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The Waxman graphs are frequently chosen in simulations as topologies resembling
communications networks+ For the Waxman graphs, we present analytic, exact ex-
pressions for the link density~average number of links! and the average number of
paths between two nodes+ These results show the similarity of Waxman graphs to
the simpler classGp~N!+ The first result enables one to compare simulations per-
formed on the Waxman graph with those on other graphs with same link density+
The average number of paths in Waxman graphs can be useful to dimension~or
estimate! routing paths in networks+Although higher-order moments of the number
of paths inGp~N! are difficult to compute analytically, the probability distribution
of the hopcount of a path between two arbitrary nodes seems well approximated by
a Poisson law+

1. INTRODUCTION

The current prominent position of the Internet has fueled network topological stud-
ies+Whereas a couple of years ago the design and performance evaluation of ATM
switch fabrics spurred queuing analysis, the Internet has shifted the focal domain
somewhat more toward the network topology+ There are at least two reasons why
graph theory seems increasingly useful+

First, the Internet topology itself justifies investigations in its own right+ The
Internet is a complex system that is growing and changing over time, similar to a
living organism+ Increasing numbers of studies are being published; some refer-
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ences can be found in@6,9–11# + Second,many of the properties of network protocol
behavior require a graph on which to perform actions+ Usually, only simulations are
feasible and the graph-theoretical aspects reduce to the choice of a class of easily
generated topologies+ In many cases, very specific network topologies are consid-
ered and, clearly, the conclusions apply~in most cases! only to the considered to-
pology, although often more general statements are possible+ Especially in routing
algorithm studies, classes of random graphs~r+g+’s!, as explained in Section 2, are
employed+ In general, the set of topologies of a certain class of r+g+’s is complete in
the sense that any graph can be represented by that class+ This property is interesting
for determining the actual or average complexity of routing algorithms~and not only
the worst case, as illustrated in@4,8# !+ Indeed, by simulating a large number of r+g+’s
and by analyzing the behavior of interest in every r+g+, a probability density function
of the behavior of interest is obtained from which any other information~such as the
average, variance,maximum, etc+! can be deduced+ The completeness of the class of
r+g+’s ensures that all possible modes of the routing algorithm are excited, similar to
impulse responses in linear system theory+

In practice, simulations can never exhaust the class of r+g+’s with N nodes and,
on average, E @L# links because the number of different topologies, on average,

equals SN~N 2 1!02
E @L# D+ Hence, depending on the specific properties of the class of

r+g+’s, a particular topology structure features a higher probability of occurrence than
in another class of r+g+’s+Deciding which class of r+g+’s for simulations is most suited
is often intuitively justified+

In communications network simulations,Waxman graphs are frequently used+
Waxman graphs are named after Bernard M+Waxman,who introduced them in@12# +
Although the Waxman graphs belong to a broader class of random graphs, as shown
in Section 2, the relation and some basic properties of Waxman graphs have, as far
as we know, not been previously published+ Here, we present analytic results which
closely show the similarity in link density~average number of links! and the average
number of paths between two nodes with a simpler class of r+g+’s+Although, at first
glance, the r+g+ classes differ substantially, these results show that average behavior
seems not so different+The first result allows one to compare simulations performed
on the Waxman graph with those computed on other graphs with the same link
density+ The average number of paths in Waxman graphs can be useful to dimension
~or estimate! routing paths in networks+

In addition to the average, the explicit computation of the complete distribution
of the number of paths between two arbitrary nodes in random graphs is shown to be
a hard problem+ However, the related probability of the hopcount of a path between
two arbitrary nodes inGp~N! seems well approximated by a relatively simple Pois-
son distribution+

2. RANDOM GRAPHS

There exists an astonishingly large amount of properties of random graphs~r+g+’s!
@2# + We refer to the book of Bollobas@2# for an excellent discussion, the recent
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update of Bollobas’s book by Janson et al+ @3# , and the survey article on recursive
trees by Smythe and Mahmoud@5# + The two most frequently occurring models for
r+g+’s areG~N,E! andGp~N!+ The classG~N,E! constitutes the set of graphs withN
nodes andE edges+ The class of r+g+’s denoted byGp~N! consists of all graphs with
N nodes in which the edges~or links! are chosen independently and with probabil-
ity p+ A natural refinement ofGp~N! is the modelG$ pij %

~N!, where the edges are
still chosen independently but where the probability ofi r j being an edge is
exactlypij + The Waxman graph is an example ofG$ pij %

~N!+ In the classGp~N!, the
number of links is not deterministic, but is known, on average, aspEmax, where the
maximum number of linksEmaxin a ~bidirectional! topology withN nodes isEmax5

N~N 2 1!02 [ SN
2 D+ This situation is coined afull meshandG1~N! 5 G~N,Emax! is

called the complete graphKN +
From the point of view of telecommunication networks, by far the most inter-

esting graphs are those with connected topology+ This limitation restricts the value
of p from below by a critical threshold~i+e+, p . pc!, where, for large N, pc ;
~ ln N!0N corresponds to the link density leading to disconnectivity in the r+g+’s+
Connectedness of r+g+’s has received considerable attention in the past@2, Chap+ 7# +

