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a b s t r a c t

Biological networks exhibit intriguing topological properties such as small-worldness. In
this paper, we investigate whether the topology of a particular type of biological network,
ametabolic network, is related to its robustness.Wedo so byperturbing ametabolic system
in silico, one reaction at a time and studying the correlations between growth, as predicted
by flux balance analysis, and a number of topological metrics, as computed from three
network representations of the metabolic system.

We find that a small number of metrics correlate with growth and that only one
of the network representations stands out in terms of correlated metrics. The most
correlated metrics point to the importance of hub nodes in this network, so-called
‘‘currency metabolites’’. Since they are responsible for interconnecting distant functional
modules in the network, they are important points in the network for predicting if reaction
removal affects growth. A second set of correlations in contrast is related to ‘‘loner’’
nodes that uniquely connect important pathways and thus correspond to essential steps
in metabolism.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decade, advances in high-throughput biolog-
ical measurement systems have made it possible to ex-
tract large-scale networks from biological systems. Jeong
et al. [7] were among the first to study the topologies of
metabolic networks, networks of interconversions of small
compounds. The metabolic networks of the 43 organisms
that they studied gave evidence of a scale-free structure.
Characteristic properties of these so-called ‘‘small-world’’
networks are their power-law distributed node degrees
and their small average shortest path lengths.

Subsequently, researchers studied the topologies of a
number of other types of biological networks [2,12,3].
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Much of this work confirmed the results of Jeong et al.:
scale-free behavior was everywhere. Even the Internet
and some power grids are thought to display scale-
free behavior [1]. These latter networks have expanded
in a seemingly organic fashion through a process of
preferential attachment — new nodes are more likely
to attach to existing high-degree nodes than to low-
degree nodes. This expansion process forms the basis of
Barabási and Albert’s [1] random network model. They
show that it leads to the characteristic power-law node-
degree distribution and small-world properties. Although
Kim and Marcotte [8] and Lima-Mendez and Helden [11]
argue that biological networks do not develop through
simple processes of preferential attachment, the presence
of similar topological elements, such as hubnodes, begs the
questionwhether these topological properties confer some
benefit or whether certain topologies are inherently suited
for particular functionality.

In an effort to understand the relationship between
the function of a network and its topological properties,
Milo et al. [13] introduced the concept of motifs. A
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motif is a small sub-network (3–5 nodes) whose over-
representation may be indicative of its role in maintaining
function at a local level. They found that certain motifs
occur more often in biological networks than expected
by chance and that they may correspond to certain
desired behavior such as response acceleration, signal
delay and stability. Prill et al. [18] took this idea
further and claimed that certain motifs were inherently
more prone to display stable behavior than others. By
abstracting away from the underlying functionality, they
demonstrated that such relations held to some extent
over a variety of biological networks. However, Ingram
et al. [6] considered gene networks and compared the
results of a differential equation model of gene expression
to specific motif counts in the gene network but found
no correlation. Lima-Mendez and Helden [11] argue that
global topological properties cannot explain the function
of networks. While they claim that the significance of
motif frequencies may have been overestimated (since
the frequencies only capture global properties), they do
consider a localized approach to be more promising as
the key to understanding biological networks lies in
understanding local details.

In our work, we take a global approach and investigate
to what extent network topology can be related to more
systems-level network properties shared by the various
network types studied by Barabási et al. An interesting
property in this respect is that of robustness. Stelling
et al. [21] and Kitano [9] define robustness as the
ability of a system to maintain its function in the face
of perturbations or uncertainty. Biological systems are
known to be robust [10] to many forms of perturbation
while being highly sensitive to other forms, so-called
‘‘highly optimized tolerance’’ [21]. The question is whether
there is something in the topology of these networks that
confers robustness to the overall system.

In this paper, we study the relationship between the
robustness of a micro-organism (baker’s yeast, Saccha-
romyces cerevisiae) and the topologies of network repre-
sentations of its metabolic system. Microbial metabolic
systems provide a good test bed, since an often assumed
functional objective – growth – is easily expressed in terms
of fluxes through these systems. Furthermore, good quality
metabolic datasets are readily available and resulting flux
models can be studied computationally with high efficacy.

To study the link between network topology and
robustness, we propose an in silico metabolic system
perturbation experiment.Wedefine robustness as the abil-
ity of the yeast cell to maintain growth under reaction re-
movals. First, we show how its metabolic system can be
represented by three different networks. Then, through a
number of trials, reactions are removed from themetabolic
system until growth ceases. This provides a number of
snapshots of partially ‘‘destructed’’ metabolic systems. For
each snapshot, growth and a number of network-wide
topological metrics can be computed. By calculating cor-
relations between growth and these metrics, we find that
most of the topological metrics are not related to func-
tion. The strongest correlations point to the importance of
both ‘‘hub’’ nodes (so-called ‘‘currency metabolites’’) and
‘‘loner’’ nodes.

