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Abstract. The second smallest eigenvalue of the Laplacian matrix, also known
as the algebraic connectivity, plays a special role for the robustness of complex
networks since it measures the extent to which it is difficultto cut the network
into independent components. In this paper we study the behavior of the algebraic
connectivity in a well-known complex network model, the Erdős-Rényi random
graph. We estimate analytically the mean and the variance ofthe algebraic con-
nectivity by approximating it with the minimum nodal degree. The resulting es-
timate improves a known expression for the asymptotic behavior of the algebraic
connectivity [18]. Simulations emphasize the accuracy of the analytical estima-
tion, also for small graph sizes. Furthermore, we study the algebraic connectivity
in relation to the graph’s robustness to node and link failures, i.e. the number
of nodes and links that have to be removed in order to disconnect a graph. These
two measures are called the node and the link connectivity. Extensive simulations
show that the node and the link connectivity converge to a distribution identical
to that of the minimal nodal degree, already at small graph sizes. This makes the
minimal nodal degree a valuable estimate of the number of nodes or links whose
deletion results into disconnected random graph. Moreover, the algebraic con-
nectivity increases with the increasing node and link connectivity, justifies the
correctness of our definition that the algebraic connectivity is a measure of the
robustness in complex networks.

1 Introduction

Complex networks describe a wide range of natural and man-made systems, e.g. the
Internet, the WWW, networks of food webs, social acquaintances, paper citations, as
well as many others [5, 11, 28]. Although complex systems areextremely different in
their function, a proper knowledge of their topology is required to thoroughly under-
stand and predict the overall system performance. For example, in computer networks,
performance and scalability of protocols and applications, robustness to different types
of perturbations (such as failures and attacks), all dependon the network topology.
Consequently, network topology analysis, primarily aiming at non-trivial topological
properties, has resulted in the definition of a variety of practically important metrics,
capable of quantitatively characterizing certain topological aspects of the studied sys-
tems [2, 24].
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In this paper, we rely on a spectral metric, i.e. the second smallest Laplacian eigen-
value, often also referred to as the algebraic connectivity[13]. Fiedler [13] showed that
the algebraic connectivity plays a special role: 1) a graph is disconnected if and only if
the algebraic connectivity is zero, 2) the multiplicity of zero as an eigenvalue of a graph
is equal to the number of disconnected components. There is avast literature on the al-
gebraic connectivity; see e.g. [9, 10, 19, 20, 22] for books and surveys and e.g. [21, 23]
for applications to several difficult problems in graph theory. However, for the purpose
of this work, the most important is its application to the robustness of a graph: 1) the
larger the algebraic connectivity is, the more difficult it is to cut a graph into independent
components, 2) its classical upper bound in terms of the nodeand the link connectivity
provides worst case robustness to node and link failures [13]. As mentioned in [6], the
second means that for every node or link connectivity, thereare infinitely many graphs
for which the algebraic connectivity is not a sharp lower bound. The node and the link
connectivity are important for the robustness because theyquantify the extent to which
a graph can accommodate to node and link failures. Hence, it is worth investigating the
relationship between those three connectivity metrics.

Traditionally, the topology of complex networks has been modeled as Erdős-Rényi
random graphs. However, the growing interest in complex networks has prompted many
scientists to propose other, more complex models such as ”small world” [27] and ”scale-
free” [4] networks. Despite the fact that various authors have observed that real-world
networks have power-law degree distribution, the Erdős-Rényi random graph still has
many modeling applications. The modeling of wireless ad-hoc and sensor-networks,
peer-to-peer networks like Gnutella [8] and, generally, overlay-networks, provide well-
known examples [14]. Besides that, for the Erdős-Rényi random graph, most of the
interesting properties can be analytically expressed. This is in contrast to most other
graphs where computations are hardly possible.

Taking the above arguments into consideration, in the first part of this work we study
the behavior of algebraic connectivity in the Erdős-Rényi random graph. By using the
basic approximation that the algebraic connectivity equals the minimum nodal degree,
we estimate the mean and the variance of the algebraic connectivity. Hereby we improve
an already existing theorem concerning its behavior [18]. In the second part, we study
the relationship between the algebraic connectivity and graph’s robustness to node and
link failures. Extensive simulations show that the algebraic connectivity increases with
the increasing node and link connectivity, implying the correctness of our definition that
the algebraic connectivity is a measure of the robustness incomplex networks.