The Waxman graphs are believed to be better representatives of telecommuni-
cation networks than r+g+’s of the classGp~N!+ The Waxman graph belongs to the
family Gpij

~N! with pij 5 f ~ ?ri 2 ?rj !, where the vector?ri represents the position of a
node i and all nodes are uniformly distributed in a hypercube of sizeZ in the
m-dimensional space+ The dependence on distance is reflected byf ~ ?r !, which is a
positive, real function of them coordinates of the vector?r+ For example, for the
Waxman graph, the distance function isf ~ ?r ! 5 e2a6 ?r 6, where6 ?r 6 is a norm, denoting
a distance from the origin+ The idea of relating the probability of a link between
nodesi andj to some function of the distance between those nodes stems from the
correspondence with realistic telecommunications networks+ The farther two nodes
lie separated, the less the need for a direct link between them+ The example in Fig-
ure 1 illustrates the topology of a random graph ofGp~N! and a Waxman graph with
the same identifiersp andN+

Figure 1. Waxman and random graphs+ ~a! A Waxman graph~N 5 100, a 5 11,
p 5 0+04!; ~b! the graphG0+04~100!+
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3. THE LINK DENSITY p IN Gpij
(N )

The number of linksL@$ ?r %# in a particular Waxman graph specified by the nodal
positions$ ?r % 5 $ ?r1, ?r2, + + + , ?rN % is

L@$ ?r %# 5 (
i51

N

(
j5i11

N

f ~ ?ri 2 ?rj ! 5 (
i51

N

(
j5i11

N

e2a6 ?ri2 ?rj 6+

The average over all possible configurations of nodes in a chosen finite volumeV of
them-dimensional space~or the average over all possible Waxman topologies with
N nodes and generated byf ~{!! reads

E @L# 5EP@$ ?r %#L@$ ?r %#d @$ ?r %# +

Since the position of every node in the volume-restrictedm-dimensional space is
equally likely, the probability distribution is simply uniform or

P@$ ?r %#d @$ ?r %# 5 )
k51

N d ?rk

V
+

Hence,

E @L# 5 )
k51

N E
V

d ?rk

V (
i51

N

(
j5i11

N

f ~ ?ri 2 ?rj !

5 (
i51

N

(
j5i11

N E
V

d ?ri

V
E

V

d ?rj

V
f ~ ?ri 2 ?rj !

5 EmaxE
V

d ?r
V
E

V

d ?s
V

f ~ ?r 2 ?s!+ (1)

Immediately, the link density for r+g+’s in Gpij
~N! follows as

p 5
E @L#

Emax

5 E
V

d ?r
V
E

V

d ?s
V

f ~ ?r 2 ?s!+ (2)

Unfortunately, in most cases, the integral in the last equation cannot be executed
explicitly+However, for the Waxman graph in a square~m52! with sizeZand where
f ~ ?r ! 5 e2a6 ?r 6, explicit computation is possible as illustrated in Appendix A+ The
decay ratea 5 aZ of the existence of the link is expressed uniquely in terms of the
link densityp as, for a . 0,

p~a! 5
2

a4 @6~12 2e2a 1 e2!2a! 1 2a~24 2 2e2a 1 3!2e2!2a!

1 a2~4e2!2a 1 p!# 1
8g1~a!

a
1

8g2~a!

a2 (3)

538 P. Van Mieghem



with, of course, p~0! 5 1 and where

g1~ y! 5
dg2~ y!

dy
5E

1

!2

e2yx!x2 2 1 dx, (4)

g2~ y! 5E
1

!2

e2yx!12 10x2 dx+ (5)

Relation~3! shows that the link densityp~a! is only a function of the decay ratea
~and not of other parameters asZ!+ Zegura et al+ @13# have consideredpij 5
a exp~26 ?ri 2 ?rj 60bL! and were led to the same conclusion concerningp~a! via
extensive simulations+

In @9# ,we have shown that when both theGp~N! and the Waxman graph possess
exponentially or uniformly distributed link weights, the probability distribution of
the hopcount of the shortest path between two arbitrary nodes is almost identical in
both graphs for the same link densityp, related via~3!, even for a relatively small
number of nodesN+

4. THE AVERAGE NUMBER OF PATHS

Paths from a source node, sayA, to a destination node, sayB, can be categorized
according to the number of hops~or the hopcount! of that path, which equals 1 plus
the number of different intermediate nodes along the path fromA to B+ A path with
hopcountj is completely characterized by a list ofj 1 1 different nodes, PArB 5
@n1, n2, + + + , nj11# with n1 5 A, nj11 5 B, andnk Þ nm for all k,m [ @1, j 11# + Some-
times, a more illustrative representation is given, such asPArB5 ~n1r n2!~n2r n3!
{{{ ~nj r nj11!+The maximum number of hops is clearlyN21, otherwise a node will
appear twice in the path list, indicating that there is a loop+

We first give the general definition of the number of paths withj hops, from
which we compute the average number of paths for both the classGp~N! andGpij

