Bounds for the spectral radius of a graph when nodes are removed

Cong Li ${ }^{*}$, Huijuan Wang, Piet Van Mieghem
Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands

ARTICLEINFO

Article history:

Received 29 November 2011
Accepted 26 February 2012
Available online 18 March 2012
Submitted by P. Šemrl
Keywords:
Spectral radius
Eigenvector
Graph
Link
Node

Abstract

We present a new type of lower bound for the spectral radius of a graph in which m nodes are removed. As a corollary, Cioabă's theorem [4], which states that the maximum normalized principal eigenvector component in any graph never exceeds $\frac{1}{\sqrt{2}}$ (with equality for the star), appears as a special case of our more general result.

© 2012 Elsevier Inc. All rights reserved.

Introduction

We consider a graph $G=(\mathcal{N}, \mathcal{L})$, where \mathcal{N} is the set of nodes and \mathcal{L} is the set of links. The number of nodes is denoted by $N=|\mathcal{N}|$ and the number of links is represented by $L=|\mathcal{L}|$. The graph G can be represented by the $N \times N$ adjacency matrix A, consisting of elements $a_{i j}$ that are either one or zero depending on whether there is a link between node i and j. The eigenvalues of the adjacency matrix A are ordered as $\lambda_{N} \leqslant \lambda_{N-1} \leqslant \cdots \leqslant \lambda_{1}$, where λ_{1} is the spectral radius and the corresponding eigenvector x_{1}, normalized such that $x_{1}^{T} x_{1}=1$, is called the principal eigenvector. Let \mathcal{L}_{m} (or \mathcal{N}_{m}) denote the set of the m links (or nodes) that are removed from G, and $G_{m}(\mathcal{L})=G \backslash \mathcal{L}_{m}\left(\right.$ or $\left.G_{m}(\mathcal{N})=G \backslash \mathcal{N}_{m}\right)$ is the resulting graph after the removal of m links (or nodes) from G. We denote the adjacency matrix of $G_{m}(\mathcal{L})\left(\operatorname{or} G_{m}(\mathcal{N})\right)$ by $A_{m}(\mathcal{L})$ (or $\left.A_{m}(\mathcal{N})\right)$, which is still a symmetric matrix. Similarly, let w_{1} be the normalized eigenvector (as in [9]) of $A_{m}(\mathcal{L})$ (or $A_{m}(\mathcal{N})$) corresponding to $\lambda_{1}\left(A_{m}(\mathcal{L})\right.$) (or $\lambda_{1}\left(A_{m}(\mathcal{N})\right)$) in the graph $G_{m}(\mathcal{L})$ (or $\left.G_{m}(\mathcal{N})\right)$ (such that $w_{1}^{T} w_{1}=1$). By the Perron-Frobenius theorem [8], all components of x_{1} and w_{1} are non-negative (positive if the corresponding graph is connected).

[^0]Many inequalities for the spectral radius have been published (see e.g. [7,8]). The search to improve the bounds for the spectral radius will continue due to the intimate relation with dynamic processes such as epidemics and synchronization in networks as explained in [9]. Our main result here is:

Theorem 1. For any graph G and corresponding graph $G_{m}(\mathcal{N})=G \backslash \mathcal{N}_{m}$, obtained from G by removing the set \mathcal{N}_{m} of m nodes, it holds that

$$
\begin{equation*}
\left(1-2 \sum_{n \in \mathcal{N}_{m}}\left(x_{1}\right)_{n}^{2}\right) \lambda_{1}(A)+\sum_{j \in \mathcal{N}_{m}} \sum_{i \in \mathcal{N}_{m}} a_{i j}\left(x_{1}\right)_{i}\left(x_{1}\right)_{j} \leqslant \lambda_{1}\left(A_{m}(\mathcal{N})\right) \leqslant \lambda_{1}(A) \tag{1}
\end{equation*}
$$

where x_{1} is the eigenvector of A corresponding to the largest eigenvalue $\lambda_{1}(A)$. In particular, if $m=1$, then

$$
\begin{equation*}
\left(1-2\left(x_{1}\right)_{n}^{2}\right) \lambda_{1}(A) \leqslant \lambda_{1}\left(A_{1}(\mathcal{N})\right) \leqslant \lambda_{1}(A) \tag{2}
\end{equation*}
$$

