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Abstract

We consider lower bounds for the largest eigenvalue of a symmetric matrix. In particular we extend a
recent approach by Piet Van Mieghem.
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1. Introduction

Let λmax(A) be the largest eigenvalue of a symmetric m × m matrix A = (aij ). Since

λmax(A) = max
x /=0

xTAx

xTx

it clearly follows that a lower bound for λmax(A) is given by

λmax(A) � uTAu

uTu
(1)
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where uT = (1 · · · 1). Note that

N1 = uTAu =
∑
ij

aij ,

uTu = m and N1/m is a commonly used lower bound for λmax(A). Recent work on lower bounds
for a symmetric matrix has been done by Van Mieghem [2]. He showed that

λmax(A) � N1

m
+ 2

(
N3

2m
− N1N2

m2
+ N3

1

2m3

)
λ−2

0 + O(t−4), (2)

where t � T , λ0 = t
√

m,

T = 1√
m

max
1�j�m

⎛⎝ajj +
∑
i /=j

|aij |
⎞⎠ , (3)

and Nk = uTAku with N0 = m.
The aim in the current paper is to extend the results of Van Mieghem [2]. The central idea of the

paper is to apply the classic bound to transforms of A. Applying standard bounds to transformed
matrices which result in improved bounds has recently been exploited in Walker [3,4] and Liu
et al. [1]. We derive the general lower bound in Section 2, where we also consider some specific
cases. Section 3 provides a further useful result when A is positive definite and finally Section 4
concludes with a numerical example.

2. Lower bounds for symmetric matrices

Consider the m × m symmetric matrix

At =
∞∑

k=0

fkA
kt−k,

where the Taylor series
∑∞

k=0 fkx
k = f (x) converges for |x| < Rf , where Rf > 0 is the radius

of convergence. If λ is an eigenvalue of A, corresponding to eigenvector v, then

Atv =
∞∑

k=0

fkA
kt−kv =

∞∑
k=0

fkλ
kt−kv = f

(
λ

t

)
v.

The series converges for any eigenvalue of A provided we choose t > λ̃/Rf , where λ̃ =
max1�j�m{|λj |}.

If f (x) is real for real x and increasing, then λmax(At ) = f
(

λmax(A)
t

)
. Next, we apply the

classical bound (1) to At and obtain

λmax (At ) � uTAtu

m
= 1

m

∞∑
k=0

fk(u
TAku)t−k = 1

m

∞∑
k=0

fkNkt
−k.

It follows from (1) that Nk � mλmax(A
k). Since λmax(A

k) � λ̃k , we have that Nk � mλ̃k and this
inequality shows that the series

∑∞
k=0 fkNkt

−k indeed converges for t > λ̃/Rf .
Since also the inverse function f −1(x) is increasing when f (x) is increasing such that

λmax(A) = tf −1(λmax(At )),
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we arrive at the inequality

λmax(A) � tf −1

(
1

m

∞∑
k=0

fkNkt
−k

)
. (4)

The best possible bound is reached when the right hand side in (4) is optimized over all increasing
functions f . Obviously the set of increasing functions includes the case f (x) = x and for this
increasing function we obtain the classic inequality λmax(A) � N1/m. Hence (4) is at least as
good as the classic bound when optimized over all increasing functions. In fact as we will see in
Section 3, when A is positive definite, it turns out that the worst f is indeed f (x) = x.

The function f −1
(

1
m

∑∞
k=0 fkNkz

k
)

is expanded in a series around z = 1/t = 0 in Appendix

A to obtain

λmax(A) � tf −1

(
1

m

∞∑
k=0

fkNkt
−k

)
=

∞∑
k=1

ckt
1−k (5)

and the general term ck is given in (8). Explicitly, the first few coefficients ck are

c1 = N1

m

c2 = f2

f1

(
N2

m
− N2

1

m2

)

c3 = f3

f1

(
N3

m
− N3

1

m3

)
+ 2f 2

2

f 2
1

(
N3

1

m3
− N1N2

m2

)

c4 = f4

f1

(
N4

m
− N4

1

m4

)
+ f2f3

f 2
1

(
5N4

1

m4
− 3N2

1 N2

m3
− 2N1N3

m2

)

+ f 3
2

f 3
1

(
−5N4

1

m4
+ 6N2

1 N2

m3
− N2

2

m2

)
.