~N!
in the next sections+

4.1. The Number of Paths with j Hops

Let Xj ~A r B;N! denote the random variable~r+v+! of the number of paths withj
hops between a source nodeA and a destination nodeB in Gp~N!+ The most general
expression for the number of paths withj hops between nodeA and nodeB is

Xj ~A r B;N! 5 (
k1Þ$A,B%

(
k2Þ$A, k1,B%

{{{ (
kj21Þ$A, k1, + + + , kj22,B%

1Ark1
{1k1rk2

{ {{{ {1kj21rB,

(6)

where 1x is the indicator function which equals 1 if the conditionx is true, else it
is 0+ Clearly, the number of paths with one hop equalsX1~A r B;N! 5 1ArB+ The
maximum number ofj hop paths is attained in the complete graph and equals
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max~Xj ~A r B;N!! 5 (
k1Þ$A,B%

(
k2Þ$A, k1,B%

{{{ (
kj21Þ$A, k1, + + + , kj22,B%

15
~N 2 2!!

~N 2 j 2 1!!
+

(7)

In an earlier paper@7# , we demonstrated that, for N $ 3, the total number of paths
between two nodes in the complete graph is precisely@e~N 2 2!!# , wheree 5
2+71828+ + + and@x# denotes the largest integer smaller than or equal tox+ Since any
graph is a subgraph of the complete graph, this implies that the maximum total
number of paths between two nodes in any graph is upper-bounded by@e~N2 2!!# +
In the sequel, we will simplify the notationXj ~Ar B;N! to Xj , because we are not
interested in a specific “sourceA–destinationB” pair+

4.2. The Class Gp(N )

Theorem 1: For the class Gp~N! , it holds that

E @Xj # 5
~N 2 2!!

~N 2 j 2 1!!
p j, 1 # j # N 2 1+ (8)

Proof: We give two different proofs+

A+ The maximum number of different paths with preciselyj hops is given by
~7!+ Since each individual path withj hops has probabilityp j, we obtain~8!
immediately+

B+ From ~6!, we have

E @Xj # 5 EF (
k1Þ$A,B%

(
k2Þ$A, k1,B%

{{{ (
kj21Þ$A, k1, + + + , kj22,B%

1Ark1
{1k1rk2

{ {{{ {1kj21rBG
5 (

k1Þ$A,B%
(

k2Þ$A, k1,B%

{{{ (
kj21Þ$A, k1, + + + , kj22,B%

E @1Ark1
{1k1rk2

{ {{{ {1kj21rB# +

Since all linkskm r km11 for all 0 # m # j are different and independent, each
having equal probabilityp, we have

E @1Ark1
{1k1rk2

{ {{{ {1kj21rB# 5 E @1Ark1
#{E @1k1rk2

#{ {{{ {E @1kj21rB# 5 p j+

Thus,

E @Xj # 5 (
k1Þ$A,B%

(
k2Þ$A, k1,B%

{{{ (
kj21Þ$A, k1, + + + , kj22,B%

p j

5 p j (
k1Þ$A,B%

(
k2Þ$A, k1,B%

{{{ (
kj21Þ$A, k1, + + + , kj22,B%

15 p j max~Xj !

from which~8! follows+ n
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The average total number of paths betweenA andB follows from ~8!, as

EF (
j51

N21

XjG 5 ~N 2 2!! pN21 (
l50

N22 p2l

l!
+

Since(l50
N22~ p2l0l!! 5 e10p 2 (l5N21

` ~ p2l0l!!, we denoteQ 5 (l5N21
` ~ p2l0l!!+ An

upper bound

Q ,
pN21

~N 2 1!! (
k50

` S 1

pN
Dk

5
pN21

~N 2 1!!

pN

pN2 1

for p . 10N is readily obtained+ A close lower bound forQ is derived invoking the
beta function@1, Sect+ 6+2+1# + Since

Q 5 S1

p
DN21

(
k50

` S1

p
Dk

~N 2 1 1 k!!

and

1

~N 2 1 1 k!!
5

1

G~N 1 k!
5

B~N, k!

G~N!G~k!
,

we have

Q 5 S1

p
DN21 1 1

~N 2 1!!
1

1

~N 2 1!! (
k51

` S1

p
Dk

~k 2 1!!
B~N, k!2

5

S1

p
DN21

~N 2 1!!
111

1

p (
k50

` S1

p
Dk

k!
E

0

1

t N21~12 t !k dt2
5

S1

p
DN21

~N 2 1!! S11
1

p
E

0

1

t N21e~12t !0p dtD5

S1

p
DN21

~N 2 1!! S11
e10p

p
ID,

where

I 5E
0

1

t N21e2t0p dt .
e210p

N
+

Combining lower and upper bounds yields

S1

p
DN21

~N 2 1!! S11
1

pN
D , Q ,

S1

p
DN21

~N 2 1!! S11
1

pN2 1D
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and, finally, for p . 10N,

~N 2 2!! pN21e10p 2
pN

~ pN2 1!~N 2 1!
, EF (

j51

N21

XjG , ~N 2 2!! pN21e10p

2
pN1 1

pN~N 2 1!
+ (9)

