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Abstract

We model the weight (e.g. delay, distance or cost) from an arbitrary node to the nearest (in weight) peer

in a peer-to-peer (P2P) network. The exact probability generating function and an asymptotic analysis is

presented for a random graph with i.i.d. exponential link weights. The asymptotic distribution function is a

Fermi-Dirac distribution that frequently appears in statistical physics. The good agreement with simulation

results for relatively small P2P networks makes the asymptotic formula for the probability density function

useful to estimate the minimal number of peers to offer an acceptable quality (delay or latency).

1 Introduction

The present analysis is motivated by content distribution in peer-to-peer (P2P) networks (see e.g. [6, Chapter

13]) such as Napster, Bit Torrent, Tribler etc. Content is often either fully replicated at a peer or is split into
chunks and stored over m peers. A major task of a member of the peer group lies in selecting the best peer
among those m peers that possess the desired content. This searching process for peers is not always optimized
and several variants exist depending on which criterion is optimized. For example, one may choose that peer
that is most nearby in the number of hops or in the delay or latency. The first problem is analogous to the
anycast problem in IPv6, treated in [5, Chapter 18]. Here, we confine to the second problem: given a network of
N nodes over which m peers are randomly distributed, what is the delay from a certain peer to the nearest (in
delay) peer? The presented analysis shows how that delay varies as the number m of peers changes and it may
set bounds on the minimum number of peers needed to still offer an acceptable content distribution service.
In a P2P network, peers are joining and leaving regularly which motivates us to consider such a network to

first order as an Erdös-Rényi random graph. The shortest path between two nodes is the path for which the
sum of the link weights is minimal. The shortest path tree (SPT) rooted at an arbitrary node to m uniformly
chosen peers is the union of the shortest paths from that node to all m different peers in the graph. Thus, the
computation of a shortest path requires the knowledge of link weights, such as a monetary cost, the number
of hops, a delay, a distance, etc. In most communication networks, link weights are not precisely known. Here
and as motivated in [5, Section 16.1], we assign i.i.d. exponentially distributed weights with unit mean to links.
In [5, 4], we have rephrased the shortest path problem between two arbitrary nodes in the complete graph

KN with i.i.d. exponential link weights as a Markov discovery process, that starts the path searching process
at the source. The discovery process is a continuous time Markov chain with N states. Each state n represents
the n already discovered nodes (including the source node). If at some stage in the Markov discovery process n

nodes are discovered, then the next node is reached with rate λn,n+1 = n (N − n), which is the transition rate
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in the continuous time Markov chain. Since the discovering of nodes at each stage only increases n, the Markov
discovery process is a pure birth process with birth rate n (N − n). We call τn the inter-attachement time
between the inclusion of the n-th and (n+ 1)-th node to the SPT for n = 1, . . . , N − 1. The inter-attachement
time τn is exponentially distributed with parameter n(N−n) as follows from the theory of Markov processes. By
the memoryless property of the exponential distribution and the symmetry in the complete graph KN , the new
node is added uniformly to an already discovered node. Hence, the resulting SPT to all nodes, i.e. m = N − 1,
is exactly a uniform recursive tree (URT). A URT of size N is a random tree rooted at some source node and
where at each stage a new node is attached uniformly to one of the existing nodes until the total number of
nodes is equal to N . As proved in [4] for large N , the URT is also asymptotically the shortest path in the class
of Erdös-Rényi random graph with i.i.d. exponential link weights.
The paper is outlined as follows. Section 2 derives the exact probability generating function of the weight

towards the first encountered peer. The asymptotics for large N (and constant peer group size m) is computed
in Section 3 and compared with simulations for finite graph size N . Mathematical derivations are given in the
appendices.