Proof. After removing a node n from graph G, we obtain $A_{1}(\mathcal{N})$, which is a $(N-1) \times(N-1)$ matrix,

$$
A_{1}(\mathcal{N})=\left[\begin{array}{cccccc}
a_{11} & \cdots & a_{1(n-1)} & a_{1(n+1)} & \cdots & a_{1 N} \\
\vdots & & \vdots & \vdots & & \vdots \\
a_{(n-1) 1} & \cdots & a_{(n-1)(n-1)} & a_{(n-1)(n+1)} & \cdots & a_{(n-1) N} \\
a_{(n+1) 1} & \cdots & a_{(n+1)(n-1)} & a_{(n+1)(n+1)} & \cdots & a_{(n+1) N} \\
\vdots & & \vdots & \vdots & & \vdots \\
a_{N 1} & \cdots & a_{N(n-1)} & a_{N(n+1)} & \cdots & a_{N N}
\end{array}\right]
$$

Consider the $N \times N$ matrix,

$$
\widetilde{A_{1}}(\mathcal{N})=\left[\begin{array}{ccccccc}
a_{11} & \cdots & a_{1(n-1)} & 0 & a_{1(n+1)} & \cdots & a_{1 N} \\
\vdots & & \vdots & \vdots & \vdots & & \vdots \\
a_{(n-1) 1} & \cdots & a_{(n-1)(n-1)} & 0 & a_{(n-1)(n+1)} & \cdots & a_{(n-1) N} \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
a_{(n+1) 1} & \cdots & a_{(n+1)(n-1)} & 0 & a_{(n+1)(n+1)} & \cdots & a_{(n+1) N} \\
\vdots & & \vdots & \vdots & \vdots & & \vdots \\
a_{N 1} & \cdots & a_{N(n-1)} & 0 & a_{N(n+1)} & \cdots & a_{N N}
\end{array}\right]
$$

which has the same largest eigenvalue as $A_{1}(\mathcal{N})$. In fact, all eigenvalues of $A_{1}(\mathcal{N})$ are the same as in $\widetilde{A_{1}}(\mathcal{N})$, that possesses an additional zero eigenvalue. In the following deduction, we likewise consider $\widetilde{A_{1}}(\mathcal{N})$ instead of $A_{1}(\mathcal{N})$ in order to have the dimension equal to $N \times N$. The principal eigenvector w_{1} corresponding to $\lambda_{1}\left(A_{m}(\mathcal{N})\right)$ is also extended to a vector with N components, where the components corresponding to the removed nodes are all zeros.

The Rayleigh principle states that $x^{T} A x \leqslant \lambda_{1}(A)$ for any normalized vector x with $x^{T} x=1$ and equality is only attained when $x=x_{1}$. Since x_{1} is an eigenvector of A, but not necessarily an eigenvector of $\widetilde{A_{1}}(\mathcal{N})$ belonging to $\lambda_{1}\left(\widetilde{A_{1}}(\mathcal{N})\right)$, we have that $\lambda_{1}\left(\overline{A_{1}}(\mathcal{N})\right) \geqslant x_{1}^{T}\left(\overline{A_{1}}(\mathcal{N})\right) x_{1}$, where

$$
\begin{equation*}
x_{1}^{T}\left(\widetilde{A_{1}}(\mathcal{N})\right) x_{1}=x_{1}^{T} A x_{1}-x_{1}^{T}\left(A-\widetilde{A_{1}}(\mathcal{N})\right) x_{1}=\lambda_{1}(A)-x_{1}^{T}\left(A-\widetilde{A_{1}}(\mathcal{N})\right) x_{1} \tag{3}
\end{equation*}
$$