In particular, for the complete graph~ p 5 1!, randomness disappears and the total
number of paths must be an integer+ Since 0, N0~N21!~N21! , 1, for N $ 3, the
above bounds lead to the exact result@e~N 2 2!!# , mentioned earlier+

Using Stirling’s @1, formula 6+1+38# approximation~N 2 2!! 5 !2p~N 2
2!N2302e2~N22!eu012~N22! in ~9! and p 5 10~N 2 2! demonstrates that
E @(j51

N21 Xj # 5 O~10!N ! for largeN+ Since 10~N 2 2! , pc, the absence of paths
between two arbitrary nodes for largeN is expected+ The value ofp 5 pD for
which E @(j51

N21 Xj # , 1 may be regarded as a total disconnectivity threshold and
is computed accurately as~26! in Appendix C or, less precise, pD 5 10N 1

O~!~ log N!0N3 ! , pc+ With this link densitypD , a node inGp~N! is connected,
on average, to only one other node+ Just below or around the disconnectivity thresh-
old pc, a sufficiently large cluster may exist in which communication among a
majority of ~Internet! users is still possible+ Around pD ~only a logarithmic factor
in N smaller thanpc!, communication is not possible anymore+

4.3. The Class Gpij
(N )

Theorem 2: For the class Gpij
~N! , it holds that

E @Xj # 5
~N 2 2!!

~N 2 j 2 1!!
Fj , 1 # j # N 2 1, (10)

where

Fj 5E
V

d ?r1

V
E

V

d ?r2

V
{{{ E

V

d ?rj

V
f ~ ?r1 2 ?r2! f ~ ?r2 2 ?r3! {{{ f ~ ?rj 2 ?rj11!+ (11)

Proof: With ~6!, whereE @1irj # 5 pij , we have

E @Xj ~$ ?r %!# 5 EF (
k1Þ$A,B%

(
k2Þ$A, k1,B%

{{{ (
kj21Þ$A, k1, + + + , kj22,B%

1Arki
{1k1rk2

{ {{{ {1kj21rBG
5 (

k1Þ$A,B%
(

k2Þ$A, k1,B%

{{{ (
kj21Þ$A, k1, + + + , kj22,B%

E @1Ark1
#

{E @1k1rk2
#{ {{{ {E @1kj21rB# ~by independence!

5 (
k1Þ$A,B%

(
k2Þ$A, k1,B%

{{{ (
kj21Þ$A, k1, + + + , kj22,B%

f ~ ?rA 2 ?rk1
! f ~ ?rk1

2 ?rk2
!

{{{ f ~ ?rkj
2 ?rB!,
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where$ ?r % refers to a set ofN nodal position vectors defining the Waxman graph+
Averaging over all possible Waxman topologies yields

E @Xj # 5 (
k1Þ$A,B%

(
k2Þ$A, k1,B%

{{{ (
kj21Þ$A, k1, + + + , kj22,B%

F~$ ?r %!, (12)

where

F~$ ?r %! 5 )
k51

N E
V

d ?rk

V
f ~ ?rA 2 ?rk1

! f ~ ?rk1
2 ?rk2

! {{{ f ~ ?rkj
2 ?rB!

5E
V

d ?rA

V
E

V

d ?rj1

V
{{{ E

V

d ?rB

V
f ~ ?rA 2 ?rk1

! f ~ ?rk1
2 ?rk2

! {{{ f ~ ?rkj
2 ?rB!,

where theN-fold m-dimensional integral reduces to aj-fold one because ifl Þki with
ki , one of the summation indices in thej-fold summation, *V d ?rl 0V51+ This multi-
dimensional integral can be evaluated step by step+ Indeed, we can first perform the
average over?rA that only appears in the first factor of the product off ~{!’s+The result
is clearly dependent on?rk1

, sayg~ ?rk1
!+ Next, the average over?rk1

can be computed;
thus, *V ~d ?rk1

0V !g~rk1
! f ~ ?rk1

2 ?rk2
!,which only depends onrk2

+ Proceeding with this
reasoning shows thatF~$ ?r %! 5 Fj is independent of the summation indiceski in ~12!
but dependent onj, the number ofm-dimensional integrations+ A more direct argu-
ment to see this follows from the fact that the positions?rA, ?rk1

, + + + , ?rkj21
, ?rB are equal

in distribution to ?r1, ?r2, + + + , ?rj11+ Hence, using~7! leads to~10!+ n

In the case of the Waxman graph, wheref ~ ?r ! 5 e2a6 ?r 6, we can prove somewhat
more+We can write~11! as

Fj 5 EFexpS2a (
k51

j

6 ?rk11 2 ?rk6DG+
The functionx° e2x is a convex function; so by Jensen’s inequality, for any random
variableX,

E @e2X# $ e2E @X #+

Applying this inequality with X 5 2a (k51
j 6 ?rk11 2 ?rk6 with E @X # 5

2a (k51
j E @6 ?rk11 2 ?rk6# 5 2ajE @6 ?r 2 ?s6# yields

Fj $ F j,

where

F 5 e2aE @ 6 ?r2 ?s6# 5E
V

d ?r
V

f ~ ?r 2 ?s! (13)

andE @6 ?r 2 ?s6# is the average distance between two arbitrary points?r and ?s in the
m-dimensional volumeV+ The distribution function of the latter, denoted byg~r !, is
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also computed in Appendix A for a square in two dimensions+ Hence, for the Wax-
man graph, it holds that

E @Xj # $
~N 2 2!!