2 The probability generating function

The weight WN ;m of the shortest path from an arbitrary node to the nearest (in weight) peer in a peer group
of size m is1

WN ;m =
N−1X
k=1

1{TN (m)≥k}τk (1)

where TN (m) is the number of steps in the continuous Markov discovery process until one peer of the group
of m peers is reached, or, TN (m) is the hitting time to the peer group of size m. Since the random variables
1{TN (m)≥k} and τk (for a fixed k) are independent, the average weight directly follows as

E [WN ;m] =
N−1X
k=1

Pr [TN (m) ≥ k]E [τk]

The event {TN (m) ≥ k} implies that the k-th discovered (attached) node in the URT is the first peer out of the
m peers that is reached. Hence, the k − 1 previously discovered nodes do not belong to the peer group. Since
the m peers as well as the k − 1 nodes are uniformly chosen out of the N − 1 nodes, we have that

Pr [TN (m) ≥ k] =

¡
N−1−m
k−1

¢¡
N−1
k−1

¢
such that, with E [τk] =

1
k(N−k) ,

E [WN ;m] =
(N − 1−m)!

(N − 1)!

N−1X
k=1

(N − 1− k)!

k(N −m− k)!

Invoking the identity (15) yields

N−mX
k=1

1

k

(N − 1− k)!

(N −m− k)!
=
(N − 1)!
(N −m)!

N−mX
j=1

1

j
− (N − 1)!
(N −m− 1)!

m−2X
q=0

1

(m− 1− q) (N − 1− q)

After partial fraction expansion, the q-sum is

m−2X
q=0

1

(m− 1− q) (N − 1− q)
=

1

N −m

m−1X
j=1

1

j
− 1

N −m

N−1X
j=N−m+1

1

j

1This has been conveyed to us by Professor S. M. Ross.
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and we arrive at

E[WN ;m] =
1

N −m

⎧⎨⎩
N−1X
j=1

1

j
−

m−1X
j=1

1

j

⎫⎬⎭ =
ψ(N)− ψ(m)

N −m
(2)

where ψ(x) is the digamma function [1, Section 6.3]. For large N , we have [1, Section 6.3.18]

E[WN ;m] =
ln N

m

N −m
+

1

2Nm
+O

¡
N−1m−2

¢
Since the sequence of random variables 1{TN (m)≥1}, 1{TN (m)≥2}, . . . , 1{TN (m)≥N−1} is obviously not indepen-

dent, a computation of the probability generating function ϕWN;m (z) = E
£
e−zWN;m

¤
different from straight-

forwardly using (1) is needed. We define vk =
Pk

n=1 τn as the weight of the shortest path to the k-th attached
(discovered) node. Since the laws of the Markov discovery process and of the URT are independent [4], we
obtain

ϕWN;m
(z) =

XN−m

k=1
E[e−zvk ] Pr[Ym (k)]

where Ym (k) denotes the event that the k-th attached node is the first encountered peer among the m peers in
the URT. Now, there are

¡
N−1
m

¢
ways to distribute the m peers (different from the source node) over the N − 1

remaining nodes. If the k-th node is the first of the m discovered peers, it implies that the remaining m − 1
peers need to be discovered later. There are

¡
N−1−k
m−1

¢
possible ways, whence

Pr[Ym (k)] =

¡
N−1−k
m−1

¢¡
N−1
m

¢
Thus, we obtain2

ϕWN;m
(z) =

m(N − 1−m)!

(N − 1)!
XN−m

k=1

(N − 1− k)!

(N −m− k)!

kY
n=1

n(N − n)

z + n(N − n)
(3)

After partial integration of a single-sided Laplace transform ϕX (z) =
R∞
0

fX (t) e
−ztdt and assuming that the

derivative f 0X (t) exists, the relation fX (0) = limz→∞ zϕX (z) is found. Applied to (3) yields

fWN;m (0) = m (4)

3 The asymptotic pgf and pdf

Although the inverse Laplace transform of (3) can be computed, the resulting series for the pdf is hardly
appealing. As shown below, an asymptotic analysis leads to an elegant result that, in addition, seems applicable
to a relatively small network size N . Following a similar procedure as [5, pp. 518-520], we write

z + n(N − n) =

⎛⎝sµN
2

¶2
+ z +

N

2
− n

⎞⎠⎛⎝sµN
2

¶2
+ z − (N

2
− n)

⎞⎠
and define y =

q
(N2 )

2 + z. Then,

kY
n=1

n(N − n)

z + n(N − n)
=

k!(N − 1)!
(N − k − 1)!

kY
n=1

1¡
y + N

2 − n
¢ kY
n=1

1¡
y − N

2 + n
¢

=
k!(N − 1)!
(N − k − 1)!