2. Method

2.1. Computing function

In this work, we define robustness as the maintenance
of cell growth under perturbations to the organism’s
metabolic system when reactions are removed from the
metabolic network. A metabolic system with r reactions
and m metabolites is modeled by a set of m differential
equations:

dXi

dt
= ssynvsyn − sdegvdeg − susevuse + stransvtrans (1)

that specify how the concentration Xi of a metabolite i
changes in time. vsyn is the rate of metabolite synthesis,
vdeg is the degradation rate, vuse is the rate of consumption
(by other reactions) and vtrans is the rate of transport across
the cell boundary (into the cell). vsyn, vdeg and vuse are
generally nonlinear functions whose behavior is governed
by the kinetic parameters of the enzymes catalyzing the
reactions in which they take part and by concentrations
of other metabolites. Because the kinetic parameters are
not generally known and must be estimated, it is difficult
to solve the differential equations directly. ssyn, sdeg, suse
and strans are stoichiometric coefficients3 (reaction rates are
measured in µmol gDW−1 h, i.e., micromoles per gram of
dry weight per hour).

We assume that stransvtrans is a constant value bi, allow-
ing (1) to be written in vector form as dX/dt = S · v + b,
with S them × r stoichiometric matrix, v an r × 1 vector of
reaction rates (fluxes) and b the vector of boundary trans-
port reaction rates. We will use a small example to make
the form of S clear (and later to show how networks are
derived from S). Consider the metabolic system:

m1 + m2
Ra←→m3 + m4

3m3 + m5
Rb−→ m6 + 2m7 (2)

m3 + m4
Rc−→ m7 + m8.

The corresponding S matrix is shown in Fig. 1(a). Since
each column is labeled by a reaction Ri, we refer to
the corresponding flux value in v as vi. At steady–state
dX/dt = 0, rendering the linear system:

S · v + b = 0. (3)

Since S and b are constant, v can be determinedwithout
any knowledge of enzyme kinetics. Due to the small size of
the example, S is overdetermined (i.e., there are fewer re-
actions thanmetabolites). In real biological networks how-
ever, stoichiometric matrices are under-determined. Such
systems generally have infinitely many solutions but biol-
ogists are only interested in biologically significant ones. A
common (biological) assumption is that microbial cells at-
tempt to maximize the rate of their biomass production or
in other words, growth. Growth can be expressed as a lin-
ear combination cT · v of certain key reaction rates in the

3 These are derived from the chemical mass balance coefficients: e.g.
2H2 + O2 → 2H2O corresponds to the stoichiometric coefficient vector
[−2 −1 2].
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metabolic system. The reaction rates can then be computed
by a linear program:

Maximize µ = cT · v (4)
subject to S · v + b = 0.

Positive components of v correspond to forward-
acting reactions, whilst negative components correspond
to reactions running in reverse. In (4), the components of
v may assume negative and positive values meaning that
any reaction can, in principle, occur in either direction.
Due to thermodynamics, some reactions are very unlikely
to occur in reverse (in the example, only reaction Ra is
reversible). These constraints are modeled by restricting
rates of non-reversible reactions to be non-negative. Thus
for each non-reversible reaction R, the constraint vR ≥ 0 is
added, rendering the linear system:

Maximize µ = cT · v (5)
subject to S · v + b = 0

vRi ≥ 0 for each non-reversible reaction Ri.

In addition, biological constraints limit the rates of
some reactions. These inequalities are simply added to the
list of constraints of the linear program. This steady-state
framework for computing metabolic fluxes by optimizing
some criterion is known as flux balance analysis. Orth
et al. [16] give a good overview of the framework.

2.1.1. Testing robustness
We test robustness by iteratively removing reactions

and recalculating (5) until growth µ drops below a low
threshold value (1×10−9 µmol gDW−1 h). This produces a
sequence T = {s1, s1, s2, . . . , sn}which is referred to as the
trial T . A step is a reaction label index: step si corresponds
to the removal of reaction Rsi . Removal of a reaction is
modeled by removing its corresponding column from S.
The steps in a trial are associated with a sequence of linear
programs P0, P1, P2, . . . , Pn, where P0 is the unmodified
linear program (fromwhichno reactionhas been removed)
and Pi is the linear program resulting from the removal of
the reactions Rs1 , Rs2 , . . . , Rsi for i ≥ 1.

Pseudo-code for the algorithm is shown in Algorithm 1.
This algorithm computes the results for one trial. The input
is a description of the metabolic system σ and a network
metric (that takes a network as input and produces an
output of type O). The ith iteration of the loop corresponds
to step si.