If Rf −1 is the radius of convergence of the Taylor series of f −1(x) around f0, then

f −1

(
1

m

∞∑
k=0

fkNkt
−k

)
= f −1

(
f0 + 1

m

∞∑
k=1

fkNkt
−k

)

indicates that convergence requires that 1
m

∑∞
k=1 fkNkt

−k < Rf −1 . Using Nk � mλ̃k , the series
is bounded by

1

m

∞∑
k=1

fkNkt
−k �

∞∑
k=1

fkλ̃
kt−k = f

(
λ̃

t

)
− f0

from which f ( λ̃
t
) < f0 + Rf −1 and thus, that t > λ̃

f −1(f0+R
f −1 )

. Combined with the above bounds

on t , convergence of
∑∞

k=1 ckt
1−k requires that

t > λ̃ max

(
1

Rf

,
1

f −1
(
f0 + Rf −1

)) (6)
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and, in practice, t > T̃
√

m max

(
1

Rf
, 1

f −1(f0+R
f −1 )

)
, where

T̃
√

m = max
1�j�m

{
m∑

i=1

|aij |
}

,

since it is well known that λ̃ < T̃
√

m.

2.1. Examples

If fk = 1, then f (x) = 1
1−x

and f −1(x) = 1 − 1
x

. The Taylor series of f (x) around x = 0 has

Rf = 1, while the Taylor series of f −1(x) around f (0) = 1 has radius of convergence Rf −1 = 1.
Hence, the bound (6) for t yields t > 2T̃

√
m and we find from (5)

λmax(A) � N1

m
+ 1

t

(
N2

m
− N2

1

m2

)
+ 2

(
N3

2m
− N1N2

m2
+ N3

1

2m3

)
1

t2
+ O(t−3). (7)

The bound (7) is very similar to the Van Mieghem [2] expression (2), except we have an additional
1/t term which is positive. Note that the 1/t2 term is not necessarily positive. On the other hand,
the bound on t in (2) is less than half as large as 2T̃

√
m here.

If we choose f (x) = (1 − x)α , then the Taylor coefficients around x = 0 are fk = (−1)k
(

α

k

)
and Rf = 1. The inverse function f −1(x) = 1 − x

1
α has a radius of convergence around f (0) = 1

equal to Rf −1 = 1. Using (6), we have that t > T̃
√

m max

(
1, 1

1−2
1
α

)
. For α = −|β| < 0, where

fk =
(|β| − 1 + k

k

)
and t >

T̃
√

m

1−2
− 1|β|

, the lower bound (5) up to O(t−3) is

λmax(A) � N1

m
+
(

N2

m
− N2

1

m2

)
(|β| + 1)

2t

+
{

(|β| + 2)

3(|β| + 1)

(
N3

m
− N3

1

m3

)
+
(

N3
1

m3
− N1N2

m2

)}
(|β| + 1)2

2t2
.

To compare with (7) where |β| = 1, we write t = t1
1

2(1−2
− 1|β| )

, where t1 > 2T̃
√

m,

λmax(A) � N1

m
+
(

N2

m
− N2

1

m2

)
(|β| + 1)

(
1 − 2− 1

|β|
)

t1

+
{

(|β| + 2)

3(|β| + 1)

