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ABSTRACT

We analyze the performance of searching with multiple random
walk queries on Erdös-Rényi (ER) random graphs and power
law graphs generated using preferential attachment. Our simu-
lations show that searching with multiple random walk queries
reduces message overhead as compared to flooding with se-
quence numbers. Moreover, the performance of searching by
using multiple random walk queries is better in ER random
graphs than in power law graphs grown by preferential attach-
ment rule.

I INTRODUCTION

Efficient searching for resources and services is an important
issue in various networks. There are two common methods
employed for searching - flooding and random walks (RW).
In wireless ad-hoc networks, reactive protocols such as AODV
and DSR use flooding to locate the destination [16]. In web-
graphs, search engines use breadth first search to perform a
complete search of the web. However, to reduce the overhead
of searching, agents or spiders based on RW, where the next
hop is chosen uniformly among the neighbors of the node, or
variations of the RW such as the RW strategy where the next
hop is chosen as the node with maximum degree are widely
used [14].

In peer-to-peer networks, both flooding and RW have been
employed to locate services and resources [3, 4, 10]. RWs have
been shown to induce lower overhead than constrained flooding
for searching in peer-to-peer networks [4, 10]. Multiple RWs
have been proposed for searching on unstructured peer-to-peer
networks by Lv et al. [4]. However, the optimization of multi-
ple RWs was not analyzed. Adaptive techniques based on RWs
have been proposed for searching by Bisnik and Abhouzeid
[15]. In the searching technique proposed in [15], the number
of RW queries used for searching are varied depending on the
previous performance of searching. Our work differs from pre-
vious approaches since we study the optimization between the
number of queries and the time-to-live ( ) of queries for
different graph topologies.

We study the performance of different search strategies
based on RWs on ER random graphs and power law graphs
generated using preferential attachment. Both these graph
topologies are important since ad-hoc wireless networks can
be modeled as ER random graphs [11] while the web graphs
and peer-to-peer networks can be modeled as power law ran-
dom graphs [10]. We study both a single query and multiple
queries to search for the destination. We do not consider dy-
namic topologies in this paper. In case of multiple RW queries,

we study the optimal number of queries and the of queries
for ER random graphs and preferential attachment power law
graphs. We also show an efficient way of searching graphs us-
ing RWs with no repetition of steps (i.e., memory). In addition,
an optimal value of the memory depends on the topology of
the network.

Section 2 overviews the previous work. In Section 3, we ex-
plain different RW strategies and the parameters used for analy-
sis of RWs. Section 5 presents the results for multiple queries.
Finally, the conclusions and the summary of results is given in
Section 6.

II RELATED WORK

Unstructured overlay networks such as Gia proposed by
Chawathe et al. [3] and Gnutella build a random graph and use
flooding or RWs to discover data stored at different nodes. RWs
have been shown to induce lower overhead than constrained
flooding used by the current versions of Gnutella [4, 10]. In
the original Gia [3], the RWs were biased to prefer nodes with
higher capacity but Castro et al. [2] have shown that prefer-
ring nodes with higher degree leads to a higher success rate
and a lower delay. Thus, further improvements have been pro-
posed to Gia in which RWs are biased towards the higher de-
gree nodes [2]. Also, variations of RWs have been proposed in
which there are no loops [2].

Different search algorithms for scale-free and power law
graphs have been analyzed in [1, 8]. The term local search
algorithm or path finding strategies is also used for different
variations of RWs [1, 8]. In [1] and [8], RW strategies where
the next hop is chosen as the node with the highest degree and
without retracing of steps have been analyzed in terms of ex-
pected hopcount.

