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Abstract. We revisit the peer selection problem of finding the most
nearby peer from an initiating node. The metrics to assess the closeness
between peers are hopcount and delay, respectively. Based on a dense
graph model with i.i.d regular link weight, we calculate the probability
density function to reach a peer with minimum hopcount and asymp-
totically analyze the probability to reach a peer with the smallest delay
within a group of peers. Both results suggest that a small peer group
size is enough to offer an acceptable content distribution service. We also
demonstrate the applicability of our model via Internet measurements.

1 Introduction

The idea of peer-to-peer (P2P) networking creates a reciprocal environment
where, by sharing storage, bandwidth and computational capacity with each
other, mutual benefit between end-users is possible. With the distribution of
storage and retrieving functionality to peers in the P2P network, the process of
selecting a best peer (in cost, bandwidth, delay, etc.) among a group of peers to
start content retrieval becomes a vital procedure.
Our model considers the hopcount and delay as the major criteria for peer

selection. The problem is confined as follows: given a underlying network of size
N , over which m peers with the desired content are randomly scattered, what
is the distribution of the hopcount and delay respectively to the most nearby
peer from a requesting node? A requesting peer refers to the peer who initiates
the downloading request. By solving the above problem, we expect to answer
the fundamental question of how many peers are needed to store the replicas of
a particular file so that the most nearby peer can always be reached within j
hopcount or t delay.
Modeling of the peer selection problem is presented in section 2. We com-

plement our model by verifying its applicability from a series of substantive
experiments in Section 3. In Section 4, we conclude the paper.
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2 Problem description and modeling

2.1 Modeling assumptions

We model the number of hops and the latency to the nearest peer among a
set of m peers based on three assumptions: (a) a dense graph model1 for the
underlying network, (b) regular link weight around zero, and (c) i.i.d. link weight
distribution on each link.
The shortest path (SP) from a source to a destination is computed as the path

that minimizes the link weights2 along that path. In [4, Chapter 16.1], it is shown
that a regular link weight distribution - regular means a linear function around
zero - will dominate the formation of the shortest path tree (SPT), which is the
union of all shortest paths from an arbitrary node to all the other destinations.
A uniform recursive tree (URT) is asymptotically the SPT in a dense graph with
regular i.i.d. link weights (e.g. exponential link weights) distribution [6]. A URT
of size N is a random tree that starts from the root A, and where at each stage
a new node is attached uniformly to one of the existing nodes until the total
number of nodes reaches N .

2.2 Hopcount distribution to the nearest peer

A) Theoretical analysis

The number of hops from a requesting peer to its most nearby peer, denoted
by hN (m), is the minimum number of hops among the set of shortest paths from
the requesting node to the m peers in the network of size N . Let HN(m) be the
hopcount starting from one, excluding the event hN (m) = 0 in the URT. Since
Pr[hN (m) = 0] =

m
N , we have

Pr[HN (m) = j] = Pr[hN (m) = j|hN (m) 6= 0] =
1

1− m
N

Pr[hN (m) = j] (1)

with j = 1, 2, ...N and Pr[hN (m) = j] recursively solved in [4, p. 427]. However,
the recursive computation involves a considerable amount of memory and CPU-
time which limits its use to relatively small sizes of N ≤ 100.
Fig. 1 illustrates Pr[HN (m) = j] versus the fraction of peers m

N for different
hops j with network size varying from N = 20 up to N = 60. The interesting
observation from Fig. 1 is that, for separate hops j, the distribution Pr[HN (m) =
j] rapidly tends to a distinct curve for most of the small networks (N 6 100)
and that the increase in the network size N only plays a small role. Further, the
crosspoint of curve j = 1 and j > 2 (the bold line) around m

N = 15% indicates
that in small networks (i.e. N = 20), the peer fraction should always be larger
than 15% to ensure Pr[HN (m) = 1] > Pr[HN (m) > 2].