It remains to compute $x_{1}^{T}\left(A-\widetilde{A_{1}}(\mathcal{N})\right) x_{1}$. We can write

$$
A-\widetilde{A_{1}}(\mathcal{N})=a_{n} \cdot e_{n}^{T}+e_{n} \cdot a_{n}^{T}
$$

where a_{n} is the column vector $\left(a_{n 1}, a_{n 2}, \ldots, a_{n N}\right)^{T}$ and e_{n} is the nth basis column vector $(0,0, \ldots, 1$, $\ldots, 0)^{T}$, where only the nth component is 1 . Hence,

$$
\begin{aligned}
x_{1}^{T}\left(A-\widetilde{A_{1}}(\mathcal{N})\right) x_{1} & =x_{1}^{T}\left(a_{n} \cdot e_{n}^{T}+e_{n} \cdot a_{n}^{T}\right) x_{1} \\
& =x_{1}^{T} a_{n} e_{n}^{T} x_{1}+x_{1}^{T} e_{n} a_{n}^{T} x_{1}=2\left(x_{1}\right)_{n} \sum_{i=1}^{N}\left(x_{1}\right)_{i} a_{i n}
\end{aligned}
$$

The eigenvalue equation written for the component n yields

$$
\sum_{i=1}^{N}\left(x_{1}\right)_{i} a_{i n}=\lambda_{1}(A)\left(x_{1}\right)_{n}
$$

so that we arrive at

$$
\begin{equation*}
x_{1}^{T}\left(A-\widetilde{A_{1}}(\mathcal{N})\right) x_{1}=2\left(x_{1}\right)_{n}^{2} \lambda_{1}(A) \tag{4}
\end{equation*}
$$

Introduced in (3) yields the lower bound in (2).
We repeat the analysis from the point of view of $\widetilde{A_{1}}(\mathcal{N})$. Since w_{1} is an eigenvector of $\widetilde{A_{1}}(\mathcal{N})$, but not necessarily an eigenvector of A belonging to $\lambda_{1}(A)$, we have $\lambda_{1}(A) \geqslant w_{1}^{T} A w_{1}$. Similarly as above,

$$
\begin{align*}
\lambda_{1}(A) & \geqslant w_{1}^{T} \widetilde{A_{1}}(\mathcal{N}) w_{1}+w_{1}^{T}\left(A-\widetilde{A_{1}}(\mathcal{N})\right) w_{1} \tag{5}\\
& =\lambda_{1}\left(\widetilde{A_{1}}(\mathcal{N})\right)+w_{1}^{T}\left(A-\widetilde{A_{1}}(\mathcal{N})\right) w_{1} \\
& =\lambda_{1}\left(\widetilde{A_{1}}(\mathcal{N})\right)+2 \lambda_{1}\left(\widetilde{A_{1}}(\mathcal{N})\right)\left(w_{1}\right)_{n}^{2}
\end{align*}
$$

from which, with $\sum_{i=1}^{N}\left(w_{1}\right)_{i} a_{i n}=\lambda_{1}\left(\widetilde{A_{1}}(\mathcal{N})\right)\left(w_{1}\right)_{n}$ and $a_{n}=0$ in $\widetilde{A_{1}}(\mathcal{N})$ so that $\left(w_{1}\right)_{n}=0$, the upper bound in (2) follows.