The function ‘‘random-reaction’’ in Algorithm1 chooses
a random enzyme-catalyzed reaction with uniform proba-
bility. Reactions that are not mediated by enzymes but oc-
cur due to chemical processes such as diffusion are never
removed.

2.2. Topology

To be able to calculate topological properties of the
metabolic system, the stoichiometric matrix S should
be represented as a network. However, S cannot be
directly represented as a network since a reaction may
interact with more than two metabolites and a metabolite
may interact with more than two reactions. A natural

Algorithm 1 Destruction trial (σ : metabolic system,
metric: network → O)

X ← empty-list() {List of growth values}
M ← empty-list() {List of metric values}
P ← to-linear-program(σ ) {Compute Po}
µ ← growth-rate(P)
whileµ > 1×10−9 do {One step si in the current trial}

R ← random-reaction(σ ) {Pick Rsi}
σ ← remove-reaction(σ , R)
P ← to-linear-program(σ ) {Compute Pi}
µ ← growth-rate(P)
g ← network(σ )
m ← metric(g)
X ← append-to-list(X, µ)
M ← append-to-list(M,m)

end while
return X,M

representation of such a system is a hyper-network in
which a link may connect more than two nodes. The
stoichiometric matrix represents a hyper-network where
the columns are links and the rows are nodes. The links
are directed: negative values in a column represent source
nodes and positive values represent target nodes. Let u be
a node, and let L be a set of links that have u as their source
nodes, then the target nodes of L are the out-neighbors of
u. The in-neighbors are defined analogously, with u as the
target node.

Note that the stoichiometric matrix derived from the
linear programming formulation does not capture the
reversibility of reactions (such as Ra in the example)
because a reaction Ri is considered to act in reverse when
its rate vi in the linear program solution is negative. We
therefore reformulate the linear program such that v ≥
0 (i.e., all fluxes are positive). A reversible reaction Ri is
converted to a pair of reactions R+

i and R−
i ; then if ci is the

column vector in S corresponding to Ri, ci is replaced by
two column vectors c+

i and c−
i (corresponding to R+

i and
R−
i respectively) such that c+

i = ci (the forward reaction)
and c−

i = −ci (the reverse reaction); for example, column
Ra in Fig. 1(a) is replaced by the columns R+

a and R−
a in

Fig. 1(a). Converting S leads to the stoichiometric matrix
S� in Fig. 1(b). The hyper-network is shown in Fig. 2(a).

The linear program (5) is modified with the new
stoichiometricmatrix S� and non-negative flux constraints,
giving:

Maximize µ = cT · v (6)
subject to S� · v + b = 0

v ≥ 0.
Network theory provides many tools for studying the

topological properties of normal networks, whilst there
are very few metrics that can be computed on hyper-
networks. Thus we considered three possible network
representations of the hyper-networks specified by the
stoichiometric matrix S�. First, a hyper-network H(M, R)
can be modeled as a bipartite network GB(M ∪ R, L).
The nodes in the set M represent the metabolites in H ,
whilst the nodes in the set R represent reaction links in H .
Conversion of the hyper-network H in Fig. 2(a) produces
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(a) The stoichiometric
matrix from (4).

(b) The stoichiometric matrix
from (6).

Fig. 1. Stoichiometric matrices of the toy problem in Section 2.1.

(a) The hyper-network H specified by
S� .

(b) GB: the bipartite representation of H . (c) GM : the one-mode
reduction of the metabolite
nodes in GB .

(d) GR: the one-mode
reduction of the reaction
nodes in GB .

Fig. 2. The hyper-network and networks derivable from S� in (6).

the bipartite network GB in Fig. 2(b). We refer to this
network as the metabolite-reaction network4 as it contains
both metabolite nodes M and reaction nodes R.

Although standard network theory techniques can be
applied to GB, its bipartite nature makes some metrics
difficult or impossible to compute. For example, the
clustering coefficient for any node in a bipartite network is
0. For this reason,we also considered one-mode reductions
of GB. AnM-node (R-node) one-mode reduction G�(N , L

�)
of GB(M ∪ R, L) is a network that contains only nodes
from the set M (the set R) such that for each directed link
l = (n1, n2) ∈ L

� there is a node n3 ∈ R (n3 ∈ M) such
that (n1, n3) ∈ L and (n3, n2) ∈ L (note that there may be
many nodes n3 that satisfy this condition). We call the M-
node one-mode reduction simply the metabolite network
GM (shown in Fig. 2(c)) and likewise theR-node one-mode
reduction simply the reaction network GR (illustrated in
Fig. 2(d)).

Note that it is possible to represent the link weights
of the hyper-network H in its bipartite representation GB:
such a mapping can be seen in Fig. 2(b). However, there is
no obvious way to map these weights to GM or GR. For this

4 This representation is the Petri-net representation [14,4] of the
metabolic system.

paper, we opted to consider only unweighted networks.
Furthermore, note that when a reaction is removed from
the metabolic system, the corresponding networks GB,GM
and GR may become disconnected. For a given network, all
metrics are applied to the largest component whilst the
small components are ignored.