Γ
¡
y + N

2 − k
¢

Γ
¡
y + N

2

¢ Γ
¡
y − N

2 + 1
¢

Γ
¡
y − N

2 + k + 1
¢

2 It is readily verified that by computing E[WN;m] = −
dϕWN;m

(z)

dz
z=0

the relation (2) is obtained.
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and, substituted in (3), yields

ϕWN;m
(z) =

m(N − 1−m)!Γ
¡
y − N

2 + 1
¢

Γ
¡
y + N

2

¢ XN−m

k=1

k!

(N −m− k)!

Γ
¡
y + N

2 − k
¢

Γ
¡
y − N

2 + k + 1
¢

For large N and |z| < N , we have3 that y =
q
(N2 )

2 + z ∼ N
2 +

z
N such that

ϕWN;m (z) ∼
m(N − 1−m)!Γ

¡
z
N + 1

¢
Γ
¡
N + z

N

¢ XN−m

k=1

k!

(N −m− k)!

Γ
¡
N + z

N − k
¢

Γ
¡
z
N + k + 1

¢
We now introduce the scaling z = Nx, where |x| < 1 since |z| < N ,

ϕWN;m
(Nx) ∼ m(N − 1−m)!Γ (x+ 1)

Γ (N + x)

XN−m

k=1

k!

(N −m− k)!

Γ (N + x− k)

Γ (x+ 1 + k)
(5)

For large N and fixed m and x, the asymptotic order of the sum

S =
XN−m

k=1

Γ (k + 1)

Γ (k + x+ 1)

Γ (N − k + x)

Γ(N − k −m+ 1)
(6)

scales as

S =
Γ(N + x+ 1)N−x−1

Γ (x)Γ (N −m)

π

sinπx

Γ(x+m)

m!

¡
1 +O

¡
N−1

¢¢
(7)

This result (7) is derived in Section A. Substitution of (7) into (5), leads, for large N , fixed m and |x| < 1, to

ϕWN;m (Nx) ∼ πx

sinπx

Γ(x+m)

Γ(m)
N−x

¡
1 +O

¡
N−1

¢¢
or

lim
N→∞

NxϕWN;m (Nx) = lim
N→∞

E
h
e−(NWN;m−lnN)x

i
=

πx

sinπx

Γ(x+m)

Γ(m)
(8)

Finally, the inverse Laplace transform, computed in Section B, is

lim
N→∞

Pr [NWN ;m − lnN ≤ t] = me−mtee
−t
Z ∞
e−t

e−u

um+1
du = me−mtee

−t
Γ
¡
−m, e−t

¢
(9)

where Γ (−m, e−t) is the incomplete Gamma function (17). If m = 1, then we have

lim
N→∞

Pr [NWN − lnN ≤ t] = 1− e−tee
−t
Z ∞
e−t

e−u

u
du (10)

The probability density function follows after derivation of (9) with respect to t as

lim
N→∞

fNWN;m−lnN (t) = m−me−mt
¡
e−t +m

¢
ee
−t
Z ∞
e−t

e−u

um+1
du (11)

3.1 The Fermi-Dirac distribution

For large m and to first order, we have Γ(x+m)Γ(m) ∼ mx, such that

lim
N→∞

E
h
e−(NWN;m−lnN/m)x

i
=

πx

sinπx

In view of the average (2) for large N , we can write NWN ;m − lnN/m = N (WN;m −E [WN ;m]). After inverse
Laplace transform with 0 < c < 1,

lim
N→∞

Pr [NWN ;m − lnN/m ≤ t] =
1

2πi

Z c+i∞

c−i∞

πetx

sinπx
dx

3The notation f (x) ∼ g (x) for large x means that limx→∞
f(x)
g(x)