Next, we extend inequality (3) in case m nodes are removed,

$$
x_{1}^{T}\left(A-A_{m}(\mathcal{N})\right) x_{1}=x_{1}^{T}\left(\sum_{n \in \mathcal{N}_{m}} a_{n} \cdot e_{n}^{T}+\sum_{n \in \mathcal{N}_{m}} e_{n} \cdot a_{n}^{T}-\sum_{j \in \mathcal{N}_{m}} \sum_{i \in \mathcal{N}_{m}} a_{i j} e_{i} e_{j}^{T}\right) x_{1}
$$

and obtain

$$
\begin{align*}
\lambda_{1}\left(A_{m}(\mathcal{N})\right) & \geqslant \lambda_{1}(A)-x_{1}^{T}\left(A-A_{m}(\mathcal{N})\right) x_{1} \tag{6}\\
& =\lambda_{1}(A)-2 \lambda_{1}(A) \sum_{n \in \mathcal{N}_{m}}\left(x_{1}\right)_{n}^{2}+\sum_{j \in \mathcal{N}_{m}} \sum_{i \in \mathcal{N}_{m}} a_{i j}\left(x_{1}\right)_{i}\left(x_{1}\right)_{j}
\end{align*}
$$

Similarly, when repeating the analysis from the point of view of $A_{m}(\mathcal{N})$ rather than from A, we can also extend inequality (5) in case m nodes are removed. With $\lambda_{1}(A) \geqslant w_{1}^{T}(A) w_{1}$, we achieve

$$
\begin{aligned}
\lambda_{1}(A) & \geqslant \lambda_{1}\left(A_{m}(\mathcal{N})\right)-w_{1}^{T}\left(A_{m}(\mathcal{N})-A\right) w_{1} \\
& =\lambda_{1}\left(A_{m}(\mathcal{N})\right)+2 \lambda_{1}\left(A_{m}(\mathcal{N})\right) \sum_{n \in \mathcal{N}_{m}}\left(w_{1}\right)_{n}^{2}-\sum_{j \in \mathcal{N}_{m}} \sum_{i \in \mathcal{N}_{m}} a_{i j}\left(w_{1}\right)_{i}\left(w_{1}\right)_{j}
\end{aligned}
$$

with $\left(w_{1}\right)_{i}=0$, if $i \in \mathcal{N}_{m}$,

$$
\begin{equation*}
\lambda_{1}(A) \geqslant \lambda_{1}\left(A_{m}(\mathcal{N})\right) \tag{7}
\end{equation*}
$$

From the inequality (6) and (7), we arrive at the bounds (1) of $\lambda_{1}\left(A_{m}(\mathcal{N})\right)$.

The addition of a node to a graph G_{N} was discussed in [8, p. 60, art. 60]. In particular, when G_{N+1} is the cone of a regular graph G_{N}, the spectral radius $\lambda_{1}\left(A_{N+1}\right)$ of G_{N+1} equals $\frac{\lambda_{1}\left(A_{N}\right)}{2}\left(1+\sqrt{1+4 \frac{d_{n}}{\lambda_{1}\left(A_{N}\right)^{2}}}\right)$, where $\lambda_{1}\left(A_{N}\right)$ is the spectral radius of G_{N} and $d_{n}=N$ is the degree of the added cone node. Hence, the increase of the spectral radius is related to the degree d_{n}. Lemma 1 shows that the decrease of the spectral radius by removing a node n is related to $\left(x_{1}\right)_{n}$ and complements a lemma on link removals, proved in [9].

Lemma 1. For any graph G and $G_{m}(\mathcal{L})=G \backslash \mathcal{L}_{m}$, it holds that

$$
\begin{equation*}
2 \sum_{l \in \mathcal{L}_{m}}\left(w_{1}\right)_{l^{+}}\left(w_{1}\right)_{l^{-}} \leqslant \lambda_{1}(A)-\lambda_{1}\left(A_{m}(\mathcal{L})\right) \leqslant 2 \sum_{l \in \mathcal{L}_{m}}\left(x_{1}\right)_{l^{+}}\left(x_{1}\right)_{l^{-}} \tag{8}
\end{equation*}
$$

where x_{1} and w_{1} are the eigenvectors of A and A_{m} corresponding to the largest eigenvalues $\lambda_{1}(A)$ and $\lambda_{1}\left(A_{m}\right)$, respectively, and where a link ljoins the nodes l^{+}and l^{-}.