2.2.1. Topological metrics
For every step of each trial, a number of topological

metrics were computed for each of the three network
representations (where possible). Since GB = GB(M ∪
R, L) contains two types of nodes, themetrics are applied
separately to its reaction nodesR andmetabolite nodesM,
giving two sets of results.

The metrics employed are listed in Table 1. These
metrics divide into two groups: those that associate a
value c(G) with a network G and those that associate
values {c(n1), c(n2), . . . , c(nN)} with the nodes N =
{n1, n2, . . . , nN} of G. In order to compare this latter group
of metrics to growth values, the node values (for a given
metric c) have to be reduced to a single value c∗(G) =
f (c(n1), c(n2), . . . , c(nN)) (where f is function of N ar-
guments that produces a single real value c∗(G) ∈ R).
A simple choice is to let f compute the minimum, mean
or maximum values of {c(n1), c(n2), . . . , c(nN)} (thereby
yielding three metrics). This is the approach that we took.
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Table 1
A list of the various network metrics that were calculated on the networks GB,GM and GR . Metrics that are calculated for a network as a whole are marked
‘‘scalar’’ whilst those that are calculated for every node are marked ‘‘node’’.

Newman’s assortativity coefficient [15] Scalar

How likely is it for nodes with similar degrees to be connected to each other. Calculated for the out-degrees, in-degrees and
undirected degrees of nodes, it is computed as r = �

ij didj(bij − aiaj)/σ 2
a , where ai is the distribution of the degree of node

ni without the link {i, j}, bij is the joint probability distribution of the degrees between ni and nj without the link {i, j} and σ 2
a

is the variance of degrees.

Transitivity Scalar

The number of triangles in the network divided by the maximum possible number of triangles in the network. This is
computed on undirected versions of the networks.

Clustering coefficient Node

For a node n, the number of links spanning n’s neighbors divided by the maximum possible number of links that can span n’s
neighbors. The mean clustering coefficient is equal to the transitivity.

Reciprocity Scalar

The ratio of reciprocal pairs to all possible reciprocal pairs. A pair of nodes n1 and n2 is reciprocal if there are bi-directed links
(n1, n2) and (n2, n1).

Betweenness centrality Node

In a network G, the betweenness centrality CB(n) of a node n is computed as the fraction of shortest paths in G that include n:
CB(n) = �

s�=n�=t∈N
σs,t (n)/σs,t , where N is the node-set of G, σs,t (n) is the number of shortest paths that include n and σs,t

is the total number of shortest paths between the nodes s and t .

Eigenvector centrality and Largest eigenvalue of the adjacency matrix Node

For a graph G, the largest eigenvalue is that of the corresponding adjacency matrix A. The eigenvector centrality of a node ni
is defined as the ith component of the eigenvector corresponding to that eigenvalue.

In- and out-degrees Node

The out-degree douti of a node is the number of links leaving a node, i.e., douti = �
(ni,nj)∈L(G) 1. Likewise, the in-degree dini is

the number of links entering a node, i.e., dini = �
(nj,ni)∈L(G) 1.

Average in- and out-degrees of incoming and outgoing neighbors Node

For a network G, the average out-degree of outgoing neighbors of a node ni is
�

(ni,nj)∈L(G) d
out
j /di whilst the average

in-degree of incoming neighbors is
�

(nj,ni)∈L(G) d
in
j /di where douti is the out-degree of ni and dini is the in-degree of ni .

Coreness Node

A k-core is a subset of nodes in which each node has a degree of at least k. A node has a coreness value of c if it is in a c-core
but not in a c + 1-core.

Dice similarity Node

If the neighbors of two nodes are the sets X and Y , the Dice similarity of the nodes is 2|X ∩ Y |/(|X | + |Y |), i.e., a measure of
how similar their neighbor sets are. Since this metric is defined for pairs of nodes, a vector of metrics is associated with each
node. We compute the Dice similarity for all outgoing neighbors, all incoming neighbors and also for the combination of
these.

Reciprocal node hop-count Node

The hop-count between a pair of nodes is equal to the number of links on a shortest path between them. For each node there
is a vector of hop-counts to all other nodes, reduced to a single value by taking the mean. Because the networks are directed,
there are nodes which are unreachable from other nodes and are thus at an infinite distance. We therefore used reciprocal
hop-count values, converting infinite distances to zero distances.

