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Abstract— The set of all eigenvalues of a
characteristic matrix of a graph, also referred
to as the spectrum, is a well-known topology
retrieval method. In this paper, we study the
spectrum of the Laplacian matrix of an ob-
servable part of the Internet graph at the IP-
level, extracted from traceroute measurements
performed via RIPE NCC and PlanetLab. In
order to investigate the factors influencing the
Laplacian spectrum of the observed graphs, we
study the following complex network models:
the random graph of Erdős-Rényi, the small-
world of Watts and Strogatz and the scale-free
graph, derived from a Havel-Hakimi power-
law degree sequence. Along with these complex
network models, we also study the correspond-
ing Minimum Spanning Tree (MST). Extensive
simulations show that the Laplacian spectra
of complex network models differ substantially
from the spectra of the observed graphs. How-
ever, the Laplacian spectra of the MST in
the Erdős-Rényi random graph with uniformly
distributed link weights does bear resemblance
to it. Furthermore, we discuss an extensive set
of topological characteristics extracted from the
Laplacian spectra of the observed real-world
graphs as well as from complex network models.

I. INTRODUCTION

Complex networks describe a wide range of
systems in nature and society. Traditionally,
the topology of a complex network has been
modeled as the Erdős-Rényi random graph.
However, the growing observation that real-
world networks do not follow the prediction
of random graphs has prompted many re-
searchers to propose other models, such as
small-world [21] and scale-free [2] network.
Besides the modeling, considerable attention
has been given to the problem of capturing and
characterizing, in quantitative terms, the topo-
logical properties of complex networks(e.g.
[3], [7], [22]). In particular, important informa-
tion on the topological properties of a graph
can be extracted from the eigenvalues of the
associated adjacency, Laplacian or any other

type of matrix. The eigenvalues of the adja-
cency matrix were much more investigated in
the past than the eigenvalues of the Laplacian
matrix: see e.g. [5], [6] for books on the
eigenvalues of the adjacency matrix and e.g.
[14], [15] for surveys on the eigenvalues of the
Laplacian matrix. Nevertheless, we believe that
for the Laplacian matrix, as already proved for
its natural complement the adjacency matrix,
many valuable topological properties can be
deduced from its spectrum. It is the aim of this
paper to show where this belief comes from by
offering a detailed Laplacian spectrum analysis
of generic complex network models.

Significant research efforts have recently
been conducted in the spectral analysis of
the Internet topology (e.g. [10]). Our paper
contributes to this research by analyzing an ob-
servable part of the Internet topology, extracted
from the traceroute measurement performed
via RIPE and PlanetLab. In order to investigate
the factors influencing the Laplacian spectrum
of the observed graphs, we study generic com-
plex network models: the random graph of
Erdős-Rényi, the small-world graph of Watts
and Strogats and the scale-free graph derived
from a Havel-Hakimi power-law degree se-
quence. Along with these complex network
models, we also study the corresponding Min-
imum Spanning Tree (MST). The application
of the Laplacian spectrum analysis reveals that
the observed Internet topology differs substan-
tially from that of generic models but it does
bear resemblance with the MST structure in
the Erdős-Rényi random graph with uniformly
distributed link weights. This observation is
in contrast to results found in the literature,
where it is overwhelmingly shown that the
Internet topology belongs to the class of scale-
free graphs. Nevertheless, this observation is
interesting because this part of the Internet is
responsible for carrying transport and, there-
fore, only this part is observable or measur-
able.

The paper is organized as follows. Section II
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presents the Laplacian spectra of the observed
IP-level Internet graphs. Section III offers the
Laplacian spectrum analysis of models used to
describe complex network topology: the ran-
dom graph of Erdős-Rényi in III-A, the small-
world graph of Watts and Strogats in III-B,
and the scale-free graph, derived from a Havel-
Hakimi power-law degree sequence in III-C.
Section IV summarizes our main results on
the Laplacian spectra of both complex network
models as well as observed real-world graphs.