= 1.
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For t > 0 (t < 0), the contour can be closed over the negative (positive) Re (x)-plane, resulting, for any t, in
the Fermi-Dirac distribution function

lim
N→∞

Pr [NWN ;m − lnN/m ≤ t] =
1

1 + e−t
(12)

whose symmetric probability density function is

lim
N→∞

fNWN;m−ln N
m
(t) =

1

4
sech2

µ
t

2

¶
Fig. 1 plots the scaled, asymptotic pdf (11) for various values of m. The Fermi-Dirac distribution func-

tion frequently appears in statistical physics (see e.g. [2]). It is of interest to observe that the deep tails of
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Fermi-Dirac

Figure 1: The asymptotic and scaled probability density function (11) for various values of m =

1, 2, 3, 4, 5, 10, 15, 20. The pdf of the Gumbel and the Fermi-Dirac distribution are also shown.

fNWN;m−lnN (t) for large |t| decrease as O
¡
e−|t|

¢
. This is different than the decrease of either a Gumbel or

Gaussian, which implies that larger variations around the mean can occur.
If we rescale (9) by changing t = y − lnm, then

lim
N→∞

Pr

∙
NWN ;m − ln

N

m
≤ y

¸
= e−mymm+1eme−y

Z ∞
me−y

e−u

um+1
du

whose dependence on m and tendency to the Fermi Dirac distribution (12) is shown in Fig. 2. From a practical
point of view, if m > 5, the much simpler Fermi-Dirac distribution is sufficiently accurate. The observation,

that a peer group of m ≈ 5 is already close to the asymptotic regime, leads us to conclude that relatively small
peer group sizes suffice to offer a good service quality (e.g. small latency) and that increasing the peer group
size only logarithmically (i.e. marginally) improves the quality of service of weight related metrics.
Rewriting (12) as

Pr [WN;m ≤ y] ' 1

1 + N
me−Ny

(13)

and after derivation, we obtain

fWN;m (y) '
N2

m e−Ny¡
1 + N

me−Ny
¢2
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Figure 2: The tendency towards the Fermi-Dirac distribution (in bold) for increasing m = 1, 2, 3, 4, 5, 10, 15, 20.

whence

fWN;m (0) '
N2

m¡
1 + N

m

¢2 = m
³
1 +

m

N

´−2
The condition that WN ;m > 0 is ignored in the asymptotic analysis, such that the largest error is made
for fWN;m (0). From (4), it follows that the accuracy of the asymptotic analysis is always better than a factor¡
1 + m

N

¢−2
. Hence, the smaller the fraction m

N of peers in the network, the higher the accuracy of the asymptotic
analysis. Fig. 3 shows, for finite values of N , simulation of the scaled pdf fNWN;m−lnN (t) and the asymptotic
result (8) for m = 1, while Fig. 4 plots the comparison for m = 5. Even when ignoring the simulation errors
bars, both figures indicate that the asymptotic analysis is already accurate for relatively small network size N .

The accuracy factor
¡
1 + m

N

¢−2
also agrees and explains why the asymptotic formula (8) is less accurate for

higher m.
Acknowledgement. This work has been partially supported by European Union CONTENT NoE (FP6-

IST-038423) (www.ist-content.eu)
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Figure 3: Comparison of the analysic result (11) with simulations for various N and m = 1

A Evaluation of the sum S

We introduce the Beta function [1, 6.2.1],

B (w, z) =
Γ (z)Γ (w)

Γ (z + w)
=

Z 1

0

tz−1 (1− t)w−1 dt

which is valid for Re (z) > 0 and Re (w) > 0, in (6) such that, for Re (x) > 0,

S =
1

Γ (x)

Z 1

0

dt (1− t)
x−1XN−m

k=1
tk

Γ (N − k + x)

Γ(N − k −m+ 1)

=
1

Γ (x)

Z 1

0

dt (1− t)
x−1XN−1

j=m
tN−j

Γ (j + x)

(j −m)!