~N 2 j 2 1!!
F j+ (14)

If F is associated to a link densityp, the right-hand side in upper bound in~14!
equals the expected number of paths~8! in the simple classGp~N!+WhenV r `,
*V d ?r f ~ ?r 2 ?s! 5 *V d ?r f ~ ?r ! andV jFj 5 ~VF! j holds+ Since, for the Waxman graph,
*V d ?r f ~ ?r ! is finite for finite dimensionsm, and fora . 0, limVr`Fj 5 F j 5 0+
Hence, only in the limit V r `, which is equivalent top 5 0, the equality sign
holds in ~14!+

5. ON THE GENERATING FUNCTION wXj
(z) 5 E [z Xj ] IN Gp(N )

The analytic computation of higher-order moments, E @Xj
k# , becomes exceedingly

difficult due to the high correlation structure~overlap! of the paths betweenA andB+
Hence, the computation of the probability distribution of the number of paths withj
hops between two arbitrary nodes inGp~N! is, to the best of our knowledge, still an
open problem+At least, the variance var@Xj # seems desirable to estimate, fromGp~N!,
more closely the number of paths withj hops in a network withN nodes and link
densityp+ In this last section, we motivate the difficulty of the problem, partly by
computations, partly via simulations+

The probability generating function~p+g+f+! of the number of paths withj hops
is denoted bywXj

~z! 5 E @zXj # 5 (k50
` P@Xj 5 k#zk+

In the casej 51,we have thatX1511rN + Thus,X150 if there is no link between
node 1 andN,which occurs with probability 12p, orX151 if there is a link between
node 1 andN, an event that has probabilityp+ The p+g+f+ wX1

~z! 5 P@X1 5 0# 1
P@X1 5 1#z5 ~12 p! 1 pz+

In the casej 5 2, initially, all paths with two hops start at 1 and visit an inter-
mediate nodei different from 1 andN, from which they depart to the final destination

N+ Thus, X2 5 (i52
N21 11ri 1irN andP@X2 5 k# 5 SN 2 2

k
D~ p2!k~1 2 p2!N222k because

(i52
N21 11ri 1irN can only attain the valuek if there are preciselyknonzero terms+The

latter event has probabilityp2 because both the link~1 r i ! and the link~i r N!
must exist+ In all the remainingN 2 2 2 k terms, there must be at least one link
~1 r i ! or ~i r N! absent, an event with probability 12 p2+ Finally, the binomial
coefficient appears since we can choose thesek nonzero terms out ofN2 2 possible

precisely inSN 2 2

k
D ways+ So we arrive at

wX2
~z! 5 (

k50

N22SN 2 2

k D~ p2z!k~12 p2!N222k 5 ~12 p2 1 p2z!N22+

The casej 5 3 is illustrated in Figure 2+ For j . 2, we observe that it is
possible that paths withj hops overlap partly, which implies that there is a depen-
dence between certain paths+ This dependence seriously complicates a probabilis-
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tic analysis as in the case with one and two hops+ The maximum overlap between
paths withj jops consists ofj 2 2 shared links+ Hence, each path withj hops has
at least two links different from other paths in the set ofj-hop paths+ This property
suggests that the dependence is rather weak forj 5 3, as also confirmed by sim-
ulations plotted in Figure 3+ Moreover, for j 5 3, the variance can be computed+
As shown in Appendix B, the result suggests that the casej 5 3 can be approxi-
mated by a Gaussian~for largeN!+

Figure 2. A sketch of a counting method of paths with three hops+

Figure 3. For j 5 3 hops, the width of the Gaussian fit for the simulated results is
16+182 and is 7+5 for the binomial+ The centers are 28+42 and 28+76, respectively+
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Ignoring the possible overlap or dependence, the r+v+ for the number of paths
with three hops isX3 5 (iÞ~1,N! (jÞ~1, i,N! 11ri 1irj 1jrN and P@X3 5 k# 5

S~N 2 2!~N 2 3!

k
D~ p3!k~1 2 p3!~N22!~N23!2k because, now, the maximum number of

three hop paths is~N 2 2!~N 2 3!, and a nonzero term in the double summation
requires that all three factors be unity+ This event has probabilityp3+ Thus, we ob-
serve that the double summation ofX3 is separated in “contributing” terms and
“noncontributing” terms resulting inwX3

~z! 5 ~12 p3 1 p3z!~N22!~N23!+ Arguments
similar to those above, assuming negligible dependence, lead to

P@Xj 5 k# 5Smax~Xj !

k D~ p j !k~12 p j !max~Xj !2k (15)

and

wXj
~z! 5 ~12 p j 1 p jz!~N22!!0~N2j21!!+ (16)