Some metrics associate vectors of values with each node;
thus, if the metric c associates a vector with a node, the
result will be a set of vectors {c(n1), c(n2), . . . , c(nN)}).
The hop-count is such a metric, since it associates a vec-
tor of hop-count values c(n) with a node n contain-
ing the hop-counts to all other nodes in the network.
We took the approach of first reducing the vectors to
scalars—thus we converted {c(n1), c(n2), . . . , c(nN)} to

{c �(n1), c �(n2), . . . , c �(nN)} where c � is a function that re-
duces vectors to real values. As above, we performed the
reductions by computing the minima, maxima and means
of the vectors. Once this initial reduction is performed,
we can proceed as before (by reducing the sets of node
values to single values). Note that this double reduction
scheme can lead to confusing metric names. To take the
example of the hop-count again, we could proceed by first
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computing the means of the hop-count vectors associated
with each node and then we could compute the minimum
over these mean values. In this case, we would refer to the
minimum of the mean hop-count, or in the naming con-
vention used in the results section, ‘‘mean hop-count �’’.
Likewise, we refer to the mean of the mean hop-count as
‘‘mean hop-count �’’ and the maximum of the mean hop-
count as ‘‘mean hop-count �’’.

In our experiments, many reactions have zero reaction
rates (as predicted by the flux balance linear program) in
all trials. These reactions contribute links and nodes to
the network representations whilst their removal cannot
influence growth. We excluded these reactions when
constructing GB = GB(M ∪ R, L) by letting R be the set
of all reactions that have non-zero reaction rates in at least
one step of one trial and M the metabolites that interact
with the reactions in R. Note that this is only a global
pre-processing step; in each individual trial, reactions are
randomly chosen without regard to whether they are
active at that time or not.

2.3. Relating growth and topology

For each trial (i.e., sequence of reaction removals) we
compute a sequence of growth values (computed from
the linear program discussed in Section 2.1) and three
sequences of networks, one for each representation. For
eachnetwork, a set of topologicalmetrics is calculated. This
allows us to relate growth to topology.

An obvious first choice for calculating the relationship
is, for each individual trial, to compute correlation
coefficients ρ between the growth sequence and each of
the sequences of topological metrics. However, apparent
correlations found by this method may simply be side-
effects of the network size decreasing as we remove
reactions. We can reduce the impact of this incidental
correlation by binning the steps from all of the trials: trial-
step pairs whose corresponding networks have similar
numbers of nodes and links are placed into the same bin.
This process is illustrated in Fig. 3: here one sees network
sequences from two trials placed into bins (the bin width
here is 1 for both nodes and links). In our experiments, we
used a bin width of 2 nodes × 4 links—i.e., in a bin, node
counts can differ by 1 and link counts by 3.

Since a bin contains numerous steps, it is possible to
correlate growth with any of the topological metrics. We
used the Pearson correlation coefficient to compute, for a
given topologicalmetric, a correlation valueρi for every bin
i. An example of bin correlations is shown in Table 2 (here
binning is only performed using link counts, with a bin
width of 4 links). The per-bin results for each metric were
then averaged, weighted by the number ni of items in each
bin: ρ̄ =

��
i niρi

�
/
��

i ni
�

= 0.27 in our example. For
each topological metric, this yields one value ρ̄ indicating
the strength of its binned correlation with growth.

For all of the metrics that we studied, there were one or
more bins for which correlations could not be computed,
since the growth and/or metric values in the bin were
constant. In this case, the Pearson correlation coefficient is

not defined. These binswere excluded from the calculation
of ρ̄. We also required correlations to be:

• reliable, i.e., calculated on a sufficient number of data-
points, by demanding that at least 90% of all steps fall in
bins on which correlations are defined; and

• consistent, by requiring that at least 90% of all steps fall
in bins whose correlations have the same sign.

Metrics that did not pass this test were not considered.

2.4. Experimental setup

We used the genome-scale metabolic dataset which is
available from the UCSD Systems Biology Research Group
website [17]. The website provides a minimal aerobic
growth environment which was used for our experiments.
In this experiment,

• the rate of the ATP maintenance reaction (ATPM) is
1 µmol gDW−1 h whilst the acetyl-CoA hydrolase
(ACOAH) and the glutamate synthase forNADH (GLUSx)
reactions are disabled;

• the reaction rates of reactions that transport O2, NH+
4 ,

SO2−
4 , Pi, H2O, K, Na and CO2 are unconstrained.

3. Results and discussion

3.1. Metrics correlate with network size

We initially performed one thousand in silico reaction
removal trials and for each trial computed the Pearson
correlation ρ between the growth values of the trial and
the metrics in Table 1 as computed on GB,GM and GR
(where applicable). The average metric correlations over
200 random trials for GM are shown in Fig. 4 (here, we
have only aggregated node-wise metrics using the mean,
as described in Section 2.2.1). Many metrics stand out as
strongly correlated.