The paper is organized as follows. In Section 3, we present the theoretical back-
ground on the algebraic connectivity, and the node and the link connectivity. In Section
3, we analytically derive the estimation of the mean and the variance of the algebraic
connectivity for the Erdős-Rényi model, which we verify by simulations. Prior to ana-
lytical derivation, we describe in Section 3.1 the common topological properties that are
observed in the random graph of Erdős-Rényi, how they are measured and why they are
believed to be important in the context of this paper. In Section 4, we present additional
simulation results: by exploring the relation between the algebraic connectivity, and
the node and the link connectivity, the existing relations for the connected Erdős-Rényi
graph are refined. Section 5 summarizes our main results.



2 Background

A graph theoretic approach is used to model the topology of a complex system as a
network with a collection of nodesN and a collection of linksL that connect pairs
of nodes. A network is represented as an undirected graphG = (N ,L) consisting of
N = |N | nodes andL = |L| links, respectively. The Laplacian matrix of a graphG

with N nodes is anN × N matrixQ = ∆ − A where∆ = diag(Di). Di denotes the
nodal degree of the nodei ∈ N andA is the adjacency matrix ofG.

The eigenvalues ofQ are called the Laplacian eigenvalues. The Laplacian eigenval-
uesλN = 0 ≤ λN−1 ≤ ... ≤ λ1 are all real and nonnegative [21]. The second smallest
Laplacian eigenvalueλN−1, also known as the algebraic connectivity, was first studied
by Fiedler in [13]. Fiedler showed that the algebraic connectivity is very important for
the classical connectivity, a basic measure of the robustness of a graphG: 1) the alge-
braic connectivity is only equal to zero ifG is disconnected, 2) the multiplicity of zero
as an eigenvalue ofQ is equal to the number of disconnected components ofG. In [13],
Fiedler also proved the following upper bound on the algebraic connectivityλN−1 in
terms of the minimum nodal degreeDmin of a graphG: 0 ≤ λN−1 ≤ N

N−1
Dmin.

In addition, we introduce two connectivity characteristics of a graphG: the link
connectivity, i.e. the minimal number of links whose removal results in losing connec-
tivity, is denoted byκL and the node connectivity, which is defined analogously (nodes
together with adjacent links are removed) is denoted byκN . The following inequality
in terms of the node connectivityκN (and obviously the link connectivityκL) is to be
found in [13]:λN−1 ≤ κN . Hence, the minimum nodal degreeDmin of an incomplete1

graphG is an upper bound on bothλN−1 as well asκN andκL. If κN = κL = Dmin,
we say that the connectivity of a graph is optimal.

3 Algebraic connectivity in random graph of Erdős-Rényi

In this section we give an analytical estimate of the algebraic connectivity in the Erdős-
Rényi random graph. The analytical estimate relies on the equality with the minimum
nodal degree. This approximation is verified by a comprehensive set of simulations,
presented in Subsection 3.4. Prior to analyzing the minimumnodal degree in Subsection
3.2, we give some details on the Erdős-Rényi random graph and the corresponding
theorems.

3.1 Random graph of Erdős-Rényi

The random graph as proposed by Erdős-Rényi [12] is a well-known model to describe
a complex network. Two most frequently occurring realization of this model isGp(N),
whereN is the number of nodes andp is the probability of having a link between any
two nodes (or shortly the link probability). In fact,Gp(N) is the ensemble of all such
graphs in which the links are chosen independently and the total number of links is on
average equal topLmax, whereLmax =

(

N

2

)

is the maximum possible number of links.

1 The node connectivityκN of a complete graphKN isλN−1(KN) = N > κN (KN ) = N−1.



Many properties of the random graph can be determined asymptotically, as was
shown by Erdős-Rényi in the series of papers in the 1960s and later by Bollobas in
[6]. For example, for a random graph to be connected there must hold, for largeN ,
that p ≥ log N

N
≡ pc. Moreover, the probability that a random graph for largeN is

connected, equalsPr[Gp(N) = connected] ' e−Ne−p(N−1)

[26].
Then, the probability that the node connectivityκN equals the linkκL connectivity,

which in turn equals the minimum nodal degreeDmin, approaches1 asN approaches
infinity or thatPr[κN = κL = Dmin] → 1 asN → ∞ is also proved in [6] and holds
without any restriction onp. This was also shown by Bollobás and Thomason in [7]. On
the other hand, the asymptotic behavior of the algebraic connectivity in the Erdős-Rényi
random graphGp(N) is proved by Juh āz in [18]: For anyε > 0,

λN−1 = pN + o
(

N
1
2+ε
)

(1)

where the algebraic connectivity converges in probabilityasN → ∞.