The simulations below show that formula~15!, referred to as “binomial” in the
figures, is seriously deficient forj . 2 and that the correlation structure in the over-
lap is very dominant+ Also, a Gaussian approximation still adequate in the case
j 5 3, as shown in Appendix B, seems not possible+ The p+d+f+’s shown in Figures 5
and 6 indicate that analytic computation~a combinatorial analysis! seems hardly
tractable+

Figure 4. For j 5 4 hops, the width of the Gaussian fit for the simulated results is
88+21 and is 18 for the binomial+ The centers are 132+8 and 137+58, respectively+
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Figure 5. For j 5 5 hops, the width of the Gaussian fit for the simulated results is
410 and is 38+48 for the binomial+ The centers are 512+8 and 550+4, respectively+

Figure 6. For j 5 6 hops, the width of the Gaussian fit for the simulated results is
1504+7 and is 72+1 for the binomial+ The centers are 1584 and 1761, respectively+
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In spite of the difficulty in determining the p+d+f+ for the number of paths withj
hops, simulations1 indicate that the probability that an arbitrary path between node
A and nodeB consists ofj hops, denoted byP@path5 j hops# , is well approximated
by a Poisson distribution+ In a particular r+g+ Q of Gp~N!, the probability of aj-hop
path equalsXj ~Q!0(k21

N21 Xk~Q!,whereXk~Q! denotes the number of paths in the r+g+
Q with k hops+ Hence, averaging over allQ [ Gp~N! yields

P@path5 i hops# 5 EQF Xj ~Q!

(
k51

N21

Xk~Q!G +
Since the r+v+ Xj , the number of paths withj hops, is also averaged over allQ [
Gp~N!, we can write

P@path5 i hops# 5 EF Xj

(
k51

N21

Xk
G + (17)

Unfortunately, ~17! is intractable to compute for largeN+ However, simula-
tions ~Fig+ 7! show that the p+d+f+ of the hopcount in a connected r+g+ of Gp~N! is,
for p . pc, well approximated by

P@path5 i hops# .

S1

p
DN2i21

~N 2 i 2 1!!

(
k50

N22
S1

p
Dk

k!

+ (18)

Indeed, assuming that, in ~17!, (k51
N21 Xk . c, wherec is a constant, the probability

that a path between two arbitrary nodes in a random graph ofGp~N! consists ofj
hops becomes proportional to the expected number of paths withj hopsE @Xj # +
Hence,

P@path5 i hops# 5 c21
~N 2 2!!

~N 2 i 2 1!!
pi,

where the proportionality factorc21 follows from the probability normalization
condition(i51

N21 P@path5 i hops# 5 1+ Since(k50
N22~10p!k0k! , e10p, we obtain a

Poisson lower bound

1 Only relatively smallNcan be simulated since the total number of paths grows proportional to~N22!!,
as follows from~9!+
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P@path5 i hops# '

S1

p
DN2i21

e210p

~N 2 i 2 1!!
,

which agrees remarkably well with simulation results, as shown in Figure 7+ Hence,
the assumption(k51

N21 Xk . c seems a good approximation, which indicates that
summing over all possible hops considerably smooths the peculiar correlation struc-
tures for the larger hopsk+
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APPENDIX A

Expression for the Link Density in Two-Dimensional Waxman Graphs

The expression for the link density given by~2! is explicitly computed here assuming that all
nodes lie within a square with sizeZ+We use Cartesian coordinates+Thus we have the integral

p 5
1

Z4 E
0

Z

dx1E
0

Z

dx2E
0

Z

dy1E
0

Z

dy2 f ~!~x1 2 x2!2 1 ~ y1 2 y2!2!+ (19)

In the first stage, we use symmetry to reduce the fourfold integral to a double integral+ Sub-
stituteu 5 x1 2 x2 with x2 as constant+ Also, definew 5 y1 2 y2+ Then

E
0

Z

dx1E
0

Z

dx2 f ~!~x1 2 x2!2 1 w2! 5E
0

Z

dx2E
2x2

Z2x2

du f~!u2 1 w2!,

and after partial integration we obtain

E
0

Z

dx1E
0

Z

dx2 f ~!~x1 2 x2!2 1 w2! 5 2E
0

Z

~Z 2 u! du f~!u2 1 w2!+

A similar treatment on they coordinate leads us to

p 5
4

Z4 E
0

Z

duE
0

Z

dw~Z 2 u!~Z 2 w! f ~!u2 1 w2!+ (20)

In the second stage, the integral is transformed from Cartesian coordinates to polar co-
ordinates as

p 5
4

Z4 FE
0

Z

r drE
0

p02

df~Z 2 r cosf!~Z 2 r sinf! f ~r !

1 E
Z

Z!2

r drE
arccos~Z0r !

p022arccos~Z0r !

df~Z 2 r cosf!~Z 2 r sinf! f ~r !G + (21)
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Clearly, thef integral is elementary,

E
a

b

~Z 2 r cosf!~Z 2 r sinf! df 5 Z2~b 2 a! 2 rZ~sinf 2 cosf!6ab 2
r 2

4
cos 2f*

a

b

+

Applied to the first integral in~21!, this yields

E
0

p02

~Z 2 r cosf!~Z 2 r sinf! df 5
p

2
Z2 2 2rZ 1

r 2

2
+

Analogously, the second integral becomes

E
arccos~Z0r !

p022arccos~Z0r !