1The dense graph is a heterogenous graph with the average degree E[D] > pcN ≈
O(logN) and a small standard deviation V ar[D] ¿ E[D], where pc ∼ logN

N
is the

disconnectivity threshold of the link density [4, Chapter 15.6.3].
2The link weight wij assigned to a link (i, j) between node i and node j in a network,

is a real positive number that reflects certain properties of the link, i.e. distance, delay,
loss, or bandwidth.
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Fig. 1: Pr[HN (m) = j] versus the fraction of peers m
N
from network size N = 20 to

60. The bold line is the pdf of HN (m) > 2 for N = 20. The inserted figure plots the
Pr[HN (m) ≤ 4] as a function of peer fraction m

N for network sizes N = 20 to 60.

To avoid the recursive calculation in (1), we compute Pr[HN (m) = j] ap-
proximately by assuming the independence of the hopcount from the requesting
node to the m peers when m is small3 . The approximation is expressed as

Pr [HN (m) ≤ j] ≈ 1− (Pr[HN > j])m (2)

where Pr[HN > j] is the probability that at least one of the peers is j hop
away (or not all peers are further than j hop away). As explained in footnote3 ,
we confine the estimation of (2) with large N and small m, whereas the exact
result is applicable for N 6 100 with all m. We discuss the usage of (2) and its
asymptotic result for very large network in more detail in [7].

B) Application of Pr[HN (m) = j]

We apply (1) to estimate the peer group size for a certain content delivery
service. For instance, if the operator of a content distribution network (CDN)
with 40 routers has uniformly scattered 4 servers (peer fraction around 10%) into
the network, he can already claim that approximately in 98% of the cases, any
user request will reach a server (the term of server and peer are interchangeable
in this case) within 4 hops (j ≤ 4) as seen in the inserted figure of Fig. 1. Placing
more servers in the network will not improve the performance significantly.

2.3 Weight of the shortest path to the first encountered peer

A) The asymptotic analysis

In [4, p. 349], the shortest path problem between two arbitrary nodes in the
dense graph with regular link weight distribution (e.g. exponential link weights)

3The path overlap from the root to the m peers in the URT causes correlation of
the hopcount between peers. When m is small compare to the network size N , the path
overlap is expected to be small, and so is the correlation of the hopcount. The larger
the m, the more dependent of the hopcount from the root to the m peers becomes.



has been rephrased as a Markov discovery process. It evolves as a function of
time from the source and stops at the time when the destination node is found.
The transition rate in this continuous-time Markov chain from state n with n
already discovered nodes, to the next state n + 1 is λn;n+1 = n(N − n). The
inter-attachment time τn between the inclusion of the n-th and (n+ 1)-th node
in the SPT for n = 1, 2, ...N − 1 has exponential distribution with parameter
n(N − n).
The exact probability generating function (pgf) of the weight WN;m of the

shortest path from an arbitrary node to the first encountered peer amongm peers
can be formulated as ϕWN;m(z) =

PN−m
k=1 E[e−zvk ] Pr[Ym (k)], where Pr[Ym (k)]

represents the probability that the k-th attached node is the first encountered
peer among the m peers in the URT, vk =

Pk
n=1 τn denotes the weight of the

path to the k-th attached node. And the corresponding generating function of vk

is E[e−zvk ] =
kQ

n=1

n(N−n)
z+n(N−n) . The formation of the URT with m attached peers

indicates
¡
N−1
m

¢
ways to distribute the m peers over the N − 1 position (other

than the source node). The remaining m− 1 peers should always appear in the
position that are larger than k-th position. Hence, there are

¡
N−1−k
m−1

¢
ways to

distribute the m− 1 peers over the N − 1− k position. This analysis leads us to
express Pr[Ym (k)] as

Pr[Ym (k)] =

¡
N−1−k
m−1

¢¡
N−1
m

¢
The asymptotic probability of ϕWN;m(z) with proper scaling is thus derived

4 as

lim
N→∞

Pr[NWN ;m − ln
N

m
≤ y] = e−mymm+1eme−y

Z ∞
me−y

e−u

um+1
du (3)

which converges to the Fermi-Dirac distribution function as shown in [5, Section
3]

lim
N→∞

Pr[NWN ;m − ln
N

m
≤ y] =

1

1 + e−y
(4)

for large m as shown in Fig. 2. It illustrates that a relatively small peer group
m ≈ 5 is sufficient to offer a good service quality because increasing the number
of peers can only improve the performance marginally, i.e. logarithmically in m.