3.2 Minimum nodal degree in random graph of Erdős-Rényi

In Gp(N) each nodei has a degreeDi that is binomially distributed. Before proceeding,
we first need to show that degrees in the sequence{Di}1≤i≤N are almost independent

random variables. In any graph
∑N

i=1 Di = 2L holds, thus degrees in the sequence
{Di}1≤i≤N are not independent. However, ifN is large enough,Di andDj are al-
most independent fori 6= j and we can assume that allDi are almost i.i.d. binomially
distributed (see also [6, p. 60]). The following Lemma quantifies this weak dependence:

Lemma 1.The correlation coefficient of the degreeDi andDj of two random nodes
i andj in Gp (N) for 0 < p < 1 is

ρ (Di, Dj) =
Cov[Di, Dj]

√

Var [Di]
√

Var [Dj ]
=

1

N − 1
.

Proof: see Appendix A of [16]. For largeN and constantp, independent ofN , the
normalized i.i.d. binomially distributed sequence{D∗

i }1≤i≤N of all degrees inGp(N)
tends to be Gaussian distributed. The minimum of the sequence{D∗

i }1≤i≤N
possesses

the distribution

Pr[ min
1≤i≤N

D∗
i ≤ x] = 1 −

N
∏

i=1

Pr[D∗
i > x] = 1 − (Pr[D∗

i > x])
N .

After considering the limiting process of the minimum of a set {D∗
i }1≤i≤N

when
N → ∞, we derive [16] the appropriate solution

D∗
min =

−Y − 2 log N + log

(

√

2π log N2

2π

)

√
2 log N



whereY is a Gumbel random variable [26]. WithDmin = σ[D].D∗
min + E[D] =

√

(N − 1)p(1 − p).D∗
min + p(N − 1), we obtain

Dmin = p(N − 1) −
√

(N − 1)p(1 − p)









Y + 2 logN − log

(

√

2π log N2

2π

)

√
2 logN









.

Finally, letDmin (p) denote the minimum degree inGp (N). Since the complement
of Gp (N) is G1−p (N), there holds that

Dmin (p) = N − 1 − Dmax (1 − p) .

The law ofDmax has been derived by Bollobas [6, Corollary 3.4 (p. 65)] via another
method. Using the above relation, Bollobas’ results precisely agrees with ours.

3.3 Analytical approximation for algebraic connectivity in random graph of
Erdős-Rényi

In Section 2 we saw thatλN−1 ≤ N
N−1

Dmin. Our basic approximation isλN−1 '
Dmin for largeN . A comprehensive set of simulation results, presented in Subsection
3.4, supports the quality of this assumption. With this approximation we arrive, for large
N , at

λN−1 ' p(N − 1) −
√

2p(1 − p)(N − 1) log N

+

√

(N − 1)p(1 − p)

2 logN
log

(
√

2π log
N2

2π

)

−
√

(N − 1)p(1 − p)

2 logN
Y . (2)

By taking the expectation on both sides and taking into account that the mean of
a Gumbel random variableE[Y ] = γ = 0.5772..., our estimate of the mean of the
algebraic connectivity inGp(N) becomes, for largeN and constantp,

E[λN−1] ' p(N − 1) −
√

2p(1 − p)(N − 1) log N

+

√

(N − 1)p(1 − p)

2 logN
log

(
√

2π log
N2

2π

)

−
√

(N − 1)p(1 − p)

2 logN
γ. (3)

Similarly, by taking into account thatV ar[Y ] = π2

6
, the estimate of the variance of the

algebraic connectivity inGp(N) is

V ar[λN−1] =
(N − 1)p(1 − p)

2 logN

π2

6
. (4)
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Fig. 1.A comparison between the estimation of the mean (3) as well asthe standard deviation (5),
plotted in lines and error bars, and the theorem of Juh āz (1), plotted in markers, for the algebraic
connectivityλN−1 as a function ofα = p/pc in the Erdős-Rényi random graphGp(N) with
N = 200, 400 and800 nodes.

An interesting observation is that the standard deviation

σ [λN−1] =
√

V ar[λN−1] = O

(
√

N

log N

)

(5)

is much smaller than the mean (3). This implies thatλN−1 tends to the mean rapidly, or
that, for largeN , λN−1 behaves almost deterministically and is closely approximated
by the first three terms in (2). Hence, the relation (2) is moreaccurate than (1) (see also
Figure 1).

3.4 Verification of analytical approximation by simulations

In all simulations we consider exclusively the Erdős-Rényi random graphGp(N) with
various combinations of the number of nodesN and the link probabilitiesp. N can
takes the following values:200, 400 and800. The link probabilityp = αpc = α log N

N
,

whereα is varying from1 to 20. From each combination ofN andp, we compute the
algebraic connectivityλN−1 and the minimum nodal degreeDmin. Then, we classify
the simulated graphs according to their value ofα, as shown in Figures 2 and 3. Subse-
quently, from generated graphs with a givenα, we are interested in the extreme values,
i.e.min λN−1 andmax λN−1, as shown in Figures 4 and 5.