(
N3

m
− N3

1

m3

)
+
(

N3
1

m3
− N1N2

m2

)}
2(|β| + 1)2

(
1 − 2− 1

|β|
)2

t2
1

This shows that the coefficient of 1
t1

is larger than in the β = 1 case provided |β| < 1. In that

case, however, the coefficient of 1
t2
1

has a smaller positive (|β|+2)
3(|β|+1)

factor. The argument shows

that, depending on the values of Nk , we may fine-tune β to produce a larger lower bound.
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Finally, consider f (x) = eax for which fk = ak

k! and Rf → ∞. The inverse function f −1(x) =
1
a

log x has a Taylor series around f (0) = 1 with Rf −1 = 1. The bound (6) becomes t >
aT̃

√
m

log 2

and (5) up to O(t−3) is

λmax(A) � N1

m
+ 1

2

(
N2

m
− N2

1

m2

)
a

t
+
{

a

3

(
N3

m
− N3

1

m3

)
+
(

N3
1

m3
− N1N2

m2

)}
a2

2t2

Comparison with (7) via t = at1
2 log 2 gives

λmax(A) � N1

m
+
(

N2

m
− N2

1

m2

)
log 2

t1
+
{

a

3

(
N3

m
− N3

1

m3

)
+
(

N3
1

m3
− N1N2

m2

)}
2 log2 2

t2
1

.

The coefficient of 1
t1

is now smaller than in the β = 1 case, but the value of a can be freely chosen

in the coefficient of 1
t2
1

(ignoring higher order terms).

Another possible sequence of functions to consider is f (x) = xk for odd k. As has been
mentioned the case k = 1 provides the classic bound. For these functions the inverse is trivial and
hence bounds are easily available.

3. Positive definite case

When A is positive definite we have the following key result:

Lemma 3.1. It is that Nk � Nk
1 /mk−1 for all k = 1, 2, . . .

Proof. It is well known that we can write

A = QDQT =
m∑

j=1

λk
j vj v

T
j ,

where Q is an orthogonal matrix with column eigenvectors {vj }, and D is a diagonal matrix with
entries the eigenvalues {λj }. So

Nk =
m∑

j=1

λk
ju

Tvjv
T
j u

and uTvjv
T
j u = (uTvj )

2 with

m∑
j=1

(uTvj )
2 = m.

Hence, Nk = E(�k) with P(� = λj ) = (uTvj )
2/m; and, since λj > 0 ∀j , a consequence of A

being positive definite, it is that � > 0 with probability one, and using Jensen’s inequality, it is
that E(�k) � {E(�)}k . So Nk = mE(�k) � m{E(�)}k = Nk

1 /mk−1, completing the proof. �

Applying Lemma 3.1 shows that

1

m

∞∑
k=0

fkNkt
−k �

∞∑
k=0

fk

Nk
1

mk
t−k = f

(
N1

tm

)
.
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Hence, the inequality (4) is lower bounded by

λmax(A) � tf −1

(
1

m

∞∑
k=0

fkNkt
−k

)
� tf −1

(
f

(
N1

tm

))
= N1

m
.

In other words, if A is symmetric and positive definite and if f (x) is increasing, then (4) is at
least as sharp as the classical bound N1/m.

A better bound is achieved when all ck in (5) are made larger than those in (7). This seems
possible, because Lemma 3.1 states that the prefactor Nk/m − (N1/m)k of fk/f1 in (8) is
always positive. For, choose f2 > 1, then c2 is larger. However, increasing f2 has a nega-

tive effect on c3 since
N3

1
m3 − N1N2

m2 < 0. This effect can be compensated by choosing f3 suffi-
ciently large. A same argument applies for all other terms: there is always the possibility to

choose in ck the highest Taylor coefficient fk , that is multiplied by
(

Nk

m
− Nk

mk

)
> 0, sufficiently

large to compensate for the possible decrease in ck by augmenting lower order Taylor coeffi-
cients fj with j < k. It is a matter of optimizing the Taylor coefficients fk and the bound (6)
on t .

4. Numerical examples

Here we consider a specific example when

A =
(−1

√
6√

6 −2

)
.