=
1

Γ (x)

Z 1

0

dt (1− t)x−1
XN−m−1

j=0
tN−j−m

Γ (j +m+ x)

j!

Introducing Euler’s Gamma integral yields

S =
1

Γ (x)

Z 1

0

dt (1− t)x−1
XN−m−1

j=0

tN−m−j

j!

Z ∞
0

uj+m+x−1e−udu

=
1

Γ (x)

Z 1

0

dt tN−m (1− t)x−1
Z ∞
0

um+x−1e−u
XN−m−1

j=0

(u/t)
j

j!
du

Using (19), XN−m−1

j=0

(u/t)j

j!
=

eu/tΓ (N −m,u/t)

Γ (N −m)

gives

S =
1

Γ (x)Γ (N −m)

Z 1

0

dt tN−m (1− t)x−1
Z ∞
0

du um+x−1e−ueu/tΓ (N −m,u/t)

=
1

Γ (x)Γ (N −m)

Z 1

0

dt tN−m (1− t)
x−1

Z ∞
0

du um+x−1e−ueu/t
Z ∞
u/t

yN−m−1e−ydy
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Figure 4: Comparison of the analysic result (11) with simulations for various N and m = 5.

Let

I =

Z ∞
0

du um+x−1e−ueu/t
Z ∞
u/t

yN−m−1e−ydy

= tm+x
Z ∞
0

dw wm+x−1e−wtew
Z ∞
w

yN−m−1e−ydy

Partial integration yields
I

tm+x
=

Z ∞
0

wN−m−1e−w
Z w

0

um+x−1eu(1−t)du

and we find that

S =
1

Γ (x)Γ (N −m)

Z 1

0

dt tN+x (1− t)
x−1

Z ∞
0

wN−m−1e−w
Z w

0

um+x−1eu(1−t)du

We compute the u-integral asZ w

0

um+x−1eu(1−t)du =
∞X
k=0

(1− t)k

k!

Z w

0

um+x−1+kdu =
∞X
k=0

(1− t)kwm+x+k

k!(m+ x+ k)

Substituting this series, results in

S =
1

Γ (x)Γ (N −m)

∞X
k=0

1

k!(m+ x+ k)

Z 1

0

dt tN+x (1− t)
x+k−1

Z ∞
0

wN−1+x+ke−wdw

=
Γ(N + x+ 1)

Γ (x)Γ (N −m)

∞X
k=0

Γ(x+ k)

k!(m+ x+ k)

Γ (N + x+ k)

Γ(N + 2x+ k + 1)
(14)

This second series (14) for S is more suited than (6) to derive the asymptotic behavior of S for large N (and
fixed m and x). Invoking [1, 6.1.47] yields

S =
Γ(N + x+ 1)N−x−1

Γ (x)Γ (N −m)

∞X
k=0

Γ(x+ k)

k!(m+ x+ k)

µ
1− (x+ 1) (3x+ 2k)

N
+O

µ
k2

N

¶¶

=
Γ(N + x+ 1)N−x−1

Γ (x)Γ (N −m)

Ã ∞X
k=0

Γ(x+ k)

k!(m+ x+ k)
− (x+ 1)

N

∞X
k=0

(3x+ 2k)Γ(x+ k)

k!(m+ x+ k)
+O

µ
k2

N2

¶!
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The remaining series can be rewritten as hypergeometric series,

∞X
k=0

Γ(x+ k)

k!(m+ x+ k)
=
∞X
k=0

Γ(x+ k)Γ(x+m+ k)

Γ(x+m+ 1 + k)

1

k!
=
Γ (x)Γ (x+m)Γ (1− x)

Γ (m+ 1)

where the latter follows from Gauss’s formula (16). The next sum is similarly computed with

∞X
k=0

Γ(x+ k)

(k − 1)!(m+ x+ k)
=
∞X
k=0

Γ(x+ 1 + k)

k!(m+ 1 + x+ k)
=
Γ (x+ 1)Γ (x+ 1 +m)Γ (−x)