II. SPECTRA OF THE INTERNET GRAPHS

Let G be a graph, and let N and L denote
the node set and the link set, consisting of
N = |N | nodes and L = |L|, respectively.
The Laplacian matrix of a graph G with N
nodes is an N ×N matrix Q = ∆−A where
∆ = diag(Di), Di is the degree of the node
i ∈ N and A is the adjacency matrix of G.
The eigenvalues of Q are called the Lapla-
cian eigenvalues. The Laplacian eigenvalues
are all real and nonnegative [15]: they are
contained in the interval [0,min {N, 2Dmax}],
where Dmax is the maximum degree of G.
The set of all N Laplacian eigenvalues λN =
0 ≤ λN−1 ≤ ... ≤ λ1 is called the Laplacian
spectrum of a graph G. The second smallest
eigenvalue is λN−1 ≥ 0, but equal to zero
only if a graph is disconnected. Thus, the
multiplicity of 0 as an eigenvalue of Q is equal
to the number of components of G [8].

We have calculated the spectrum of the
Laplacian matrix of an observable part of
the Internet graph, extracted from the tracer-
oute measurements performed via RIPE NCC
[19] and PlanetLab [18]. Hence, the resulting
graphs are observed Internet graphs at the
IP-level because the traceroute utility returns
the list of IP-addresses of routers along the
path from a source to a destination. In fact, a
graph obtained form traceroute measurements
is an approximation of the Internet graph at
the router-level, which again is the union of
shortest paths between each pair of a small
group of routers. This explains why such graph
is denoted as the overlay graph on top of
the actual Internet topology. Hence, the RIPE
NCC measurements, executed on September
18th 2004, have resulted in a graph consisting
of 4058 nodes and 6151 links and the Planet-
Lab experiments, executed on November 10th
2004, in a graph with 4214 nodes and 6998
links.

Figure 1 shows the degree distribution and
Figure 2 the Laplacian spectrum of the ob-
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Fig. 1. The degree distribution of an observable part
of the IP-level Internet graph, performed via RIPE
and Planetlab.
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Fig. 2. The Laplacian spectrum of an observable
part of the IP-level Internet graph, performed via
RIPE and Planetlab.

served graphs. In spite of two different sources
of traceroute measurements, the Laplacian
spectrum stays almost the same: both Lapla-
cian spectra contain a peak at λ = 2, which,
most likely, is due to the majority of nodes
with degree 2. Besides, the Laplacian spectra
contain smaller peaks at λ = 1 and λ = 3,
although the first one only appears in the
spectrum of the graph observed via RIPE.
The peak at λ = 3 possibly also originates
from a significant amount of nodes with the
corresponding degree, while the peak at λ = 1
surely does not, since the graph observed via
RIPE does not contain nodes with degree 1.
Given that the peak at λ = 2, most likely
originates from the majority of nodes with de-
gree 2, the question to be answered is, whether
also a specific spectral behavior (e.g. the peak
at λ = 3) comes from the majority of nodes
with the corresponding degree. To answer
this question, we need to inspect whether the
Laplacian spectra of generic complex network
models are suitable to describe the underlying
structure of the graphs under consideration. In
particular, we need to inspect to what extent
the basic topological structures, such as a path,
cycle and a tree, are responsible for a specific
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spectral behavior.

III. SPECTRA OF COMPLEX NETWORK
MODELS

We have performed a comprehensive set of
simulations to compare the Laplacian spectrum
of the two observed IP-level Internet graphs to
the spectra of generic complex network models
[1]. Prior to analyzing the Laplacian spectra,
we define and briefly discuss simulation mod-
els.