Lemma 1 relates the decrease of λ_{1} by m link removals to the product $\left(x_{1}\right)_{i}\left(x_{1}\right)_{j}$. Moreover, the lower bound in (1) of the spectral radius by removing m nodes contains the term

$$
\sum_{j \in \mathcal{N}_{m}} \sum_{i \in \mathcal{N}_{m}} a_{i j}\left(x_{1}\right)_{i}\left(x_{1}\right)_{j}
$$

illustrating that, if there are links between removed nodes (i.e. $l^{+}=i$ and $l^{-}=j$), the decrease of the spectral radius also depends on the product $\left(x_{1}\right)_{i}\left(x_{1}\right)_{j}$ over links corresponding to the connected nodes.

In addition, the upper bound in (1) of $\lambda_{1}\left(A_{m}(\mathcal{N})\right)$ states that the spectral radius λ_{1} of a graph G is always larger than or equal to the largest eigenvalue of any subgraph G_{S} of G,

$$
\lambda_{1} \geqslant \max _{\text {all } G_{s} \subset G}\left(\lambda_{1}\left(A_{G_{s}}\right)\right)
$$

which is another proof for Theorem 42 in [8, pp. 246-247].
Goh et al. [5] observed by simulations in Bárabasi-Albert graphs that the upper bound of $\left(x_{1}\right)_{\max }^{2}$ is $\frac{1}{2}$, where $\left(x_{1}\right)_{\max }$ is the largest component of the principal eigenvector. Corollary 1 provides a rigorous proof of this observation.

Corollary 1. In any graph, any eigenvector component of the principal eigenvector obeys

$$
\begin{equation*}
\left(x_{1}\right)_{n} \leqslant \frac{\sqrt{2}}{2} \tag{9}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\sum_{n \in \mathcal{N}_{m}}\left(x_{1}\right)_{n}^{2} \leqslant \frac{1}{2}\left\{1+\frac{1}{\lambda_{1}(A)} \sum_{j \in \mathcal{N}_{m}} \sum_{i \in \mathcal{N}_{m}} a_{i j}\left(x_{1}\right)_{i}\left(x_{1}\right)_{j}\right\} \tag{10}
\end{equation*}
$$

Proof. Since all components of x_{1} and $\widetilde{A_{1}}(\mathcal{N})$ are non-negative by the Perron-Frobenius Theorem, we have that $x_{1}^{T}\left(\widetilde{A_{1}}(\mathcal{N})\right) x_{1} \geqslant 0$. Combining (3), (4) and $\lambda_{1}(A)>0$, we obtain $\left(1-2\left(x_{1}\right)_{n}^{2}\right) \geqslant 0$, from which (9) follows. By the same argument $x_{1}^{T}\left(\widetilde{A_{m}}(\mathcal{N})\right) x_{1} \geqslant 0$ and

$$
\left(1-2 \sum_{n \in \mathcal{N}_{m}}\left(x_{1}\right)_{n}^{2}\right) \lambda_{1}(A)+\sum_{j \in \mathcal{N}_{m}} \sum_{i \in \mathcal{N}_{m}} a_{i j}\left(x_{1}\right)_{i}\left(x_{1}\right)_{j} \geqslant 0
$$

proving (10).

Alternatively, the inequality in the proof also yields

$$
\lambda_{1}(A) \geqslant \frac{\sum_{j \in \mathcal{N}_{m}} \sum_{i \in \mathcal{N}_{m}} a_{i j}\left(x_{1}\right)_{i}\left(x_{1}\right)_{j}}{2 \sum_{n \in \mathcal{N}_{m}}\left(x_{1}\right)_{n}^{2}-1}=\frac{\sum_{l \in \mathcal{L}_{m}^{*}}\left(x_{1}\right)_{l^{+}}\left(x_{1}\right)_{l^{-}}}{2 \sum_{n \in \mathcal{N}_{m}}\left(x_{1}\right)_{n}^{2}-1}
$$

where \mathcal{L}_{m}^{*} denotes the set of links among the set \mathcal{N}_{m} of nodes removed from G. The sharpest bound is likely reached when $2 \sum_{n \in \mathcal{N}_{m}}\left(x_{1}\right)_{n}^{2} \gtrsim 1$.