In Figures 2 and 3, we have plotted the simulated meanE[λN−1], the corresponding
standard deviationσ [λN−1], and our estimate for the mean, Eq. (3), and the standard
deviation, Eq. (5), of the algebraic connectivity as a function of α. As illustrated in Fig-
ures in Figures 2 and 3 there is a remarkable correspondence between the simulations
and our estimate: the standard deviation is much smaller than the mean, implying that



for N → ∞, λN−1 will rapidly approachE[λN−1]. Moreover, our basic approximation
that, for largeN , λN−1 ' Dmin is verified by the simulations shown in Figures 4 and
5. We found thatmin λN−1 or maxλN−1 grows linearly withDmin. Note in Figure
4 that, in the probability range around the connectivity thresholdpc, the minimum al-
gebraic connectivity is always equal to zero, indicating a non-connected random graph
(for details see Section 4).

From Figures 4 and 5 it is clear that if the value of the algebraic connectivity is larger
than zero, the random graph has nodes of minimum degree always larger than zero
too, referring to{λN−1 > 0} ⇐⇒ {Gp(N) is connected}. However, by scrutinizing
only degree-related simulation results, we see that the implication {Dmin ≥ 1} =⇒
{Gp(N) is connected} is not always true, i.e. for largeN and certainp which depends
onN , the implication is almost surely (a.s.) correct [26]. For example, the percentage of
graphs withDmin ≥ 1 that leads to a connectedGp(50) increases from98% for p = pc

to 100% for 2pc, while the percentage forGp(400) increases from99% for p = pc to
100% for 2pc. Hence, the simulation results confirm that, for largeN and rather small
p = log N

N
, the latter implication a.s. is equivalent.
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Fig. 2. A comparison between the estima-
tion (3), plotted in lines, and the simulation
results, plotterd in markers, for the mean
of the algebraic connectivityE[λN−1] as
a function ofα. In the upper left corner of
the figure, we show the difference between
the estimation and the simulation results as
a function ofα.
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Fig. 3. A comparison between the estima-
tion (5), plotted in lines, and the simulation
results, plotterd in markers, for the stan-
dard deviation of the algebraic connectivity
σ[λN−1] as a function ofα.

Simulations demonstrate also that, for a particular fixedα = p

pc
, the mean of the

algebraic connectivity increases with the size of the random graph: a higher value of
the graph sizeN implies a higher mean of the algebraic connectivity, what inturn
indicates that the probability of having a more robust graphis approaching1 asN →
∞. Theorem given in Subsection 3.1, stating thatPr[κN = κL = Dmin] → 1 asN →
∞, clarifies this observation in a slightly different way: given thatN is approaching



∞, the node and the link connectivity will become as high as possible, i.e. equal to the
minimum nodal degree, and therefore the graph will become optimally connected.
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4 Relationship between algebraic, node and link connectivity in
random graph of Erdős-Rényi

In the previous section we analytically estimated the behavior of the algebraic connec-
tivity in the Erdős-Rényi random graph. In this section weanalyze the relation among
the three connectivity measures: the algebraic connectivity, the node connectivity and
the link connectivity.

We have used the polynomial time algorithm, explained in [15], to find the node
and the link connectivity by solving the maximum-flow problem. The maximum-flow
problem can be solved with several algorithms, e.g. Dinic, Edmonds & Karp, Goldberg,
etc. If Goldberg’s push-relabel algorithm is utilized, as performed in our simulations,
the link connectivity algorithm hasO(N3

√
L)-complexity, while the node connectivity

algorithm hasO(N2L
√

L)-complexity. We have used the LAPACK implementation
of the QR-algorithm for computing all the eigenvalues of theLaplacian matrix. For
linear algebra problems involving the computation of a few extreme eigenvalues of



large symmetric matrices, algorithms (e.g. Lanczos) whoserun-time and storage cost is
lower compared to the algorithms for calculation of all eigenvalues (QR algorithm has
O
(

n3
)

-complexity) are known [3].
We simulate for each combination ofN andp, 104 independentGp(N) graphs.N

is 50, 100, 200 and400 nodes and the link probabilityp = αpc, whereα varies from
1 to 10. From each combination ofN andp, we compute the minimum nodal degree
Dmin, the algebraic, the node and the link connectivity, denotedrespectively byλN−1,,
κN andκL. Then, we classify graphs according to their value ofα.
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Fig. 6. Simulated results on Erdős-Rényi random graphGp(N) for N = 50, 100, 200, 400 and
the link probabilityp = αpc, showing the mean of the algebraic connectivityE [λN−1], the mean
of the nodeE[κN ] and the linkE[κL] connectivity and the mean of the minimum nodal degree
E[Dmin] as a function ofα, whereα = 1, 2, ..., 10. Note that forα = 1, E[κN ] = E[κL] but
E[κN ] 6= E[Dmin].