B) Application

We use the Fermi-Dirac distribution (4) to estimate the minimum number of
peers m needed to satisfy the requirement of Pr[WN;m ≤ y] ≥ η, which means
that in η of the cases, the delay to the nearest peer is no larger than y. Rewriting

(4), yields Pr[WN ;m ≤ y] ≈
m
N eNy

1+m
N eNy

≥ η, from which we find

m

N
≥ η

(1− η)
e−yN (5)

4The joint probability of the pair (HN (m),WN ;m) as calculated in [2] is shown to
be asymptotically independent. Hence, for large N , both hopcount via (1) and delay
via (3) is sufficient to compute Pr[hN (m) = j,WN;m ≤ y].
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Fig. 2: The convergence of the pdf with scaled random variable NWN;m− ln N
m
towards

the Fermi-Dirac distribution (in bold) for increasing m = 1, 2, 3, 4, 5, 10, 15, 20.

Consider an online P2P music sharing system, which takes advantage of the
VoIP service for example. The standard [3] suggests a mouth-to-ear delay < 150
ms. Let N = 80, y = 150, and η = 99.99%, with (5), we find that in this network,
the declaration that in 99.99% cases the delay to the nearest peer is smaller than
150ms can always be achieved if there are 5 peers sharing the same music (mN
around 6%).

3 Discussion on Modeling Assumptions

In this section, we discuss the major two assumptions made for the URT model:
1) a dense graph to mimic the underlying network and 2) i.i.d. regular link weight.
The Internet might be denser than what has been measured, taking into account
all sorts of significant sampling bias, such as insufficient sources for traceroutes
suggested in [1]. We will also give indications on the link weight distribution and
the applicability of the URT model in P2P network in this section.

3.1 Link weight structure of networks

We use the data from the National Road Database provided by the Dutch trans-
port research center to give an indication on the link weight distribution in a
transportation network. The link weight of the Dutch road is evaluated as the
physical distance between two roadsections. In Fig. 3, we fit the link weight
distribution Fw(x) of the Dutch road network with a linear function. A regu-
lar (linear) link weight distribution is found within a small range [0, �], where
� ∼ 0.03, which gives evidence to the assumption of regular link weight structure
around zero. Given that the link weight structure in the Internet are tunable, we
claim that the assignment of regular link weights in Section 2.1 is reasonable.

3.2 Applicability of the URT model

We have carried out a series of experiments by using the traceroute data provided
by iPlane5 to give further indication on how well the URT model matches the

5http://iplane.cs.washington.edu/
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real network. iPlane performs periodic measurements by using PlanetLab nodes
to probe a list of targets with global coverage. We use the iPlane measurement
data executed on 8th June 2007. We extract the stable traces from 52 Planetlab
nodes that are located in different Planetlab sites. Assuming the traceroutes
represent the shortest paths, we construct a SPT rooted at each PlanetLab node
(as a source) to m peers (destinations), resulting in 52 SPTs in total. By using a
map with all aliases resolved in iPlane, we obtain the router-level SPTs. The m
peers are randomly chosen over the world, and the hopcount (HSPT ) and degree
(DSPT ) distribution are obtained by making a histogram of the 52 SPTs (each
with m destinations).