In mobile agent based routing, the mobile agents perform
a RW or a variant of the RW while searching for the desti-
nation. In Ant-Net, loop-erased RWs are used by the mobile
agents [19]. Mobile agents using RW have been proposed for
providing membership services for ad-hoc networks by Dolev
et al. [5]. As a sampling technique, RWs have been used
for providing membership services in ad hoc networks [5, 12]
that provide the nodes in the network with a view of the other
nodes and that are used by various applications such as location
services, peer sampling services and random overlay construc-
tions [12]. Bar-Yossef et al. [12] develop a membership service
for ad hoc networks based on RW using highest degree. They
show that the performance of such membership service is supe-
rior to other existing membership services based on gossiping
or flooding [12].

The analysis of RWs has also been an active topic of research
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[6, 7, 17]. For a detailed mathematical analysis of RWs, we
refer the reader to Lovász [7].

III SEARCH STRATEGIES

A Random Walk and Random Walk with memory

In RW, the next hop is chosen uniformly among the neighbors
of the node. A major shortcoming of RW is the existence of
loops in the path while travelling from the source to the desti-
nation node. To prevent loops, the simplest method is to intro-
duce memory in the RWs.

In RW with memory (RWM), a first-in first-out (FIFO) list
called the memory list M is maintained. The memory list M
contains the node identifiers of the last nodes visited
during the RW, i.e. M = { 1 2 }, where =| M |
represents the number of elements in the memory list M. The
next hop is chosen uniformly among the neighbors of the node
that are not in the memory list M. In our implementation of
the RW strategy with memory (RWM), the node identifier
of the current node is not stored in the memory list M and no
self-loops are allowed (The next hop cannot be chosen as the
node itself.)

The one hop loops can be prevented by using = 1, both
the two hop and one hop loops can be prevented by using

= 2 and so on. Thus, a complete memory = 1
totally eliminates loops in the RWs. But the introduction of
memory ( 1) in RWs can lead to a deadlock. Therefore,
introducing memory may remove the loops in the RW but can
induce deadlocks. In the implementation of Gia, Castro et al.
[2] have used a query in RWs which consists of all the previ-
ously visited hops. This is similar to using complete memory in
our analysis. The above analysis shows that there are two dis-
tinct regimes possible for RWs. Without memory, i.e. = 0,
the RWs can have loops but no deadlocks. For complete mem-
ory, the RWs can only have deadlocks and no loops. When the
value of the memory is such that 0 1, the RWs
can have loops and deadlocks.

B Graph Topologies

We use the ER random graph and the Barabási-Albert (BA)
power law graphs for our analysis. Each node on a ER random
graph is connected to any other node with probability . The
degree distribution for an ER random graph is given by [9]

Pr[ = ] =

µ
1
¶

(1 ) 1 (1)

The BA-model for generating scale-free networks is defined
in two steps [18]. Starting with small number ( 0) of discon-
nected nodes, at every timestep, a new node is added with
( 0) links. A new node connects to nodes already in the
graph with probability = X , where is the degree of

node and is the number of nodes in the graph at a particular
timestep.

After timesteps the model leads to a random network with
= + 0 nodes and links. It has been shown in [18] that

Pr[ ] = 1
2

2 . Thus, the probability that a node has
degree in this model follows a power law [18],

Pr[ = ] =
2 2 1

3
= (2)

where the scaling exponent = 3 is independent of .
The number of nodes with degree less than log in BA

model is ·Pr[ log ] =
³
1 4

(log )2

´
and the num-

ber of nodes with a large degree is small. On the other hand, in
a.s. connected ER random graph where log , the average
node degree is close to or greater than log .

C Definitions

A RW can be described as a finite Markov chain that is time-
reversible [7]. The stochastic matrix = 1 , where
= ( 1 2 ) is the degree matrix and is the

adjacency matrix, represents the transition matrix of the RW.
It is known [7] that the RW has a unique stationary distrib-
ution , such that = , with = 2 . Let the RW
start at node 0. The node 0 could be drawn from some
initial distribution 0. Denote the sequence of random nodes
by ( = 0 1 ). If we denote by the distribution of

i.e., ( ) = Pr [ = ], the RW can be expressed as

+1 = and hence, =
¡ ¢

0. Thus, the proba-
bility that RW starting at reaches node in steps is given by
( ) entry of the matrix [7].

It is known that a symmetric matrix has real eigenvec-
tors with corresponding eigenvalues 1 = 1 2