~Z 2 r cosf!~Z 2 r sinf! df 5 Z2Sp

2
2 1D1 2rZ!12

Z2

r 2

2 2Z2 arccosS Z

r
D2

r 2

2
+

Using these results in~21! gives

p 5
4

Z4 FE
0

Z

rf ~r !Sp

2
Z2 2 2rZ 1

r 2

2 D dr

1 E
Z

Z!2

f~r !rSZ2Sp

2
2 1D1 2rZ!12

Z2

r 2

2 2Z2 arccosS Z

r
D2

r 2

2
D drG + (22)

This is about as far as we can go without specifyingf ~r !+ In passing, we note that~22!
immediately gives the probability distribution functiong~r ! of the distancer between two
arbitrary points in the square with sizeZ+ For, the average number of links can also be written
asp 5 *0

Z!2 g~r ! f ~r ! dr and from~22!, it follows that

g~r ! 5
1

Z4 ~2prZ 2 2 8r 2Z 1 2r 3! ~0 # r # Z!

5
1

Z4 SZ2~2p 2 4!r 1 8Zr!r 2 2 Z2 2 8Z2 r arccosS Z

r
D2 2r 3D

~Z # r #!2Z!+ (23)

Here,we choosef ~r !5e2ar+ In this case, ~22! can be further simplified+ In particular, the first
integral is

E
0

Z

re2ar Sp

2
Z2 2 2rZ 1

r 2

2
D dr

5
1

2a4 @~6 2 8aZ 1 a2Z2p!

2 e2aZ~6 2 2aZ 1 a2Z2~p 2 5! 1 a3Z3~p 2 3!!# +
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The second integral in~22! is separated into two parts+ The first part is

E
Z

Z!2

re2ar SZ2Sp

2
2 1D2

r 2

2
D dr

5
e2aZ

2a4 ~26 2 6aZ 1 a2Z2~p 2 5! 1 a3Z3~p 2 3!!

2
e2!2aZ

2a4 ~26 2 6!2aZ 1 a2Z2~p 2 8! 1!2a3Z3~p 2 4!!+

The second part becomes, after a partial integration,

E
Z

Z!2

re2arS2rZ!12
Z2

r 2 2 2Z2 arccosS Z

r
DD dr

5
e2!2aZ

2a4 ~Z2~11!2aZ!~p 2 4!!

1
2Z

a
E

Z

!2Z

e2ar Sr 1
1

a
D!12

Z2

r 2 dr+

Unfortunately, the last integral cannot be evaluated analytically+ Series expansion is possible
but does not lead to attractive results+ Therefore, we rewrite that integral into a suitable form
for numerical integration as

E
Z

!2Z

e2ar Sr 1
1

a
D!12

Z2

r 2 dr 5 Z2g1~Za! 1
Z

a
g2~Za!,

whereg1~ y! andg2~ y! are given in~4! and~5!, respectively+ Putting all pieces together yields
the final result~3!, wherea 5 aZ+ The latter demonstrates that the link density is only a
function of one parameter, a+ At last, we list some numerical values, apart from the trivial
p~0! 5 1 andp~`! 5 0:

p~0+2! 5 0+902077 p~0+4! 5 0+815725

p~0+6! 5 0+739417 p~0+8! 5 0+671840

p~1+0! 5 0+611868 p~1+2! 5 0+558533

p~1+4! 5 0+511000 p~1+6! 5 0+468548

p~1+8! 5 0+430557 p~2+0! 5 0+396486

p~2+2! 5 0+365868 p~2+4! 5 0+338297

p~2+6! 5 0+313420 p~2+8! 5 0+290930

p~3+0! 5 0+270557 p~3+2! 5 0+252066

p~3+4! 5 0+235251 p~3+6! 5 0+219933

p~3+8! 5 0+205951 p~4+0! 5 0+193166+
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APPENDIX B

Computation of E [X3
2]

From definition~6!, we immediately have that

E @X3
2# 5 (

j1Þ$A,B%
(

j2Þ$A, j1,B%
(

k1Þ$A,B%
(

k2Þ$A, k1,B%

E @1Arj1{1j1rj2{1j2rB{1Ark1
{1k1rk2

{1k2rB# +

(24)

The computation ofE @1Arj1{1j1rj2{1j2rB{1Ark1
{1k1rk2

{1k2rB# is a combinatorial exercise+
The~in!equalities between the set$ j1, j 2% and$k1, k2% must be investigated, with a total of 24

possibilities+ In general, for j hops, this amount increases as 2~ j21!2
and rapidly leads to

infeasible analytic treatment+ The path restriction amounts toj1 Þ j 2 and, similarly, k1 Þ k2+
Table B1 contains all possibilities wherej 5

?
k is coded by 1 if true and by 0 if not true+ Each

of the seven nonzero cases contributes to~24! as shown in Table B2+ Summing all contribu-
tions finally leads to

E @X3
2# 5

~N 2 2!!