The eigenvalues of A are 1 and −4 and we have N1 = 1.8990, N2 = 2.3031 and N3 = 0.6867.
Hence, the classic bound is given by N1/m = 0.9495. On the other hand, using (7) with t =
2T̃

√
m = 8.8990, we obtain a lower bound for λmax(A) as 0.9521, which obviously improves on

0.9495.
Now we consider the example when A is a 10 × 10 symmetric matrix and for j = 1, . . . , i

we have a(i, j) = 2j − i. Then we have N1 = 55, N2 = 3553 and N3 = 108823. Hence the
classic bound is given by 5.5. The bound (7) with t = 2T̃

√
10, and T̃

√
10 = 50, is given by the

improved lower bound of 9.465. However, for this example, the function f (x) = x3 provides the
lower bound of (N3/10)1/3 = 22.16.

If we now take a(i, j) = 2j − 3i, j � i, and A is again a 10 × 10 symmetric matrix,
then N1 = −1375, N2 = 194425 and N3 = −27325375. Also T̃

√
10 = 190. So the classic

bound is −137.5 and the bound (7) with t = 2T̃
√

10 is −136.00. On this occasion the bound
based on f (x) = x3 is given by −139.8, which is smaller than the classic bound. The bound
(2) is given by −137.00 which improves on the classic bound but is worse than
(7).

Appendix A. Taylor expansion of f −1( 1
m

∑∞
k=0 fkNkz

k) around z = 0

We now expand f −1( 1
m

∑∞
k=0 fkNkz

k) in a series around z = 1
t

= 0 by invoking characteristic
coefficients, defined e.g. in [2, Appendix]. We apply the general expansion (deduced from [2,
Appendix]), provided that f (z0) = h(z0)
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f −1(h(z)) = z0 +
∞∑

m=1

hm(z0)

f1(z0)
(z − z0)

m

+
∞∑

m=2

m∑
n=2

(
n−1∑
k=1

(−1)k
(

n + k − 1
k

)
f −n−k

1 (z0)s
∗[k, n − 1]|f (z)(z0)

)

× s[n, m]|h(z)(z0)

n
(z − z0)

m

to h(z) = 1
m

∑∞
k=0 fkNkz

k = f0 + f1N1
m

z + 1
m

∑∞
k=2 fkNkz

k and z0 = 0. Then,

f −1(h(z)) = 1

mf1

∞∑
k=1

fkNkz
k

+
∞∑

m=2

m∑
n=2

(
n−1∑
k=1

(−1)k
(

n + k − 1
k

)
f −n−k

1 s∗[k, n − 1]|f (z)

)
s[n, m]|h(z)

n
zm.

Hence,

ck = fkNk

mf1
+

k∑
n=2

⎛⎝n−1∑
j=1

(−1)j
(

n + j − 1
j

)
f

−n−j

1 s∗[j, n − 1]|f (z)

⎞⎠ s[n, k]|h(z)

n
.

This can be simplified using s[k, k] = f k
1 and s[1, m] = fm to explicitly obtain the prefactor of

the highest Taylor coefficient fk in ck ,

ck = fkNk

mf1
+ 1

k

(
N1

m

)k k−1∑
j=1

(−1)j
(

k + j − 1
j

)
f

−j

1 s∗[j, k − 1]|f (z)

+
k−1∑
n=2

⎛⎝n−1∑
j=1

(−1)j
(

n + j − 1
j

)
f

−n−j

1 s∗[j, n − 1]|f (z)

⎞⎠ s[n, k]|h(z)

n

or

ck = fk

f1

(
Nk

m
−
(

N1

m

)k
)

+ 1

k

(
N1

m

)k k−1∑
j=2

(−1)j
(

k + j − 1
j

)
f

−j

1 s∗[j, k − 1]|f (z)

+
k−1∑
n=2

⎛⎝n−1∑
j=1

(−1)j
(

n + j − 1
j

)
f

−n−j

1 s∗[j, n − 1]|f (z)

⎞⎠ s[n, k]|h(z)

n
. (8)
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