Γ (m+ 1)

as
(x+ 1)

N

∞X
k=0

(3x+ 2k)Γ(x+ k)

k!(m+ x+ k)
=
1

N

µ
Γ (x+ 2)Γ (x+m)Γ (−x)

Γ (m+ 1)
(2m− x)

¶
Higher order terms in O

¡
N−j

¢
with j > 1 are computed similarly and converge. Combining all contributions

yields

S =
Γ(N + x+ 1)N−x−1

Γ (x)Γ (N −m)

µ
Γ (x)Γ (x+m)Γ (1− x)

Γ (m+ 1)
+O

¡
N−1

¢¶
After applying the reflection formula for the Gamma function [1, 6.1.17], Γ (x)Γ (1− x) = π

sinπx , we find (7).

B Inverse Laplace transform of (8)

It is a little easier to compute the distribution function instead of the pdf. The inverse Laplace transform is

lim
N→∞

Pr [NWN ;m − lnN ≤ t] =
1

2πiΓ(m)

Z c+i∞

c−i∞

π

sinπx
Γ(x+m)extdx

where 0 < c < 1. Since limx→−∞
πx

sinπx
Γ(x+m)
Γ(m) ext = 0 for any t, the contour can be closed over the negative

Re (x) < 0 plane, where we encounter simple poles of 1
sinπx at x = −k and of Γ(x+m) at x = −m,−m− 1, . . ..

Hence, the integrand has simple poles at x = −1,−2, . . . ,−m + 1 and double poles at x = −m,−m − 1, . . ..
After closing the contour over the negative Re (x)-plane and applying Cauchy’s residue theorem, we obtain

lim
N→∞

Pr [NWN ;m − lnN ≤ t] =
m−1X
k=0

lim
x→−k

π(x+ k)

sinπx

Γ(x+m)

Γ(m)
ext +

∞X
k=m

lim
x→−k

∙
d

dx

π(x+ k)2

sinπx

Γ(x+m)

Γ(m)
ext
¸

The first sum equals

m−1X
k=0

lim
x→−k

π(x+ k)

sinπx

Γ(x+m)

Γ(m)
ext =

m−1X
k=0

(−1)k (m− 1− k)!

(m− 1)! e−kt

The second sum first requires the computation of the derivative,

d

dx

(x+ k)2

sinπx
Γ(x+m)ext =

2(x+ k)

sinπx
Γ(x+m)ext + t

(x+ k)2

sinπx
Γ(x+m)ext

− π(x+ k)2 cosπx

sin2 πx
Γ(x+m)ext +

(x+ k)2

sinπx
Γ(x+m)ψ(x+m)ext

Using the reflection formula of the Gamma function, Γ(x+m) = π(−1)m
sinπxΓ(1−x−m) , the derivative becomes

d

dx

(x+ k)2

sinπx
Γ(x+m)ext =

(x+ k)2

sin2 πx

π(−1)m
Γ(1− x−m)

ext
∙

2

(x+ k)
− π cotπx+ ψ(x+m) + t

¸
The reflection formula for the digamma function [1, 6.3.7] shows that

ψ(1− x−m) = ψ(x+m) + π cotπx
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such that the sum between brackets is

2

(x+ k)
− π cotπx+ ψ(x+m) + t =

2

(x+ k)
− 2π cotπx+ ψ(1− x−m) + t

Since
lim

x→−k

2

(x+ k)
− 2π cotπx = 2 lim

x→−k

sinπx− π(x+ k) cosπx

(x+ k) sinπx
= 0

we have

lim
x→−k

∙
d

dx

π(x+ k)2

sinπx

Γ(x+m)

Γ(m)
ext
¸
=

(−1)m
(k −m)!Γ(m)

e−kt [ψ(1 + k −m) + t]

The second sum is

∞X
k=m

lim
x→−k

∙
d

dx

π(x+ k)2

sinπx

Γ(x+m)

Γ(m)
ext
¸
=
(−1)m
Γ(m)

∞X
k=m

e−kt

(k −m)!
[ψ(1 + k −m) + t]