Figure 6 shows the mean value of the algebraic connectivityE [λN−1] as a function
of increasingα = p

pc
. In addition, Figure 6 shows the mean of the node connectivity

E[κN ], the link connectivityE[κL] and the minimum nodal degreeE[Dmin].
The first conclusion we can draw after analyzing simulation data is that for all gen-

erated random graphs fromp = pc to p = 10pc the convergence to a surely connected
random graph, i.e.λN−1 > 0, is surprisingly rapid. Results concerning connectivity
percentages are plotted in Figure 7. For example, the percentage of connected random
graphs with50 nodes increases from about39% and98% for pc andp = 2pc, respec-
tively, to 99% for p = 3pc, where forp = 4pc the graph is connected. These results are
consistent with the Erdős-Rényi asymptotic expression.ForN → ∞, as observable in
Figure 7, the simulated data as well as the Erdős-Rényi formula confirm a well known
result [17] that the random graphGp(N) is a.s. disconnected if the link densityp is
below the connectivity thresholdpc ∼ log N

N
and connected forp > pc.

The second conclusion is that our results, regarding the distribution range of the
algebraic connectivity and the minimum nodal degree, indeed comply with the bounds



0 ≤ λN−1 ≤ N
N−1

Dmin: the distribution of the algebraic connectivityλN−1 is con-
tained in the closed interval[0, N ], or to be more preciseλN−1 is 0 for a disconnected
graph and above bounded byN

N−1
Dmin for all those link probabilitiesp for which the

graph is connected but not complete2. Then, obviouslyE[λN−1] ≤ E[Dmin].
The third conclusion is that the distribution range of the algebraic connectivity also

complies with the boundsλN−1 ≤ κN . Moreover, in Figure 6, forp > pc and all
simulatedN , the distributions of the nodeκN and the linkκL connectivity are equal to
the distribution of the minimum nodal degreeDmin (recall that in Figure 6 forp = pc,
the distributions ofκN , κL andDmin are almost equal but not the same). Convergence
here to a graph whereκN = κL = Dmin is surprisingly rapid. For example, from
the simulation results plotted in Figure 8 withp = pc and size of the random graph
ranging fromN = 5 to N = 400, we found that with probability approaching1, the
random graph becomes optimally connected at rather small graph sizes. For all other
link probabilities,p > pc, the convergence toκN = κL = Dmin is faster (see Figure 8
for p = 2pc). Hence, the simulation results show that the random graphGp(N) a.s. is
constructed in such a way that deleting all the neighbors (orthe links to its neighbors)
of a minimum nodal degree node will lead to the minimum numberof nodes (links)
whose deletion from a graph will result into a disconnected random graph. Hence, the
minimum nodal degree is a valuable estimate of the number of nodes or links whose
deletion results into a disconnected graph.
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5 Conclusion

We studied the algebraic connectivity and its relation to the node and the link connec-
tivity in the Erdős-Rényi random graph. The analytical study shows that the variance
of the algebraic connectivity is much smaller than its mean,implying that, for large
graph sizeN , the distribution of the algebraic connectivity will rapidly approach the
mean value. Through extensive simulations, we verified thatthe algebraic connectivity
behaves almost deterministically and is closely approximated by our basic estimate, Eq.
(2). Simulations also show that, for largeN , the distribution of the algebraic connectiv-
ity grows linearly with the minimum nodal degree, confirmingour basic approximation
thatλN−1 ' Dmin.

Moreover, for a given value ofα = p

pc
, a higher value of the graph sizeN means

a higher value of the algebraic connectivity. This translates into a higher probability of
having a more connected, or to say robust, graph asN → ∞. On the other hand, the
larger the graph size, the more the Erdős-Rényi random graph is constructed in such a
way that deleting all the neighbors (or the links to its neighbors) of a minimum nodal
degree node leads to the minimum number of nodes (links) whose deletion disconnects
the graph. However, the simulation results show that this optimal connectivity, occurs,
regardless of the link probabilityp, at already small graph sizesN . Hence, the larger
the value of the algebraic connectivity, the better the graph’s robustness to node and
link failures.
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