1 . Moreover, if we exclude bipartite graphs or re-
ducible Markov chains, then | | 1, for 1. The cover
time is the expected number of steps for RW to visit all
nodes at least once [12],

=

µ 1
min log

1 2

¶
=

µ
log

1 2

¶
(3)

where min = min

2 . Jonasson [6] showed that when log ,
w.h.p a random graph has the same cover time as the com-
plete graph i.e., the cover time is log . Similarly, for
BA power law graphs, Cooper and Frieze [17] proved that if

2, then w.h.p. the cover time
l
2
1 log

m
+

( log ).
The number of hops required for uniform sampling by RW

can be as low as number of samples in independent uniform
sampling [10, 15]. Thus, if the RW starts at any node and
makes hops, and using each visited node as a sample point,
approximately the same statistical properties can be achieved
as independent uniform samples. However, our simulations
show that there are large differences in the behavior of RW as
compared to independent uniform sampling, particularly, when
the is small.

IV SEARCHING WITH MULTIPLE RANDOM WALK

QUERIES

We show that using multiple queries reduces the overhead for
searching as compared to flooding with sequence numbers.
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Searching (packet) overhead is defined as product of number
of hops for each query (packet) and number of queries (pack-
ets) i.e., the total number of packets exchanged. A single RW
query has an overhead and time to discover of ( log ) for
ER random graphs and BA power law graphs [6, 17]. Since the
time to discover is large in RW, we split a single RW query into

multiple queries each with a given . Each RW query
stops when the is reached or the destination is located (In
RWM, the query also stops if there is a deadlock). Since each
RW query makes at most hops, the worst-case searching
overhead is × . The expected number of hops are less
since any query stops once the destination is found. However,
there is a probability that a destination is never located by the
multiple queries. Thus, with multiple queries we define the
probability of success as the probability that the destination is
located by at least one query out of the queries generated.
In flooding with sequence numbers, the probability of success
is defined as the probability that a destination is located with a
given . We want to minimize and and maximize
Pr [success].

To analyze the performance of multiple RW queries, we de-
fine the efficiency as the inverse of expected packet overhead
needed to discover the destination node. The efficiency is nor-
malized by multiplying by . The gain of searching in one
scheme over another is defined as the ratio of efficiency for the
corresponding schemes.

=
Number of iterations (Pr [success])
Total number of packets exchanged

× (4)

µ
RWM

RW

¶
=

(RWM)

(RW)
(5)

Consider a single RW and RWM on a complete graph .
The searching overhead can be approximated by the product
of expected hopcount to discover destination and the number
of iterations. Since in RW and RWM, the expected hopcount
is 1 and ( 1) 2 respectively, the gain

¡
RWM
RW

¢
= 2

for a complete graph . In flooding with = 1, is
( 1) and with = 2, is ( 1)2. Thus, the

efficiency of flooding depends on the value of and the
efficiency decreases with .

Table 1 and 2 show the efficiency for a single RW and RWM

query and flooding with sequence numbers for different val-
ues of and . The results for flooding in Tables 1 and 2
are for optimized values of such that Pr [success] is close
to 1. The gain obtained by using RW over flooding is signif-
icant, particularly, when the link density is large. In addi-
tion, RWM=N-1 is a more efficient way of searching than RW
since the expected number of hops required to find destination
or deadlock is less. However, the probability of deadlocks is
high when the link density is small. As the link density is
decreased, efficiency for both RW and RWM decreases. This
is in contrast to flooding where the efficiency increases as the
link density is decreased.