We found that most of these correlations are due to
the reduction of the number of nodes and/or links in
GB,GM and GR associated with each step in a destruction
trial of a metabolic system. This growth-size relationship
confounds the search for metrics that correlate with
growth, since any apparent correlationρ may be due solely
to the correlation between the metric and the number of
nodes/links in the network.

Removal of this effect by metric normalization is non-
trivial, since the relationship between a given metric and
the number of nodes/links in a network is, in general,
nonlinear. Furthermore, any technique that reduces this
effect, must use topological information; but then this
information itself is affected by the changing topology.
We therefore devised a ‘‘binning’’ procedure to calculate
alternative correlation measures ρ̄ in which this effect is
reduced (as described in Section 2.3). In the remainder, all
results reported employ this binned correlation measure.
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Fig. 3. An example of binning for two steps of two trials.

Table 2
Bins showing Pearson correlations ρ between growth and an unspecified network metric.

Bin number 1 2 3 4 5
# links 2685–2688 2689–2692 2693–2696 2697–2700 2701–2704
Correlation ρi 0.342 0.286 0.322 0.236 0.172
# items in bin ni 889 935 907 959 936

Fig. 4. Network metrics are correlated with network size. This gives the appearance of strong correlations between growth and metrics. These metrics
were all calculated for GM . The symbol � indicates that node values were reduced to single values by computing their means as discussed in Section 2.2.1.

3.2. Topology is weakly correlated with function

Next, we calculated correlations ρ̄ (using the binning
procedure) between growth and each metric. The results
for GB = GB(M ∪ R, L) are shown in Fig. 5 (recall
that there are two sets of results for GB: one for the
metabolite nodes M and one for the reaction nodes R)
whilst the correlations for GM are shown in Fig. 6. There
are no correlations for GR that satisfy the reliability and
consistency requirements described in Section 2.3. Firstwe
discuss these results from a purely topological perspective
and then we interpret the biological aspects.

The results show that most metrics do not correlate
well with growth. An obvious first explanation for this
lack of correlation is that it is possible to remove a
reaction without affecting growth (since the reaction may
be part of a bypass that is not used when the cell is
functioning normally). However, at a deeper level, the low
correlations may be explained by the indirect relationship
between the flux balance analysis framework (which
measures function) and the network (onwhich topological
metrics are measured). In flux balance analysis, growth
is the objective function of a linear program in terms of
metabolic fluxes, whilst the topologies of the metabolic
networks are only functions of the stoichiometric matrix.
While the objective function may be changed (perhaps
to study a scenario other than growth maximization) the
topology remains unchanged. Thus, correlations between
the objective function and topological metrics depend to
some extent on the objective function.

3.3. The metabolite-reaction network GB is the best represen-
tation

Herewe investigate someof the ρ̄ correlations observed
in Figs. 5 and 6. We generally limit our discussion to
metrics for which |ρ̄| ≥ 0.2.
Metabolite-reaction network GB. As discussed in Sec-
tion 2.2.1, correlations for the metabolite nodes M and the
reaction nodes R were computed separately. First, the re-
sults for the metabolite nodes are considered, followed by
the reaction node results.

Metabolite nodes M. There are a number of relatively
strong correlations for nodes in M, mostly falling into two
groups:
• For both the metabolite nodes, so-called ‘‘hub’’ nodes

provide shortcuts through which shortest paths are
routed. Removal of a reaction node that interacts with
a hub node may therefore remove a shortcut through
which some shortest paths are routed. Thus, the mean
reciprocal hop-count is decreased (and the mean hop-
count is increased). In the remainder of the paper, all
correlations associatedwith hub nodes are colored light
gray.

• So-called ‘‘loner’’ nodes are nodes with low incoming
and/or outgoing degrees. Some of these nodes are on
important pathways and can cause growth to decrease
when they are no longer produced (i.e., when their
incoming links are removed) or consumed (i.e., when
their outgoing links are removed) by any reactions.
As a result, they are often implicated in correlations
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using the minimum function (those indicated by �).
Correlations associated with loner nodes are colored
dark gray.
Reaction nodes R. Only a few reliable, consistent corre-

lationswere found for the reaction nodesR in GB. Of these,
the mean reciprocal hop-count is the only reaction node
metric that stands out, owing its presence to the metabo-
lite hubs which provide shortcuts between a large number
of reaction nodes.
Metabolite network GM . The correlation results for GM are
shown in Fig. 6. GM has more high-degree nodes than GB
and these are at least partially responsible for the strongest
correlations. Aswith its progenitor GB, the hub nodes in GM
provide shortcuts and thus provide the basis for the strong
mean reciprocal node mean hop-count correlations.

The out-degree of out-neighbors correlations are due
either to hub nodes themselves or nodes attached to the
hub nodes (in particular hydrogen). The Dice similarity
correlations are also the result of hub nodes — for example,
themaximummeanDice similarity is the result of a certain
node (Asparagine) which is connected to a number of
hub nodes; therefore it shares neighbors with many other
nodes.

