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We present a new type of lower bound for the spectral radius of a
graph in which m nodes are removed. As a corollary, Cioabă’s theo-
rem [4],which states that themaximumnormalizedprincipal eigen-
vector component in any graph never exceeds 1√

2
(with equality for

the star), appears as a special case of our more general result.
© 2012 Elsevier Inc. All rights reserved.

Introduction

We consider a graph G = (N , L), whereN is the set of nodes and L is the set of links. The number
of nodes is denoted by N = |N | and the number of links is represented by L = |L|. The graph G can
be represented by the N × N adjacency matrix A, consisting of elements aij that are either one or zero
dependingonwhether there is a linkbetweennode iand j. Theeigenvaluesof theadjacencymatrixAare
ordered asλN ! λN−1 ! · · · ! λ1, whereλ1 is the spectral radius and the corresponding eigenvector
x1, normalized such that xT1x1 = 1, is called the principal eigenvector. Let Lm (or Nm) denote the set
of the m links (or nodes) that are removed from G, and Gm(L) = G\Lm (or Gm(N ) = G\Nm) is the
resulting graph after the removal of m links (or nodes) from G. We denote the adjacency matrix of
Gm(L) (or Gm(N )) by Am(L) (or Am(N )), which is still a symmetric matrix. Similarly, let w1 be the
normalized eigenvector (as in [9]) of Am(L) (or Am(N )) corresponding to λ1(Am(L)) (or λ1(Am(N )))
in the graph Gm(L) (or Gm(N )) (such that wT

1w1 = 1). By the Perron–Frobenius theorem [8], all
components of x1 and w1 are non-negative (positive if the corresponding graph is connected).
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Many inequalities for the spectral radius have been published (see e.g. [7,8]). The search to improve
the bounds for the spectral radius will continue due to the intimate relation with dynamic processes
such as epidemics and synchronization in networks as explained in [9]. Our main result here is:

Theorem 1. For any graph G and corresponding graph Gm(N ) = G\Nm, obtained from G by removing
the set Nm of m nodes, it holds that



1 − 2
∑

n∈Nm

(x1)
2
n



 λ1(A) +
∑

j∈Nm

∑

i∈Nm

aij(x1)i(x1)j ! λ1 (Am(N )) ! λ1 (A) (1)

where x1 is the eigenvector of A corresponding to the largest eigenvalue λ1 (A). In particular, if m = 1, then
(
1 − 2 (x1)

2
n

)
λ1(A) ! λ1 (A1(N )) ! λ1 (A) (2)

Proof. After removing a node n from graph G, we obtain A1(N ), which is a (N − 1) × (N − 1) matrix,

A1(N ) =





a11 · · · a1(n−1) a1(n+1) · · · a1N

...
...

...
...

a(n−1)1 · · · a(n−1)(n−1) a(n−1)(n+1) · · · a(n−1)N

a(n+1)1 · · · a(n+1)(n−1) a(n+1)(n+1) · · · a(n+1)N

...
...

...
...

aN1 · · · aN(n−1) aN(n+1) · · · aNN





Consider the N × N matrix,

Ã1(N ) =





a11 · · · a1(n−1) 0 a1(n+1) · · · a1N

...
...

...
...

...

a(n−1)1 · · · a(n−1)(n−1) 0 a(n−1)(n+1) · · · a(n−1)N

0 · · · 0 0 0 · · · 0

a(n+1)1 · · · a(n+1)(n−1) 0 a(n+1)(n+1) · · · a(n+1)N

...
...

...
...

...

aN1 · · · aN(n−1) 0 aN(n+1) · · · aNN





which has the same largest eigenvalue as A1(N ). In fact, all eigenvalues of A1(N ) are the same as in
Ã1(N ), that possesses an additional zero eigenvalue. In the following deduction, we likewise consider
Ã1(N ) instead of A1(N ) in order to have the dimension equal to N × N. The principal eigenvector w1

corresponding to λ1(Am(N )) is also extended to a vector with N components, where the components
corresponding to the removed nodes are all zeros.

