N
2

− 1
⌋
, because the case

m #
⌊
N
2

− 1
⌋
can be reduced to m !

⌊
N
2

− 1
⌋
, by swapping the order of the four cliques.

It follows from (13) that

RG∗
D=3(1,m,N−m−2,1) = N − 1

m
+ (N − 1 − m)(m + 1)

m(N − m − 2)
+ N − 1

N − m − 2
+ N(N − 4)

N − 1
≡ f (m,N).

(14)

A straightforward calculation reveals that

∂ f (m,N)

∂m
= − (N − 1)2(N − 2 − 2m)

m2(N − m − 2)2
.

Hence, for m in the interval [0,N − 2], f (m,N) has a global optimum at m = N
2

− 1. In addition,

from limm↓0 mf (m,N) = (N−1)2

N−2
it follows thatm = N

2
− 1 is a global minimum form in the interval

[0,N − 2]. Therefore, G∗
D=3

(
1,

⌊
N
2

− 1
⌋
,
⌈
N
2

− 1
⌉
, 1

)
has the minimum effective graph resistance

for all graphs with D = 3. The minimal value R
G∗
D=3

(
1,

⌊
N
2
−1

⌋
,
⌈
N
2
−1

⌉
,1

) of the effective graph resistance

is obtained by substitution of m =
⌊
N
2

− 1
⌋
in (14). "

3.4. Exhaustive search

The clique sizes of the optimal graphs for some values of N and D can be found in Table 1. The same
results for the algebraic connectivity are listed in [15].

For thealgebraic connectivity and theeffective graph resistance there exist different optimal graphs.
In Fig. 3 an example is given. For N = 7 and D = 4 the graph with cliques of sizes (1, 2, 2, 1, 1)
minimises the effective graph resistance, while the graph with clique sizes (1, 1, 3, 1, 1) maximises
the algebraic connectivity.
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Table 1

Graphs that minimise the effective graph resistance for given N, D.

R n1 n2 n3 n4 n5 n6 n7 n8
N = 26

D = 2 25.08 1 24 1

D = 3 28.22 1 12 12 1

D = 4 37.63 1 6 12 6 1

D = 5 51.90 1 4 8 8 4 1

D = 6 70.28 1 3 6 6 6 3 1

D = 7 93.35 1 3 4 5 5 4 3 1

N = 50

D = 2 49.04 1 48 1

D = 3 52.11 1 24 24 1

D = 4 64.03 1 9 29 10 1

D = 5 84.31 1 6 18 18 6 1

D = 6 110.01 1 5 11 15 12 5 1

D = 7 139.36 1 4 9 11 11 9 4 1

N = 100

D = 2 99.02 1 98 1

D = 3 102.05 1 49 49 1

D = 4 117.51 1 16 67 15 1

D = 5 148.11 1 8 41 41 8 1

D = 6 189.44 1 6 22 41 23 6 1

D = 7 237.13 1 6 17 28 27 15 5 1

N = 122

D = 2 121.01 1 120 1

D = 3 124.04 1 60 60 1

D = 4 140.68 1 18 84 18 1

D = 5 175.11 1 9 51 51 9 1

D = 6 222.84 1 7 27 51 28 7 1

D = 7 278.35 1 6 19 35 35 19 6 1

Fig. 3. For N = 7 and D = 4, µ2 and R give different optimal graphs.

The optimum for both the algebraic connectivity and the effective graph resistance is generally
achieved for symmetric graphs. Surprisingly there are a few counterexamples. Regarding the effective
graph resistance, for N = 100, D = 7 we found the optimal graph with clique sizes (1, 6, 17, 28, 27,
15, 5, 1). While optimising the algebraic connectivity forN = 122 and D = 7we found that the graph
with clique sizes (1, 11, 20, 29, 28, 21, 11, 1) is optimal. It would be interesting to find an explanation
for this phenomenon.

The optimisation has shown that the clique sizes of the optimal graphs for bothmeasures are larger
for cliques closer to the middle. However for the algebraic connectivity there is an example that does
not have this structure; the graph with clique sizes (1, 2, 3, 5, 4, 5, 3, 2, 1) is optimal for N = 26 and
D = 8.
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3.5. Optimal graphs based on fewer Laplacian eigenvalues

In Corollary 2.3 we have shown that the algebraic connectivity provides bounds for effective graph
resistance. In this section we will try to answer the question how many Laplacian eigenvalues are
needed in order to find the same optimal graph as for the effective graph resistance.

The sum

N
k∑

i=2

1

µi

with k < N is a lower bound for the effective graph resistance that considers k−1 non-zero Laplacian
eigenvalues instead of all N − 1 of them. We have optimised this value within the class of clique
graphs to find out how many eigenvalues are needed in order to find the same optimal graph as for
the effective graph resistance. For the results see Table 2.

In general, for increasing k, the optimal graphs have an increasing number of vertices in the cliques
in the middle, but a few surprising counterexamples have been found. For example, for N = 26, and
D = 4 (Table 3) we have that for k = 2 (which corresponds to minimising N/µ2) the graph with
cliques sizes (1, 7, 10, 7, 1) is optimal. For k = 3, 4, 5, 6 the graph with clique sizes (1, 8, 8, 8, 1) is
optimal. The graph with clique sizes (1, 7, 10, 7, 1) is again optimal for k = 7, . . . , 13.

Table 2

Minimal value k such that the graph thatminimisesN
∑k

i=2
1
µi

also

minimises R and N
∑j

i=2
1
µi

for all k < j < N.