There are no apparent loner-node related correlations
amongst the top correlations (|ρ̄| ≥ 0.2). However, the
three correlations immediately following the top correla-
tions (theminimum in-degree, hop-count and out-degree)
are due to loner nodes.
Reaction network GR. The reaction network GR yielded ap-
parently no reliable, consistent correlations. As GR is much
denser than either GB or GM , each reaction removal forces
a node to be removed from GR. This leads to larger changes
in GR relative to the other networks; a property thatmay in
part explain the difficulty of finding a connection between
topology and growth in this representation.
Metabolite relationships hold the key to understanding the
topology of metabolic systems. The most interesting results
are associated with the metabolite nodes. As mentioned
in Section 2.1, there are more reactions than metabolites
in metabolic systems. A reaction ties together a small
number ofmetaboliteswhile there aremetabolites that are
involved in many reactions. In other words, metabolites
bind the network at a high level and are responsible
for global connectivity. This leads us to conclude that
the metabolite-reaction network GB and the metabolite
network GM are the most useful representations for our
purposes. The reaction network GR is less interesting, as
no reliable, consistent correlations were found. Reactions
are, of course, essential to the metabolic system, but
metabolites tell the most interesting story.

Because GB is the most accurate representation of the
metabolic system and because of its strong correlations,
we consider the metabolite nodes of GB to be the most
promising entities for studying metabolism.

3.4. The strongest correlations point to currency metabolites

Many of the hub metabolite nodes implicated in the
previous section correspond to so-called currency metabo-
lites.We know frombiology that currencymetabolites play
a crucial role in metabolism: they are energy carriers or
co-factors that are used by many reactions. Holme and

Huss [5] found the currency metabolites of S. cerevisiae to
beH, H2O, ATP, ADP, AMP, NAD,NADH,NADP, NADPH, CoA,
CO2, O2, Pi, PPi and NH+

4 (for this set they used the undi-
rected version of GM with information taken from the BiGG
database).

To validate the role of these metabolites, we repeated
our experiments with currency metabolites removed from
GB,GM andGR. Note that themetaboliteswere not removed
from the flux balance linear program, as this would lead
to incorrect chemical equations and it would change the
computed growth. The five most significant ρ̄ correlations
for each of GB,GM and GR are shown in Fig. 7 (note that the
reaction nodes in GB were omitted, as all ρ̄ correlations for
these nodes fell below 0.2). Correlations that are neither
the direct result of hub nodes nor loner nodes are shown
as medium gray bars in the figure.

There are a number of interesting differences in the cor-
relations brought about by currency metabolite removal:

• Most of the strong correlations due to hub nodes have
been strongly reduced. The exception is themean recip-
rocal mean hop-count correlation in GM which remains
approximately the same, in contrast with the correla-
tion of the samemetric in GB. This hints at second-order
network structure (as opposed to first-order hub struc-
ture) that is important in routing shortest paths.

• Removal of hub nodes removes shortcuts that route
many shortest paths. The shortest paths are therefore
more ‘‘spread out’’ through the metabolite network.
This leads to a relative increase in node betweenness
values and a concomitant increasing influence of arbi-
trary nodes on the average betweenness. Although this
effect is most pronounced for GM , it is also present for
the metabolite nodes of GB.

• As GR is less dense due to currency metabolite removal,
a number of reliable, consistently correlated metrics
could now be found. The majority of reaction nodes
have degrees below the mean degree, so that a re-
action removal is likely to increase the mean in- and
out-degrees. Likewise the minimum and mean Dice
similarities are likely to be increased, since the low-
degree nodes have low Dice similarities. The correla-
tions are not obviously due to hub nodes or loner nodes.

4. Conclusions

The goal of this study was to determine whether
topology and robustness of biological systems are related.
To this end, we generated a number of reaction removal
sequences or trials, each of which resulted in the cessation
of growth of our metabolic system. Each step in a trial
provided a snapshot of the metabolic system from which
growth could be computed as well as topological metrics
of the metabolite-reaction network GB, the metabolite
network GM and the reaction network GR. This allowed
us to calculate a measure of correlation between growth
and each of the metrics. In this section, we will summarize
some of our findings.
Unambiguously linking robustness to topology is difficult. The
term ‘‘robustness’’ is meaningless without context. Since
the context of an organism constitutes all its interactions
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Fig. 5. ρ̄ measures between growth and topological metrics for GB . The symbols �, � and � indicate that node values were reduced to single values
by computing their minima, means and maxima respectively, as discussed in Section 2.2.1. As the legend shows, the light gray bars correspond to hub
nodes, the dark gray bars correspond to loner nodes and the medium gray bars correspond to metrics that were either not interpreted or that do not fit the
hub/loner distinction.