The Rayleigh principle states that xTAx ! λ1(A) for any normalized vector x with xTx = 1 and
equality is only attainedwhen x = x1. Since x1 is an eigenvector ofA, but not necessarily an eigenvector
of Ã1(N ) belonging to λ1(Ã1(N )), we have that λ1(Ã1(N )) " xT1(Ã1(N ))x1, where

xT1(Ã1(N ))x1 = xT1Ax1 − xT1(A − Ã1(N ))x1 = λ1(A) − xT1(A − Ã1(N ))x1 (3)
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It remains to compute xT1(A − Ã1(N ))x1. We can write

A − Ã1(N ) = an · eTn + en · aTn
where an is the column vector (an1, an2, . . . , anN)T and en is the nth basis column vector (0, 0, . . . , 1,
. . . , 0)T , where only the nth component is 1. Hence,

xT1(A − Ã1(N ))x1 = xT1(an · eTn + en · aTn)x1

= xT1ane
T
nx1 + xT1ena

T
nx1 = 2(x1)n

N∑

i=1

(x1)iain

The eigenvalue equation written for the component n yields

N∑

i=1

(x1)iain = λ1(A)(x1)n

so that we arrive at

xT1(A − Ã1(N ))x1 = 2(x1)
2
nλ1(A) (4)

Introduced in (3) yields the lower bound in (2).
We repeat the analysis from the point of view of Ã1(N ). Since w1 is an eigenvector of Ã1(N ), but

not necessarily an eigenvector of A belonging to λ1(A), we have λ1(A) " wT
1Aw1. Similarly as above,

λ1(A) " wT
1 Ã1(N )w1 + wT

1

(
A − Ã1(N )

)
w1 (5)

= λ1(Ã1(N )) + wT
1

(
A − Ã1(N )

)
w1

= λ1(Ã1(N )) + 2λ1(Ã1(N ))(w1)
2
n

from which, with
∑N

i=1(w1)iain = λ1(Ã1(N ))(w1)n and an = 0 in Ã1(N ) so that (w1)n = 0, the
upper bound in (2) follows.

Next, we extend inequality (3) in case m nodes are removed,

xT1(A − Am(N ))x1 = xT1




∑

n∈Nm

an · eTn +
∑

n∈Nm

en · aTn −
∑

j∈Nm

∑

i∈Nm

aijei e
T
j



 x1

and obtain

λ1(Am(N )) " λ1(A) − xT1(A − Am(N ))x1 (6)

= λ1(A) − 2λ1(A)
∑

n∈Nm

(x1)
2
n +

∑

j∈Nm

∑

i∈Nm

aij(x1)i(x1)j

Similarly, when repeating the analysis from the point of view of Am(N ) rather than from A, we can
also extend inequality (5) in casem nodes are removed. With λ1(A) " wT

1(A)w1, we achieve

λ1(A) " λ1(Am(N )) − wT
1(Am(N ) − A)w1

= λ1(Am(N )) + 2λ1(Am(N ))
∑

n∈Nm

(w1)
2
n −

∑

j∈Nm

∑

i∈Nm

aij(w1)i(w1)j

with (w1)i = 0, if i ∈ Nm,

λ1(A) " λ1(Am(N )) (7)

From the inequality (6) and (7), we arrive at the bounds (1) of λ1 (Am(N )). #
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Theadditionof anode toagraphGN wasdiscussed in [8, p. 60, art. 60]. Inparticular,whenGN+1 is the

cone of a regular graph GN , the spectral radius λ1(AN+1) of GN+1 equals λ1(AN)
2

(
1 +

√
1 + 4 dn

λ1(AN)2

)
,

where λ1(AN) is the spectral radius of GN and dn = N is the degree of the added cone node. Hence,
the increase of the spectral radius is related to the degree dn. Lemma 1 shows that the decrease of the
spectral radius by removing a node n is related to (x1)n and complements a lemma on link removals,
proved in [9].

Lemma 1. For any graph G and Gm(L) = G\Lm, it holds that

2
∑

l∈Lm

(w1)l+ (w1)l− ! λ1 (A) − λ1 (Am(L)) ! 2
∑

l∈Lm

(x1)l+ (x1)l− (8)

where x1 and w1 are the eigenvectors of A and Am corresponding to the largest eigenvalues λ1 (A) and
λ1 (Am), respectively, and where a link l joins the nodes l+ and l−.