A. Random Graph of Erdős-Rényi
In this set of simulations we consider both

realizations of the Erdős-Rényi random graph
(for details see [4]), Gp(N) and G(N,L),
with N = 50, 100, 200 and 400. For Gp(N),
the probability1 of having a link between any
two nodes (link probability p) is p ≥ pc and
pc =

logN
N , so that the total number of links on

average is equal to pLmax. For G(N,L), the
number of links L in a graph is precisely equal
to p

¡
N
2

¢
. In particular, in both realizations

of the random graph, the corresponding link
probability p is equal to p = pcα, where α
ranges from 1 to 10. Furthermore, for each
combination of N and p (for Gp(N)) or N and
L = p

¡N
2

¢
(for G(N,L)), we have simulated

104 independent configurations of the random
graph. For each independent configuration, the
set of N eigenvalues of the Laplacian matrix
has been computed, leading eventually to the
Laplacian spectrum, created by picking at ran-
dom one out of N eigenvalues.

Figures 3, 4 show the Laplacian spectrum
of Gp(N) for the link probability p = pc and
p = 10pc, and for the increasing number of
nodes N . The Laplacian spectrum of G(N,L)
with fixed number of links, i.e. L = pc

¡N
2

¢
and L = 10pc

¡N
2

¢
, and for increasing N turns

out to be indistinguishable from the spectrum
of Gp(N). Therefore, we further consider only
the spectrum of Gp(N). At the critical thresh-
old probability p = pc, there exists random
graphs that are not connected. If λN−i+1 = 0
and λN−i 6= 0 of Q, then a graph G has exactly
i components. Therefore, by inspecting that
λN−1 6= 0, we have considered only connected
Erdős-Rényi random graphs.

With p = pc, the spectrum is skewed
with the main bulk pointing towards the small
eigenvalues. Such behavior of a Laplacian

1The value of the link probability p above which a
random graph almost surely becomes connected tends,
for large N , to pc ∼ logN

N (for details see [13]).
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Fig. 3. The Laplacian spectrum of the Erdős-Rényi
random graph with N = 50, 100, 200, 400 and p =
pc.
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Fig. 4. The Laplacian spectrum of the Erdős-Rényi
random graph with N = 50, 100, 200, 400 and p =
10pc.

spectrum is often found in cases where the
topology has a tree-like structure. An extreme
case of such type of structure is the star
K1,N−1, where the eigenvalues are N , 0 and 1
(with multiplicity N − 2). In order to examine
this in more detail, we plot the spectrum of
the MST, found in each of 104 independent
configurations of Gp(N). Figure 5 shows that
the spectrum of the MST in Gp(N) is indeed
highly skewed with the main bulk pointing
towards the small eigenvalues. In particular,
the underlying tree with degree 1 nodes is
responsible for the peak at λ = 1. The
spectrum of sparse Gp(N) shows a similar
behavior at small eigenvalues (see Figure 3),
what can be interpreted as the structure that
is mainly determined by the underlying tree.
Such behavior is more obvious at smaller N ,
since the larger graph size cause an increase
in the link density. More important is that the
maximum λN−1 of a tree on N ≥ 3 is 1
and λN−1 = 1 if and only if the underlying
graph is the star K1,N−1. At the other ex-
treme, the minimum λN−1 occurs at the path
PN , namely λN−1 (PN ) = 2

£
1− cos

¡
π
N

¢¤
.

Thus, roughly speaking, λN−1 decreases as
the diameter increases [9]: for the MST in
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Fig. 5. The Laplacian spectrum of the MST in the
Erdős-Rényi random graph, the Watts and Strogatz
small-world graph and the Havel-Hakimi scale-free
graph, all with N = 400.

Gpc(N), λN−1 ¿ 1 while for sparse Gp(N),
λN−1 < 1, implying that the underlying tree-
like structure of a sparse Gp(N) has a small
diameter.

With p = 10pc, the spectrum has a bell
shape (see Figure 4), centered around the mean
nodal degree E[D] = p(N −1). Moreover, for
fixed p = 10pc, the high peak becomes smaller
while the bell shape becomes wider, repre-
senting that, for increasing N , the spectrum
variance is in agreement with the Wigner’s
Semicircle law [20]. In fact, the spectrum is
pointing to uncorrelated randomness what is
a characteristic property of an Erdős-Rényi
random graph [20]. Hence, the Laplacian spec-
tra are indicating that, for the increasing link
density, the underlying structure of Gp(N)
graphs transforms from a tree-like structure
with a small diameter into a more homo-
geneous graph where the degree is closely
centered around the mean degree.