=
(−1)me−mt

Γ(m)

∞X
k=0

e−kt

k!
[ψ(1 + k) + t]

=
(−1)me−mt

Γ(m)

(
tee
−t
+
∞X
k=0

e−kt

k!
ψ(1 + k)

)

For integer values of the diagamma function, we know [1, 6.3.2] that ψ(1 + k) = −γ +
Pk

j=1
1
j , and thus,

∞X
k=0

e−kt

k!
ψ(1 + k) = −γ

∞X
k=0

e−kt

k!
+
∞X
k=1

e−kt

k!

kX
j=1

1

j

Using (21) gives
∞X
k=0

e−kt

k!
ψ(1 + k) = −γee−t − ee

−t
∞X

m=1

(−e−t)m
mm!

The series expansion of the exponential integral E1 (z) =
R∞
z

e−u

u du is [1, 5.1.11]

E1 (z) = −γ − log z −
∞X

m=1

(−z)m
mm!

and we recognize that
∞X
k=0

e−kt

k!
ψ(1 + k) = ee

−t ¡
E1
¡
e−t
¢
− t
¢

Hence,
∞X

k=m

lim
x→−k

∙
d

dx

π(x+ k)2

sinπx

Γ(x+m)

Γ(m)
ext
¸
=
(−1)me−mt

Γ(m)
ee
−t
E1
¡
e−t
¢

Combining all contributions yields

lim
N→∞

Pr [NWN ;m − lnN ≤ t] =
m−1X
k=0

(−1)k (m− 1− k)!

(m− 1)! e−kt +
(−1)me−mt

(m− 1)! ee
−t
Z ∞
e−t

e−u

u
du

Finally, after introducing (20), we arrive at (9).

C Identities

This section lists identities that we apply. For any complex a,b and positive integer k and n, there holds that
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bX
j=n

1

j

(a− j)!

(b− j)!
=

a!

b!

bX
j=n

1

j
− a!

(b− n)!

a−b−1X
q=0

1

a− b− q

(a− q − n)!

(a− q)!
(15)

A famous result of Gauss on the hypergeometric series is [1, 15.1.20]

∞X
k=0

Γ (a+ k)Γ (b+ k)

Γ (c+ k) k!
=
Γ (a)Γ (b)Γ (c− a− b)

Γ (c− a)Γ (c− b)
(16)

where c 6= 0,−1,−2, ... and Re (c− a− b) > 0.
The incomplete Gamma function is defined [1, 6.5.3] as

Γ (a, x) =

Z ∞
x

ta−1e−tdt (17)

Clearly, Γ (1, x) = e−x. Partial integration yieldsZ ∞
x

ta−1e−tdt = −x
a

a
e−x +

1

a

Z ∞
x

tae−tdt

from which the recursion follows
Γ (a, x) = −x

a

a
e−x +

1

a
Γ (a+ 1, x) (18)

Iterating this recursion a few times reveals that

Γ (a, x) =
Γ (a)Γ (a+ n, x)

Γ (a+ n)
− Γ (a) e−x

n−1X
k=0

xa+k

Γ (a+ k + 1)

If a = 1, then
n−1X
k=0

xk

k!
=

exΓ (n, x)

(n− 1)! (19)

If a = −n, then, after applying the reflection formula of the Gamma function, we obtain

n−1X
k=0

(−1)kk!x−k−1 = ex
n
Γ (0, x) + (−1)n−1 n!Γ (−n, x)

o
(20)

where Γ (0, x) = E1 (x) is the exponential integral.
A result derived from Ramanyuan’s work [3, pp. 46] is

∞X
m=1

am xm

m
= −

∞X
m=1

(−1)m f (m)(x)xm

m!

Ã
mX
k=1

1

k

!

where f(x) =
P∞

k=0 ak x
k for |x| < R. Applied to f (x) = ex yields

∞X
m=1

xm

mm!
= −ex

∞X
m=1

(−x)m
m!

Ã
mX
k=1

1

k

!
(21)
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