Lemma 1 relates the decrease of λ1 by m link removals to the product (x1)i(x1)j . Moreover, the
lower bound in (1) of the spectral radius by removing m nodes contains the term

∑

j∈Nm

∑

i∈Nm

aij(x1)i(x1)j

illustrating that, if there are links between removed nodes (i.e. l+ = i and l− = j), the decrease of
the spectral radius also depends on the product (x1)i(x1)j over links corresponding to the connected
nodes.

In addition, the upper bound in (1) of λ1 (Am(N )) states that the spectral radius λ1 of a graph G is
always larger than or equal to the largest eigenvalue of any subgraph Gs of G,

λ1 " max
all Gs⊂G

(λ1(AGs))

which is another proof for Theorem 42 in [8, pp. 246–247].
Goh et al. [5] observed by simulations in Bárabasi–Albert graphs that the upper bound of (x1)

2
max is

1
2
, where (x1)max is the largest component of the principal eigenvector. Corollary 1 provides a rigorous

proof of this observation.

Corollary 1. In any graph, any eigenvector component of the principal eigenvector obeys

(x1)n !
√

2

2
(9)

Moreover,

∑

n∈Nm

(x1)
2
n ! 1

2




1 + 1

λ1(A)

∑

j∈Nm

∑

i∈Nm

aij(x1)i(x1)j




 (10)

Proof. Since all components of x1 and Ã1(N ) are non-negative by the Perron–Frobenius Theorem, we

have that xT1(Ã1(N ))x1 " 0. Combining (3), (4) and λ1(A) > 0, we obtain
(
1 − 2(x1)

2
n

)
" 0, from

which (9) follows. By the same argument xT1(Ãm(N ))x1 " 0 and



1 − 2
∑

n∈Nm

(x1)
2
n



 λ1(A) +
∑

j∈Nm

∑

i∈Nm

aij(x1)i(x1)j " 0

proving (10). #
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Alternatively, the inequality in the proof also yields

λ1(A) "
∑

j∈Nm

∑
i∈Nm

aij(x1)i(x1)j

2
∑

n∈Nm
(x1)

2
n − 1

=
∑

l∈L∗
m

(x1)l+ (x1)l−

2
∑

n∈Nm
(x1)

2
n − 1

where L∗
m denotes the set of links among the setNm of nodes removed from G. The sharpest bound is

likely reached when 2
∑

n∈Nm
(x1)

2
n $ 1.

We remark that equality in (9) is reached for the star, when the node n is the central or hub node.
Since scale-free graphs consists of few very high degree nodes, their influence on the eigenvector is
close to a star, which explains the observations of Goh et al. [5]. When Nm = N or m = N, then
equality in (10) is obtained. WhenNm is an independent set (i.e. there are no links between the nodes
of Nm such that aij = 0 for any i, j ∈ Nm), the non-negative double sum in (10) disappears and we
find that

∑

n∈Nm

(x1)
2
n ! 1

2

This special case of (10) has been proved earlier by Cioabă [4]. Cioabă and Gregory [2] also proved
other generalizations of inequality (9) such as (x1)n ! 1√

1+λ2
1/dn

, where dn is the degree of node n,

responding to (x1)n. Sinceλ1 "
√

" " √
dn (see [8, pp. 55, art. 54]), where" is themaximumdegree,

the inequality (9) follows. Also, Stevanovic bounds [7] relating λ1 and " were improved in [1,3,6,10].
Finally, the lower bound in (2) underlines the interpretation of a principal eigenvector component

as an importance or centrality measure. For, the more important the node n is, the higher the value of
(x1)n, and the larger the possible decrease in spectral radius when this node n is removed.
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[7] D. Stevanović, The largest eigenvalue of nonregular graphs, J. Combin. Theory Ser. B 91 (2004) 143–146.
[8] P. Van Mieghem, Graph Spectra for Complex Networks, Cambridge University Press, Cambridge, UK, 2011.
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