A single RW leads to lower overhead to locate a destination
than flooding with sequence numbers. However, the time to
search for destination is much larger than in flooding. Since

Table 1: Efficiency of searching by using flooding, and a single
RW or RWM query for dense ER random graph ( = 80) for
different values of

= 80

(RW) (RWM) (flood) ( RW
flood ) (RWM

RW )
100 1.17 1.82 0.015 78 1.55
200 1.08 2.16 0.03 36 2
400 1.05 1.997 0.06 17.5 1.90
800 1.017 2.0 0.12 8.5 1.98

Table 2: Efficiency of searching by using flooding, and a single
RW and RWM query for sparse ER random graph ( = 6) for
different values of

= 10

(RW) RWM

(Pr[suc.])
(flood)

¡
RW
flood

¢ ¡
RWM
RW

¢
100 0.84 1.6 (0.73) 0.14 6 1.89
200 0.84 1.54 (0.66) 0.21 4 1.83
400 0.82 1.47 (0.59) 0.11 7.5 1.79
800 0.8 1.4 (0.52) 0.14 5.7 1.76

we want to maximize Pr [success] and minimize , we split
the single RW or RWM into multiple queries with fixed
such that × = log . Table 3 and 4 show the results
for multiple RW and RWM queries for ER random graph with
= 400 and link density = 0 015 and 0 2 respectively. In

Table 4, since the link density is large, Pr [success] ' 1 and
is not shown.

The probability of success is very low in RWM with only a
single query when the link density is small. However, when
split into multiple queries, Pr [success] increases. As the
is decreased and is increased, the efficiency decreases for
both RW and RWM. The decrease in efficiency occurs with
small since most of the queries search only the neigh-
boring nodes which have been visited already by other queries.
There is also a decrease in efficiency because the number of
queries and the is fixed. Thus, multiple queries might
locate the destination. The terminating conditions can be in-
cluded which improve the efficiency but increases the complex-
ity of searching algorithms. For example, a scheme is proposed
in [4], where the query checks with the source node whether
the destination is located. As shown by tables 3 and 4, the ef-
ficiency decreases by a factor of 3 as the is decreased
from 2400 to 120. Moreover, when the is small, the gain
obtained by using RWM over RW is small. Therefore, only
for large values of link density and , RWM is a more
efficient way of searching than RW. If we use 1 with

= 2400, the efficiency decreases.
Figure 1 shows Pr [success] versus the searching overhead

(number of packets exchanged) and the worst time to discover



The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’07)

Table 3: Efficiency of searching by multiple RW and RWM

queries for = 0 015 and = 400.

= 6 = 400 RW RWM ( RWM
RW )

× = 2400 Pr[suc.] Pr[suc.]
= 1 0.7 0.996 1.23 0.28 1.8
= 20 0.27 0.96 0.33 0.97 1.2
= 120 0.24 0.95 0.26 0.97 1.1
= 400 0.15 0.73 0.18 0.82 1.2

Table 4: Efficiency of searching using multiple RW and RWM

queries for = 0 2 and = 400

= 80

= 400 (RW) (RWM)
¡

RWM
RW

¢
= 1 = 2400 1.05 1.997 2
= 20 = 120 0.30 0.298 1
= 120 = 20 0.285 0.285 1
= 400 = 6 0.26 0.262 1

the destination. Since the size of network is not known a priori,
we also show simulations for query split into multiple queries
with a different . We use a linearly increasing and
the maximum time to discover is given by maximum max.

( ) = min + ( 1) _ (6)

Using (6), the _ parameter can be expressed as
max min

1 . Figure 1 shows that efficiency of searching
by RW and RWM decreases with . This is in contrast to
the assumptions made in the analysis in [15], where search-
ing with multiple queries and independent uniform sampling
are assumed to be equivalent. Also, the linear query performs
as good as sending multiple queries with a large (100).
Thus, the simulations show that searching by using a single RW
query with is more efficient than sending RW queries
with 0( = × 0) for ER random graphs.