B. Small-World Graph of Watts and Strogatz
In this set of simulations we consider ex-

clusively the Watts and Strogatz small-world
graph [22], built on the ring lattice C(N, k)
with N = 50, 100, 200 and 400. For each
graph size N , every node is connected to
its first 2k neighbors (k on either side). In
order to have a sparse but connected graph,
we have considered N À 2k À lnN in
the following ring lattice graphs: C(50, 4),
C(100, 8), C(200, 16), C(400, 32). The small-
world model is then created by moving, with
probability pr, one end of each link to a new
location chosen uniformly in the ring lattice,
except that no double links or self-edges are
allowed. The rewiring probability pr equals the
link probability in the random graph Gp(N):
it starts from pr =

logN
N and ends with pr =

10 logN
N . Furthermore, for each combination of

the graph size N , the neighbor size k and the
rewiring probability pr, we have simulated 104
independent configurations of the Watts and
Strogatz small-work graph, leading eventually
to the Laplacian spectrum by picking at ran-
dom one out of N eigenvalues.

For the small rewiring probability pr = 0
the Watts and Strogatz small-world graph is
regular and also periodical. Because of the
highly ordered structure, we see in Figure 6
that for small pr the spectrum is highly skewed
with the bulk towards the high eigenvalues,
distributed around the mean nodal degree,
which, irrespective of pr equals E[D] = 2k.
The spectrum of the two-dimensional lattice
graph with N × N nodes aims to illuminate
this effect. The Laplacian spectrum of the two-
dimensional lattice is the sum of two path
graphs PN whose eigenvalues are λi (PN ) =
2−2 cos(πi/N), i = 1, 2, ..., N . Consequently,
the spectrum of the two-dimensional lattice
converges to a pointy shape with a peak cen-
tered around the mean nodal degree, which
for N → ∞, converges to 4. The same
tendency is observable in the Watts and Stro-
gatz small-world graph: in Figure 6, the bulk
part, centered around the mean nodal degree,
together with remaining peaks means that the
graph is still highly regular and periodical. In
fact, the Laplacian spectrum of the ring lat-
tice C(N, k) with N nodes and 2k neighbors
comprises the eigenvalues λi (C(N, k)) =

2k−
³
sin( π

N
(i−1)(2k+1))

sin( π
N
(i−1)) − 1

´
, i = 1, 2, ..., N .

Hence, upon increasing k-regularity, the bulk
part of the spectrum shifts towards the mean
nodal degree, similar to the Laplacian spec-
trum of the Erdős-Rényi random graph. In
order to examine this in more detail, we have
calculated the fraction between the largest
and the second smallest Laplacian eigenvalue.
The fraction in the small-world graph with
pr =

logN
N and N = 400 is approximately

4 times larger than the fraction in the small-
world with pr =

10 logN
N , indicating that the

entire Laplacian spectrum of the small-world
graph shifts towards λ1. This transition of the
bulk spectrum is known as the spectral phase
transition phenomenon [17].

C. Scale-Free Graph derived from a Havel-
Hakimi Power-Law Degree Sequence

In this set of simulations we consider a
scale-free graph, which, for a given degree
sequence, constructs a graph with a power-
law degree distribution. Havel [12] and Hakimi
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Fig. 6. The Laplacian spectrum of the Watts
and Stogatz small-world graph with N =
50, 100, 200, 400 and pr =

logN
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[11] proposed an algorithm that allows us
to determine which sequences of nonnegative
integers are degree sequences of graphs. In
other words, in the limit of large N , this
model, as shown in Figure 8, will have degree
distribution with a power-law tail, Pr[Di =
k] ≈ ck−τ , where c ≈ (ζ (τ))−1 and the
exponent τ typically lies in the interval be-
tween 2 and 3. In order to have a graph, which
is in agreement with the real-world networks
[16], we have used the exponent τ = 2.4.
Then, for each combination of the graph size
N and the exponent τ , we have simulated
104 independent configurations of the Havel-
Hakimi scale-free graph, leading eventually to
the Laplacian spectrum by picking at random
one out of N eigenvalues.