A) Experimental results on node degree distribution

Three sets of experiments with m = 10, 25 and 50 are conducted to examine
the degree distribution of the sub-SPT because the number of peers in a P2P
network is not expected to be large6. We observed from the experiments that an
exponential node degree distribution is, if not better, at least comparable to the
power law degree distribution that has been reported in most of the published
papers.
In Fig. 4, we fitted Pr[DSPT = k] for m = 10 with a linear function on both

log-lin and log-log scales. The linear correlation coefficients used to reflect the
fitting quality are ρα on the log-lin scale and ρβ on the log-log scale respectively.
The quality of the fitting on the log-log scale (ρβ = 0.99) is only slightly higher
than that of the log-lin scale (ρα = 0.98), which questions the power law degree
distribution of a small subgraph of the Internet topology. A similar phenomenon
is also observed for Pr[DSPT = k] for m = 25 and m = 50. Due to space
limitation, we only provide the correlation coefficients for m = 25 and m = 50 in
Table 1. Again, the quality of the fitting seems to be comparable on both scales.

6Measurements on PPLive, a popular IPTV application [8] reveal that the number
of active peers that a peer can download from is always smaller than 50.



-8

-6

-4

-2

P
r[

D
S

P
T
 =

 k
]

8642

degree k

-8

-6

-4

-2

P
r[

D
S

P
T
 =

 k
]

2.01.51.00.5
degree k

 52 SPT samples
 fit: lnPr[DSPT = k] = -1.10k - 0.93 with ρα = 0.98
 fit: lnPr[DSPT = k] = -5.24lnk - 3.29 with ρβ  = 0.99

Fig. 4: The histogram of degree DSPT for 52 SPTs with m = 10 peers based on Plan-
etLab traceroute data on log-lin and log-log scale in the inset. ρα represents the linear
correlation coefficient on log-lin scale and ρβ is the one on log-log scale.

Table 1. Correlation coefficient for both log-lin (ρα)
and log-log (ρβ) scale of m = 10, 25 and 50

ρα ρβ
m = 10 0.98 0.99
m = 25 0.95 0.99
m = 50 0.95 0.99

A discrepancy with the first three experiments occurs if we increase the peer size
to 500 [7]. For larger subgraphs, a clear power law, rather than an exponential
distribution dominates the node degree. More discussion on the node degree
distribution of both experimental and simulation results can be found in [7]. We
conclude that the node degree of a subgraph with smallm cannot be affirmatively
claimed to obey a power law distribution. At least, it is disputable whether the
exponential distribution can be equally good as the power law.

B) Hopcount distribution in the Internet

The probability density function of the hopcount from the root to an arbitrary
chosen node in the URT with large N can be approximated as the following
according to [4, p. 356].

Pr[HN = k] ≈ Pr[hN = k] ∼ (logN)k
Nk!

(6)

where HN indicates the event that k > 1.
We plotted the pdf of the hopcount with m = 50 (50 traceroute samples

for each tree) in Fig. 5 (a), in which we see a reasonably good fitting with
(6). An even better fitting quality is found in Fig. 5 (b) if we increases the
number of traceroutes samples by randomly selecting m = 8000 destinations for
each tree, because more traceroutes gives higher accuracy. We conclude that the
hopcount distribution of the Internet can be modeled reasonably well by the pdf
of hopcount (6) in the URT.
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Fig. 5: The histogram of hopcount derived from 52 SPTs for m = 50 (a) and m = 8000
(b) are fitted by the pdf (6) of the hopcount in the URT. The measured data for (a)
and (b) are fitted with log(N) = 12.76 and log(N) = 14.97 respectively.

4 Conclusion

We obtain the hopcount and delay distribution to the most nearby peer on the
URT by assigning regular i.i.d. link weights (e.g. exponential link weights) on a
dense graph. Both results suggest that a small peer group is sufficient to offer an
acceptable quality of service. Via a series experiments, we show the applicability
of the URT model, based on which the pdfs for hopcount and delay have been
derived. To summarize, with a small group of peers (m 6 50), the URT seems
to be a reasonably good model for a P2P network.
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