Figure 2 shows the results for searching with multiple
queries in BA power law graph. In these graphs, RWM=2

gives the best performance in terms of reducing search over-
head. RWM=N-1 performs worse than RWM=2 since many of
the queries end in a deadlock. This reduces the efficiency of
the RWM=N-1 strategy and queries with larger need to
be sent to achieve the same probability of success as RWM=2.
Moreover, the improvement in performance of different RW
strategies compared to flooding is limited. Even with a large

= 1000, the RW does not perform better than flooding.
Figure 3 compares the performance of searching with RW

and RWM in ER random graph and BA power law graph using
the same = 400. The results are for = 10000 and for
ER random graph the link density = 0 001. Figure 3 also
shows the results for searching for a high-degree destination
node in BA power law graph (the average degree of the desti-
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Figure 1: Performance of searching by using multiple queries
in ER random graph for = 400 and = 0 015

nation is 72). Searching in ER random graphs performs better
than in BA power law graph. This can be attributed to the fact
that most of the nodes in ER random graph have a larger de-
gree than the degree of nodes in BA power law graph (section
III.B). Thus, in BA power law graph, the RW makes large num-
ber of hops among the low degree nodes while searching for
the destination node. Moreover, in BA power law graph, since
the degree of uniformly chosen destination and source nodes is
small, performance of searching for a uniformly chosen node
is much worse than searching for a high degree node.

V CONCLUSIONS

We have analyzed the performance of searching with multiple
RW strategies in two types of graphs. The topology of graphs
plays an important role in determining the performance of dif-
ferent search strategies. Searching with multiple RW queries
performs better than flooding with sequence numbers in terms
of overhead. The overhead can be reduced further by using
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Figure 2: Performance of searching using RW and RWM with
multiple queries for BA power law graph ( = 10000).

multiple RWM queries. However, the searching efficiency de-
creases with for both RW and RWM. The performance
of searching with multiple RW and RWM queries is better in
ER random graphs than in BA power law graphs. Moreover, in
BA power law graph, only small values of memory improve
performance of searching using multiple RW queries.

ACKNOWLEDGEMENT

This research was supported by the Dutch Ministry of Economic Af-
fairs under the Innovation Oriented Research Program (IOP GenCom,
QoS for Personal networks @ Home) and partially supported by Eu-
ropean Union CONTENT NoE (FP6-IST-038423).

REFERENCES

[1] B.J. Kim, C.N. Yoon, S.K. Han and H. Jeong„ "Path finding strategies
in scale-free networks", Physical Review E, vol. 65, 2002.

[2] M. Castro, M. Costa and A. Rowstron, Peer-to-peer overlays: structured,
unstructured or both?, Technical Report MSR-TR-2004-73, 2004.

1.0

0.8

0.6

0.4

0.2

0.0

Pr
[s

uc
ce

ss
]

60x10
3

50403020100
Number of packets exchanged

ER random graph
 Flooding
 RW, TTL = 400
 RWM = N-1, TTL = 400

BA model
 Flooding
 RW, TTL = 400

High degree destination
 RW, TTL = 400

N = 10000
p = 0.001 (ER graph)

Figure 3: Comparison of searching by multiple RW and RWM

queries on ER random graph and BA power law graph. ( =
10000 and for ER random graph = 0 001)

[3] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham and S. Shenker,
"Making Gnutella-like P2P Systems Scalable", Proc. SIGCOMM Con-
ference, 2003.

[4] Q. Lv, P. Cao, E. Cohen, K. Li and S. Shenker, "Search and Replication
in Unstructured Peer-to-Peer Networks", Proc. 16th ACM International
Conference on Supercomputing, 2002.

[5] S. Dolev, E. Schiller and J. Welch, "Random Walk for Self-Stabilizing
Group Communication in Ad-Hoc Networks", Proc. 21st Symposium on
Reliable Distributed Systems, 2002.

[6] J. Jonasson, "On the cover time of random walks on random graphs",
Combinatorics, Probability and Computing, 7, pp. 265-279, 1998.

[7] L. Lovász, "Random Walks on Graphs: A Survey", Combinatorics, Paul
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