~N 2 6!!
p6 1 2

~N 2 2!!

~N 2 5!!
~ p5 1 p6! 1

~N 2 2!!

~N 2 4!!
~ p3 1 p5!+ (25)

On the other hand, approximation~16! gives

E @X3
2# ' wX3

'' ~1! 5 F ~N 2 2!!

~N 2 4!!
p3G2

2
~N 2 2!!

~N 2 4!!
p6+

Table B1. All Possibilities

No+ j1 5
?

k1 j 2 5
?

k2 j1 5
?

k2 j 2 5
?

k1 E @1Arj1{1j1rj2{1j2rB{1Ark1
{1k1rk2

{1k2rB#

0 0 0 0 0 p6

1 0 0 0 1 p6

2 0 0 1 0 p6

3 0 0 1 1 p5

4 0 1 0 0 p5

5 0 1 0 1 0
6 0 1 1 0 0
7 0 1 1 1 0
8 1 0 0 0 p5

9 1 0 0 1 0
10 1 0 1 0 0
11 1 0 1 1 0
12 1 1 0 0 p3

13 1 1 0 1 0
14 1 1 1 0 0
15 1 1 1 1 0
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Hence, for large N and fixedp, we observe that the exact and approximate results yield
E @X3

2# ; N4p6 1 2N3~ p5 1 p6! 1 O~N2! andE @X3
2# ; N4p6 1 O~N2!, respectively, hence

agreeing to first order inN+With E @X3# ; N2p3, the exact variance is var@X3# ; 2N3~ p5 1
p6! 1 O~N2! and

X3 2 E @X3#

!var@X3#
;
!N ~X30N2 2 p3!

!2~ p5 1 p6!
S11 OS 1

N
DD,

which suggests that the random variable!N ~X30N2 2 p3! tends to a Gaussian with mean 0
and variance 2~ p5 1 p6! for largeN+

APPENDIX C

The Total Disconnectivity Threshold pD

Using the asymptotic formula@1, formula 6+1+41# for log G~N! for largeN in ~9! yields

logSEF (
j51

N21

XjGD , log G~N 2 1! 1 ~N 2 1! log p 1
1

p

5 ~N 2 1! log~ p~N 2 1!! 2
1

2
log

N 2 1

2p
2 ~N 2 1! 1

1

p
1 OS 1

N
D+

Let p 5 ~N 2 1!af ~N 2 1! with f ~{! . 0 andf ~x! 5 o~x! for largex+ Setx 5 N 2 1+ Then

logSEF(
j51

x

XjGD , x log~xa11f ~x!! 2
1

2
log

x

2p
2 x 1

x2a

f ~x!
1 OS1

xD+
Only if a521 does the right-hand side tend to a finite limit, providedf ~x! is suitably chosen+
If we chooseg~x! 5 O~10xb! with 0 , b , 1, the requirement forf ~x! to achieve that
log ~E @(j51

x Xj # ! r 0 for largex, is

log~ f ~x!! 1
1

f ~x!
2 1 5

g~x!

x
1

1

2x
log

x

2p
+

Table B2. Nonzero Cases

No+ Contribution

0 p6 (j1Þ$A,B% (j2Þ$A, j1,B% (k1Þ$A, j1, j2,B% (k2Þ$A, j1, j2, k1,B% 15 @~N 2 2!!0~N 2 6!!# p6

1 p6 (j1Þ$A,B% (j2Þ$A, j1,B% (k2Þ$A, j1 j2,B% 15 @~N 2 2!!0~N 2 5!!# p6

2 p6 (j1Þ$A,B% (j2Þ$A, j1,B% (k1Þ$A, j1 j2,B% 15 @~N 2 2!!0~N 2 5!!# p6

3 p5 (j1Þ$A,B% (j2Þ$A, j1,B% 1 5 @~N 2 2!!0~N 2 4!!# p5

4 p5 (j1Þ$A,B% (j2Þ$A, j1,B% (k1Þ$A, j1 j2,B% 1 5 @~N 2 2!!0~N 2 5!!# p5

8 p5 (j1Þ$A,B% (j2Þ$A, j1,B% (k1Þ$A, j1 j2,B% 1 5 @~N 2 2!!0~N 2 5!!# p5

12 p3 (j1Þ$A,B% (j2Þ$A, j1,B% 1 5 @~N 2 2!!0~N 2 4!!# p3
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Since the right-hand side can be made arbitrarily small for largex, a Taylor expansion of the
left-hand side aroundz5 f ~x! 5 1 is sufficiently accurate+We have

log~z! 1
1

z
2 1 5

~z2 1!2

2
2

2

3
~z2 1!3 1 O~~z2 1!4!+

Confining to first order yields

f ~x! . 11 2! g~x!

x
1

1

2x
log

x

2p
+

Hence, we arrive at

pD ;

11 ! 2

N
log

N

2p
F11 OS 1

N bDG
N

, pc ;
log N

N
+ (26)
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