N = 26 N = 50 N = 100 N = 122

D = 2 k = 2 k = 2 k = 2 k = 2

D = 3 k = 2 k = 2 k = 2 k = 2

D = 4 k = 15 k = 23 k = 36 k = 42

D = 5 k = 14 k = 32 k = 93 k = 107

Table 3

Graphs that minimise N
∑k

i=2
1
µi

for N = 26, D = 4.

N = 26, D = 4 N
∑k

i=2
1
µi

n1 n2 n3 n4 n5

k = 2 4.57 1 7 10 7 1

k = 3 7.68 1 8 8 8 1

k = 4 9.97 1 8 8 8 1

k = 5 11.50 1 8 8 8 1

k = 6 13.03 1 8 8 8 1

k = 7 14.53 1 7 10 7 1

k = 8 15.98 1 7 10 7 1

k = 9 17.42 1 7 10 7 1

k = 10 18.87 1 7 10 7 1

k = 11 20.31 1 7 10 7 1

k = 12 21.76 1 7 10 7 1

k = 13 23.20 1 7 10 7 1

k = 14 24.63 1 7 11 6 1

k = 15 25.74 1 6 12 6 1

k = 16 26.82 1 6 12 6 1

k = 17 27.91 1 6 12 6 1

k = 18 28.99 1 6 12 6 1

k = 19 30.08 1 6 12 6 1

k = 20 31.16 1 6 12 6 1

k = 21 32.24 1 6 12 6 1

k = 22 33.32 1 6 12 6 1

k = 23 34.41 1 6 12 6 1

k = 24 35.49 1 6 12 6 1

k = 25 36.57 1 6 12 6 1

k = 26 37.63 1 6 12 6 1
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Fig. 4. Adding the edge (4, 5) is optimal for R, adding (2, 4) is optimal for µ2.

Fig. 5. Adding the edge (4, 6) is not optimal, although R46 gives the maximum pairwise effective resistance.

Fig. 6. Adding the edge (2, 7) is not optimal, although d27 gives the maximum distance.

3.6. Expanding the graph with an edge

For application purposes it is interesting to know which edge has to be added in order to optimise
the effective graph resistance. The example of Fig. 4 demonstrates that the edge that decreases the
effective graph resistance most, may not cause the largest increase in the algebraic connectivity.

A first hypothesis is that it is optimal to add the edge (i, j) for which Rij is maximal. Unfortunately,
the graph in Fig. 5a shows that this is not always the case. The corresponding matrix of effective
resistances is:

(
Rij

) =





0 5
8

5
8

1 13
8

21
8

5
8

0 1
2

5
8

3
2

5
2

5
8

1
2

0 5
8

1 2

1 5
8

5
8

0 13
8

21
8

13
8

3
2

1 13
8

0 1

21
8

5
2

2 21
8

1 0





.
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We see that the pairs (1, 6) and (4, 6) have the largest effective resistance. Nevertheless, edge (2, 6)
is the best edge to add.

In this counterexample the best edge to add is not the one with maximum pairwise effective
resistance, but the one between vertices that lay furthest apart. However, it is not true that the edge
(i, j) for which the distance dij is maximal always is the best edge to add, as the graph in Fig. 6a is again
a counterexample. The distance matrix corresponding to the graph in Fig. 6a is:

D =





0 1 1 1 2 2 2

1 0 1 2 1 2 3

1 1 0 1 2 1 2

1 2 1 0 2 1 1

2 1 2 2 0 1 2

2 2 1 1 1 0 1

2 3 2 1 2 1 0





.

Although the distance is maximal between vertices 2 and 7, it is optimal to add edge (5, 7). The
question which edge to add in order to minimise the effective graph resistance, is still open.

4. Discussion

In this paper, we have given a survey on the effective graph resistance, a graph measure in our
opinion highly valuable in the analysis of various network problems. The results of this paper concern:
(1) an overview of the known formulae of the effective graph resistance in Section 2.2, (2) a derivation
of some new theorems based on the analysis of the associated random walk on the graph in Section
2.3 and Section 2.4, (3) the proposal of a possible application related to network robustness in Section
2.6, and (4) a set of results concerning the optimisation of the effective graph resistance for a given
number of vertices and diameter, and for optimal edge addition in Section 3.

Specifically for (2), the analysis of the random walk analogy in Sections 2.3 and 2.4 has resulted in
some new expressions (Eqs. (7) and (8)), and a new proof for the equivalence with network criticality
(Theorem 2.11). Furthermore, in Section 2.4 we have a new approximation formula for the effective
graph resistance. Then specifically for (3), we have argued that the effective graph resistance can be
effectively used in the analysis of robustness-related problems. Finally concerning (4), we have found
some interesting results by optimising the effective graph resistance for graphs with a given number
of vertices and diameter, both analytically and by exhaustive search. These specific results include the
identification of asymmetric optimal graphs, the characterisation of a class of graphs containing the
optimal graph and the explicit calculation of the effective graph resistance for members of this class.

Further research on the effective graph resistance may include: (1) determination of the computa-
tion time of the approximation schemepresented in Section 2.4 and comparisonwith other algorithms
used for computing the effective graph resistance, (2) further comparison of the effective graph re-
sistance with other graph measures, in order to point out eventual dependencies, (3) analytical com-
putation of the optimal graphs of Section 3.4 or at least finding an explanation for the presence of
asymmetric optimal graphs, (4) search for real-world graphs that have the structure of the optimal
graphs in Section 3.4, and (5) design of an algorithm for determining the edge that decreases the
effective graphs resistance most, without having to try all possible edges.
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