As shown in Figure 9, the spectrum of
the Havel-Hakimi scale-free graph is com-
pletely different from the spectra of the other
two complex network models. Because of the
highly centralized structure, the spectrum in
Figure 9 is skewed with the bulk towards the
small eigenvalues. Recall that the Laplacian
spectrum of the star K1,N−1 is N , 0 and
1 (with multiplicity N − 2). Consequently,
the spectrum is indicating that an underlying

structure of this type of the scale-free graph is
a star-like structure with few highly connected
nodes: although peaks at λ = 2 and λ = 3
have vanished, the MST found in the Havel-
Hakimi scale-free exhibits a visually similar
spectrum (see Figure 5). This means that most
likely peaks in a spectrum, exemplified here
with the peak at λ = 1, are due to the majority
of nodes with the corresponding degrees.

Moreover, for the connected graph, the
product of the non-zero Laplacian eigenvalues
equals N times the number of Spanning Trees
(ST) found in the corresponding graph [15].
From the simulation results we have found
that the number of ST in sparse Gp(N) is
much higher than the number found in the
Havel-Hakimi scale-free graph. In addition, we
have found that the sum of the eigenvalues
in Gp(N) that equals the sum of the degrees,
i.e.

PN
i=1 λi =

P
i Di, is about double the

sum of the eigenvalues found in the Havel-
Hakimi scale-free graph. Also, the largest
Laplacian eigenvalue [15], which is bounded
by
h

N
N−1Dmax, 2Dmax

i
, grows approximately

with N . Hence, the structure of this type of a
scale-free graph is highly concentrated around
nodes with very large nodal degrees.
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Fig. 8. The degree distribution of the Havel-Hakimi
scale-free graph with N = 400 and τ = 2.4.
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Erdős-Rényi random graph with N = 4000 and
p = pc.

IV. CONCLUSION

In this paper, we have presented the Lapla-
cian spectrum of an observable part of the
Internet IP-level topology, which was extracted
from traceroute measurements performed via
RIPE and PlanetLab. In order to investigate
the factors influencing the Laplacian spectrum
of the two observed graphs, we presented
the following complex network models: the
random graph of Erdős-Rényi, the small-world
of Watts and Strogatz and the scale-free graph
derived from a Havel-Hakimi power-law de-
gree sequence. Along with these three complex
network models, we also presented the corre-
sponding Minimum Spanning Tree (MST).

Extensive simulations show that the Lapla-
cian spectra of the observed Internet graphs
differ substantially from the spectra of generic
complex networks models. Also, we found
that the Erdős-Rényi random and the Watts
and Strogatz small-world graph show a similar
spectral behavior, which differs considerably
from that of the scale-free graph, derived from
a Havel-Hakimi power-law degree sequence.
Despite this discrepancy, Figure 10 illustrates
that the spectrum of the MST in the Erdős-
Rényi random graph with uniformly distrib-
uted link weights does bear resemblance to
the spectra of the observed graphs. In fact,
the peak at λ = 1 in the Laplacian spectrum
of the MST in the Erdős-Rényi random graph
is mainly to due to the simple tree structure
where the majority of nodes has degree 1. The
Laplacian spectrum of the observed graphs
seems to give support to this conjecture, since
the peak at some particulair eigenvalue (e.g.
the peak at λ = 2) most likely originates from
the majority of nodes with the corresponding
degree. This resemblance in spectra could be
due to the fact that the observed part of the

Internet graph is a subgraph of the complete
observable path, just as the MST is.
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