We remark that equality in (9) is reached for the star, when the node n is the central or hub node. Since scale-free graphs consists of few very high degree nodes, their influence on the eigenvector is close to a star, which explains the observations of Goh et al. [5]. When $\mathcal{N}_{m}=\mathcal{N}$ or $m=N$, then equality in (10) is obtained. When \mathcal{N}_{m} is an independent set (i.e. there are no links between the nodes of \mathcal{N}_{m} such that $a_{i j}=0$ for any $i, j \in \mathcal{N}_{m}$), the non-negative double sum in (10) disappears and we find that

$$
\sum_{n \in \mathcal{N}_{m}}\left(x_{1}\right)_{n}^{2} \leqslant \frac{1}{2}
$$

This special case of (10) has been proved earlier by Cioabă [4]. Cioabă and Gregory [2] also proved other generalizations of inequality (9) such as $\left(x_{1}\right)_{n} \leqslant \frac{1}{\sqrt{1+\lambda_{1}^{2} / d_{n}}}$, where d_{n} is the degree of node n, responding to $\left(x_{1}\right)_{n}$. Since $\lambda_{1} \geqslant \sqrt{\Delta} \geqslant \sqrt{d_{n}}$ (see [8, pp. 55, art. 54]), where Δ is the maximum degree, the inequality (9) follows. Also, Stevanovic bounds [7] relating λ_{1} and Δ were improved in [1,3,6,10].

Finally, the lower bound in (2) underlines the interpretation of a principal eigenvector component as an importance or centrality measure. For, the more important the node n is, the higher the value of $\left(x_{1}\right)_{n}$, and the larger the possible decrease in spectral radius when this node n is removed.

Acknowledgement

We are grateful to D. Stevanović for pointing us to Cioabă's Theorem.

References

[1] S.M. Cioabă, The spectral radius and the maximum degree of irregular graphs, Electron. J. Combin. 14 (2007) 1-10.
[2] S.M. Cioabă, D.A. Gregory, Principal eigenvectors of irregular graphs, Electron. J. Linear Algebra 16 (2007) 366-379.
[3] S.M. Cioabă, D.A. Gregory, V. Nikiforov, Extreme eigenvalues of nonregular graphs, J. Combin. Theory Ser. B 97 (3)(2007)483-486.
[4] S.M. Cioabă, A necessary and sufficient eigenvector condition for a connected graph to be bipartite, Electron. J. Linear Algebra (ELA) 20 (2010) 351-353.
[5] K.-L. Goh, B. Kahng, D. Kim, Spectra and eigenvectors of scale-free networks, Phys. Rev. E 64 (2001) 051903
[6] B. Liu, J. Shen, X. Wang, On the largest eigenvalue of non-regular graphs, J. Combin. Theory Ser. B 97 (6) (2007) 1010-1018.
[7] D. Stevanović, The largest eigenvalue of nonregular graphs, J. Combin. Theory Ser. B 91 (2004) 143-146.
[8] P. Van Mieghem, Graph Spectra for Complex Networks, Cambridge University Press, Cambridge, UK, 2011.
[9] P. Van Mieghem, D. Stevanović, F.A. Kuipers, C. Li, R. van de Bovenkamp, D. Liu, H. Wang, Decreasing the spectral radius of a graph by link removals, Phys. Rev. E 84 (1) (2011) 016101
[10] L. Shi, The spectral radius of irregular graphs, Linear Algebra Appl. 431 (1-2) (2009) 189-196.

[^0]: * Corresponding author.

 E-mail addresses: Cong.Li@tudelft.nl (C. Li), H.Wang@tudelft.nl (H. Wang), P.F.A.VanMieghemv@tudelft.nl. (P. Van Mieghem).