Fig. 6. ρ̄ measures between growth and topological metrics for GM . The labels and colors are explained in Fig. 5.

with its environment, a precise definition may forever
elude us. However, every organism engages in a (small)
number of vital functions that dominate its struggle
for survival. By studying only these functions and their
degradation in the face of perturbations, we may discover
some of the principles that help organisms to achieve
their resilience. However, an unambiguous connection
between such functions/perturbations and the topology
of the underlying biochemical network is usually hard to
define.

As we studied microbial metabolism, we focused on
the one function at which the cell must be successful
before all else: biomass production, or growth. While this
is a simple representation of cellular activity, it has the

advantage of being based on a well-studied theoretical
model of metabolism, flux balance analysis, that can easily
be modified to work with a perturbation model of reaction
removal. Still, although we were able to directly link
metabolic networks, functions and perturbations, finding
correlations between robustness and topology proved not
to be trivial.
There is no obvious way to reduce a metabolic system to a
network. This is a consequence of the correspondence be-
tween metabolic systems and hyper-networks. Analyzing
hyper-networks directly is the ideal approach but these
general structures have resisted the theoretical analysis
that has produced the useful tools of (classical) network
theory. Therefore, conversion is an analytical necessity.We
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Fig. 7. The most significant ρ̄ correlations between growth and topological metrics for networks lacking currency metabolites. The labels and colors are
explained in Fig. 5.

described three ways of converting a hyper-network to a
network: themetabolite-reaction networkGB, themetabo-
lite network GM and the reaction network GR. The mul-
tiplicity of representations is a well-known problem that
Holme and Huss [5] investigated by matching graph theo-
retical properties of the three network representations to
biological data in order to discover the network represen-
tation that ‘‘best’’ captures biological knowledge.We found
the correlations were strongest for the metabolite nodes
in GB and for GM . These findings suggest that metabolite
nodes are most important for studying the structure of a
metabolic system. In line with this, Holme and Huss found
GM to be the most favorable representation, although we
favor GB since it maintains most of the original metabolic
information.
Topology correlates weakly with growth. Many of the topo-
logical metrics we calculated did not correlate with
growth. We classified those that did correlate into two
groups: those caused by hub metabolite nodes and those
caused by loner metabolite nodes. They point to the im-
portance of (a) global connectivity (by hub nodes that tie
the network together by connectingmany reaction nodes);
and (b) local connectivity (by metabolites that are pro-
duced and/or consumed by few reactions). The role of hub
nodes was verified in an experiment where we removed
currency metabolites, which led to a large shift in metrics
correlated to growth.

5. Outlook

In this work, we studied the relationship between
topology and growth. Using our framework as a starting
point, one can investigate whether other functions of the
metabolic network are related to topology or whether
topology plays a role in other biological networks (e.g.,
gene regulation or protein interaction networks).

Our approach can be refined in a number of ways. On
the one hand, flux balance analysis can be done with more
sophisticated methods, such as MOMA [19] (Minimization

Of Metabolic Adjustment) and ROOM [20] (Regulatory
On/Off Minimization), both of which were designed to
better approximate the metabolic behavior of systems
from which reactions have been removed. With sufficient
enzyme kinetic parameters, one could even attempt to
solve the nonlinear differential equations (1). On the other
hand, we could remove genes rather than reactions, more
in line with the biological perturbations we intend to
model. In this case, removing a gene may lead to the
removal of multiple reactions, or alternatively a reaction
may only be removed if all genes coding for isoenzymes are
lost. However, such refinements to the model are unlikely
to paint a very different picture since, if there were an
effect, a first-order approach (such as ours) would pick up
some correlation if it were there.

Thisworkwas an exploration of how topology is related
to robustness. Although whether topology confers robust-
ness or vice versa remains an open question, a change of
perspective points to a number of paths for future investi-
gation.

In amore local approach, one could isolate a small, fixed
sub-network such as the citric acid cycle (a central part
of metabolism in many organisms). Then our framework
could be applied almost unchanged. Metrics would still
be computed for entire networks but only the values
corresponding to the sub-network under consideration
would be compared with growth.

On a more global level, one could consider a number
of species related by evolution. The species cannot
necessarily be directly compared to each other, since
they are specialized for different environments (and thus
different contexts). But these differences in specialization
enable us to study the connection between robustness and
topology, since differences in metabolism are the results
of specialization and these differences will be reflected in
metabolic networks.

An interesting related approach is the study of the
metabolic networks of gene knockout mutants of a given
organism. This is essentially our approach with in silico
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knockouts replaced by in vivo knockouts, giving actual
flux measurements which are more reliable than fluxes
computed by flux balance analysis approaches.
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